10 research outputs found

    A novel, simple method for determination of Cr(Ⅲ)in environmental samples

    Get PDF
    根据Luminol H2O2 Cr(Ⅲ)体系在碱性条件下产生很强的化学发光的原理,用光电二极管作检测器测定环境样品中的Cr(Ⅲ)。本方法具有分析速度快、选择性好、检测装置结构非常简单,成本低等优点。其检测限为5.0×10-8g/mL,线性范围为5.0×10-8~5.0×10-4g/mL,相对标准偏差小于5.0%。在实际样品的分析中,取得了令人满意的结果。A novel, simple analytical procedure for determination of chromium(Ⅲ) in environmental samples with photoelectric diode detector is presented successfully, which is based on the fact that which is based on the principle that the system of luminol-H_2O_2-Cr(Ⅲ) can yield strong chemiluminescence The single analyzing time is less than 1 min.The linearity range is 5.0×10~(-8)~5.0×10~(-4) g/mL . The detection limit is 5.0×10~(-8) g/mL . The RSD is less than 5.0%(n=6). And it's detecting equipment is simple and cheap. The method has been applied to the determination of Cr(Ⅲ) in environmental samples successfully .厦门大学高等学校重点实验室访问学者基金资助;; 国家自然科学基金资助(NO.20005005

    毛细管区带电泳法测定低卡路里食品中甜菊苷

    Get PDF
    厦门大学固体表面物理化学国家重点实验室基金资助项

    Analysis of the Content of Stevia Sweeteners by Capillary Zone Electrophoresis

    Get PDF
    本文介绍了一种用毛细管区带电泳法筛选甜菊糖苷突变体的有效方法。根据实验结果 ,优化的电泳条件为 :60mmol/LTris 硼酸缓冲液 (pH 8.0 ) ,柱温 30℃ ,工作电压 2 5kV。优化条件下 ,甜菊苷 (Ste vioside)迁移时间的R .S .D为 0 .45% (1 5次 ) ,且在 7.45× 1 0 - 5~ 1 .74× 1 0 - 2 mol/L的浓度范围内存在良好的线性关系 (r=0 .9994) ,甜菊主要糖苷在 5min内均可实现分离。在优化条件下 ,本实验研究了低能离子注入后甜菊主要糖苷含量变化 ,结果令人满意。This paper introduced an effect capillary zone electrophoresis method for screening of stevia mutation. According to the experimental results, the optimum separation conditions were selected as: 60 mmol/L Tris tetraborate buffer of pH 8.0, 30 ℃ and 25 KV. Under optimum conditions, the R.S.D. of stevioside migration time for 15 runs was 0.45%. The detector response for stevioside was linear over the range of 7.45×10 -5 ~1.74×10 -2 mol/L (r=0.9994). Stevia main sweeteners cound be separated effectively in less than five minutes. This method was applied for determining the variation of stevia main sweeteners after low_energy ions implantation

    Study on New Method and Tecnique of Capillary Electrophoresis

    No full text
    毛细管电泳(CE)是离子或荷电粒子在电场驱动力作用下于毛细管内按其淌度或/和分配系数不同进行高效、快速分离的一种新型分离分析技术。目前,全世界关于CE新技术和新方法及其应用研究经费己高达十亿美元以上。毛细管电泳技术进入了一个飞速发展的黄金时代。本文以田昭武院士的新思想和创新思维为指导前提,在先生的指导和关心下,主要从如下两个方面展开了研究和探索。一、毛细管电泳新技术的研究 根据田昭武院士的新思想和电渗泵原理,我们设计并组装了一种称为“电动显微操纵器”的实验装置。其目的是用于捕获、拣选和操纵溶液中的有用微粒,以利于分离、分析、观察、排列、修饰及改性等研究:这些微粒包括细胞、病毒、DNA片段及蛋白质等生物大分子及其它有用的微粒。并以不同尺寸的细胞为研究对象,对这一新技术的原理及可靠性进行了初步论证。二、毛细管电泳新方法的研究 通过实验,我们建立了一套简单、快速、准确的用于分离测定甜菊糖及其系列产品的毛细管电泳新方法。实验结果表明,从对标准样品的分离效果来看,这一方法在分离速度比文献报导的结果提高4倍以上的情况下其分离度至少提高了10倍,且这一体系比现有文献报导的要简单易得。目前,这一方法的应用使得毛细管电泳技术成为甜菊糖及其系列产品分离测定的最有效方法之一,并首次成功地用于甜菊糖产品如:降糖茶(中药产品)、低卡路里糖及绿豆粉(保健品)中甜菊糖的定性定量分析。此外,我们还首次用方差分析方法对毛细管电泳的数据结果进行分析,实现了植物突变株的筛选。I this paper, the recent progress on study of new technique and new methods ofcapillary electrophoresis in our laboratory are introduced. The results of our work aredescribed as follows.1. Study on new technique of capillary electrophoresisAccording to the theory of electro-osmosis pump proposed by Prof Tian, a noveltechnique of capillary electrophoresis so-called electro-micro-manipulation techniquehas been developed in our laboratory for manipulation, transport, sort, introduceparticles in solution for the studies of separation, analysis, assemblies and modifyingThese particles include cells, DNA fragments, proteins, virus and others particles. Theother function of this technique is it can be used as micro-injector for injection ofultrasmall samples in or out from single cell. Applications of this technique for studyon three kinds of alga cells with different diameter and results of these experimentsare discussed2.Study on new methods of capillary electrophoresisSeveral novel buffer systems for separation and determination steviosidc sugar in Steviosiderebaudiana leaves' extraction. Products of this kind of sugar such as low-caloric food. JIANGTANG tea and low-caloric sugar arc separated and analysed by capillary electrophoresis withthese buffer systems, firstly. A novel application of capillary electrophoresis combined varianceanalysis for study of effects of plant seed implanted by low energy ions such as C and N isdiscussed firstly, and this method has been used for screening mutation plants successfully。学位:博士后院系专业:化学化工学院化学系_物理化学(含化学物理)学号:BHBG0003

    Study on New Method and Tecnique of Capillary Electrophoresis

    No full text
    毛细管电泳(CE)是离子或荷电粒子在电场驱动力作用下于毛细管内按其淌度或/和分配系数不同进行高效、快速分离的一种新型分离分析技术。目前,全世界关于CE新技术和新方法及其应用研究经费己高达十亿美元以上。毛细管电泳技术进入了一个飞速发展的黄金时代。本文以田昭武院士的新思想和创新思维为指导前提,在先生的指导和关心下,主要从如下两个方面展开了研究和探索。一、毛细管电泳新技术的研究 根据田昭武院士的新思想和电渗泵原理,我们设计并组装了一种称为“电动显微操纵器”的实验装置。其目的是用于捕获、拣选和操纵溶液中的有用微粒,以利于分离、分析、观察、排列、修饰及改性等研究:这些微粒包括细胞、病毒、DNA...I this paper, the recent progress on study of new technique and new methods ofcapillary electrophoresis in our laboratory are introduced. The results of our work aredescribed as follows.1. Study on new technique of capillary electrophoresisAccording to the theory of electro-osmosis pump proposed by Prof Tian, a noveltechnique of capillary electrophoresis so-called electro-micro-manipulation techni...学位:博士后院系专业:化学化工学院化学系_马克思主义哲学学号:BHBG0003

    Application of Capillary Electrophoresis to UDPG-Steviaglucoside Glucosyltransferasas Activity Assay

    No full text
    以Tris-硼酸作为毛细管电泳分离分析甜菊糖苷新体系,分离测定UDPG-甜菊糖苷葡萄糖基转移酶在适当条件下催化甜菊醇反应后的甜菊糖苷产物。结果表明,甜菊种子经能量75keV,剂量1014ions/cm2的碳、氮离子注入处理,UDPG-甜菊糖苷葡萄糖基转移酶活性比未进行离子注入的高;而且碳离子注入效果好于氮离子注入。因此,毛细管电泳可以作为离子注入处理植物种子检测的新方法,与文献报道的非Tris-硼酸体系相比,具有性能稳定、缓冲容量大、分离分析速度快、线性范围宽及分辨能力强等优点。Tris-H3BO3 buffer was used as a new capillary zone electrophoresis(CZE) system for separating and determining two main stevia glucosides so-called stevioside (SS) and rebaudioside (RA) produced in the process of the steviol catalyzed by UDPG-steviaglucoside glucosyltransferase properly. By implanting C and N ions with 75keV under the dose of 1014 ions/cm2, it was found that the activity of UDPG-steviaglucoside glucosyltransferases in stevia seeds was higher than that of seeds without ions implantation, and the effect of implanation of C ions was better than that of N ions. Therefore, CZE could provide a novel method for evaluating effects of ions implantation method used for treating plant seeds.厦门大学高等学校重点实验室访问学者基金;; 国家自然科学基金(No.20005005)资助项目

    Study of New Method for Separation and Determination of Stevia Glucosides by Capillary Electrophoresis

    No full text
    本文采用 1 0 0 %二甲基甲酰胺 ( DMF)作为样品的溶剂 ,以 Tris-硼砂作为分离甜菊糖苷的缓冲体系 ,探讨了进样量、柱温、电压、Tris-硼砂缓冲液浓度以及 p H值等条件对甜菊糖苷分离结果的影响。通过优化各种分离条件 ,实现了毛细管电泳高效分离测定甜菊糖苷This paper reported a new, effective and secure method for separation and determination of stevioside by capillary electrophoresis. The effects of different separation conditions on the migration time, selectivity and resolution were investigated. Under optimum separation conditions, the detector response for stevioside was linear over the range 0.05-9 mg/ml and the linear regression coefficient was 0.997. All components provided good resolution in 3.5 min. The relative standard deviations for the migration time of St and RA were 0.71% and 0.46%, respectively. This method was applied to the determination of steviol extract, and the content of St in this sample was 5.36%.高等学校重点实验室访问学者基

    Determination of Stevia Main Component Stevioside by Capillary Zone Electrophoresis

    No full text
    采用 Tris-硼砂作为毛细管电泳分离测定甜菊苷的新体系 ,探讨了进样量、温度、电压、缓冲液浓度以及 p H值等条件对甜菊苷分离效果、灵敏度及分离时间的影响 .通过优化各种实验条件 ,建立一种毛细管区带电泳分离甜菊苷的新方法 .实验结果表明该方法具有如下优点 :1)快速 :甜菊中两种主要甜味成分在 3.5min内均达到完全分离 ;2 )灵敏度高 :最小检测浓度可达 6.2× 10 -5mol/ L;3)分离效率高 :理论塔板数高达 3.3× 10 4 / m;4 )稳定性好 :St出峰时间的 R.S.D为 0 .71% ,RA为0 .4 6% .Stevioside在 0 .5~ 7.0 mg/ m L的浓度范围内存在良好的线性关系 .实验实现了甜菊叶提取物中甜菊苷的分离测定 ,结果令人满意 .This paper introduced Tris sodium tetraborate as novel electrophoretic buffer for stevia separation. The effect of different separation conditions on the migration time, selectivity and resolution was investigated, including the injected amount of sample, voltage, capillary temperature, concentration and pH value of buffer system. The characters of this method were listed below: 1)Rapid, stevioside and rebaudioside A were provided good resolution in 3.5 min; 2)High sensitivity; 3)Efficient, the theoretical plate of St was 3.3×10 4 /m; 4)The R.S.D for the migration time of Stevioside and Rebaudioside A were 0.71% and 0.46%, respectively. The detector response for Stevioside was linear over the range 0.5~7.0 mg/mL. Stevioside in stevia extract was satisfactorily quantified by this method.厦门大学固体表面物理化学国家重点实验室开放基

    The Development of Microsystems and New Applications of Electrochemistry

    No full text
    [中文文摘]本文根据田昭武在中国化学会第一届全国纳米技术与应用会议 (2 0 0 0 .11.2 8,厦门 )特邀大会报告内容整理而成 :1 微系统技术概述 (技术的必要性和前景 )2 发展微系统技术的特殊困难3 电化学在微系统技术中的应用  3.1 用于复杂 3D 图形微加工的约束刻蚀剂层技术 (CELT)  3.2 聚焦电泳和微系统在 (生物 )化学中的应用 (μ TAS或芯片上实验室 )  3.3 芯片实验室中微流体输运网络的合理选择之一 -灵巧 (Smart)电渗泵4 结论。[英文文摘]Brief introduction to microsystems 2 Discussions on the developments of microsystem technologies 3 Applications of electrochemistry in microsystem 3.1 Confined Etchant Layer Technique (CELT) for the complex 3D-pattern micromachining 3.2 Focusing Electrophoresis and the application of microsystem in (bio) chemistry (μTAS or Lab on A Chip) 3.3 Smart Electro-Osmosis pump——a reasonable choosing for microfluidic network 4 Concluding remark.国家自然科学基金:批准号:29233070(重点项目,1993 ), 29383004(1994), 59605017(1997), 29775020(重点项目, 1998) ,29833070(1999) ,29927001(2000)

    The Development of Microsystems and New Applications of Electrochemistry

    No full text
    本文根据田昭武在中国化学会第一届全国纳米技术与应用会议 (2 0 0 0 .11.2 8,厦门 )特邀大会报告内容整理而成 :1 微系统技术概述 (技术的必要性和前景 )2 发展微系统技术的特殊困难3 电化学在微系统技术中的应用  3.1 用于复杂 3D 图形微加工的约束刻蚀剂层技术 (CELT)  3.2 聚焦电泳和微系统在 (生物 )化学中的应用 (μ TAS或芯片上实验室 )  3.3 芯片实验室中微流体输运网络的合理选择之一 -灵巧 (Smart)电渗泵4 结论Brief introduction to microsystems 2 Discussions on the developments of microsystem technologies 3 Applications of electrochemistry in microsystem 3.1 Confined Etchant Layer Technique (CELT) for the complex 3D-pattern micromachining 3.2 Focusing Electrophoresis and the application of microsystem in (bio) chemistry (μTAS or Lab on A Chip) 3.3 Smart Electro-Osmosis pump——a reasonable choosing for microfluidic network 4 Concluding remark作者联系地址:厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!Author's Address: State Key Lab. for Phys. Chem. of Solid Surface, Dept. Chem. Xiamen Univ.,
    corecore