6 research outputs found

    单辊快淬法制备高性能各向异性Nd_2Fe_(14)B/α-Fe纳米复相永磁材料

    No full text
    采用熔体快淬工艺制备了成分为Nd-Fe-B-P和Nd-Fe-B-P-Zr快淬带,组织结构研究和磁性能研究表明:添加P元素有利于Nd2Fe14B相晶粒沿C轴择优取向,形成(00L)织构;(00L)织构的形成使材料产生各向异性,沿垂直带面方向:Hci=495 k A·m-1,Jr=1.18T,(BH)max=190 k J·m-3。进一步添加元素Zr虽然有利于晶粒细化,但却抑制了织构的形成,得到的合金条带为各向同性磁体

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore