9 research outputs found

    Research on Development and Control Strategy of Residual Stress During Laser Deposition

    No full text
    增材制造技术是在计算机辅助制造程序的控制下,通过逐层增加材料制造构件的技术,该技术能够制作出传统制造方法难以制造的形状复杂的构件,在航空航天、医药等领域得到了广泛应用。在增材制造领域,残余应力引起的构件损伤、变形和破坏问题至关重要,因此,本文围绕增材制造样品的残余应力和变形展开研究。通过有限元模拟方法分析了激光熔化沉积316L不锈钢成形件的残余应力的发展过程。此外,本文通过实验研究了不同扫描策略对激光沉积样品变形的影响,通过优化扫描策略减小了样品的变形。本文的主要研究内容如下: 首先研究了激光沉积过程中残余应力的发展。本文依次建立了单道10层薄壁件、单道50层薄壁件和单层15道沉积层的激光沉积的热力耦合有限元模型,模拟了激光沉积316L不锈钢薄壁件和沉积层的温度场和应力场的发展过程。模拟结果表明,激光沉积过程中,温度和残余应力随时间往复变化,随着沉积层数的增加,温度和残余应力的变化幅度变小。随着高度的增加,薄壁件底部的纵向应力逐渐减小,薄壁件顶部的纵向应力略有减小,薄壁件边界的竖直方向应力逐渐增大。在样品刚沉积结束的道次附近,拉应力最大。 然后研究了减小激光沉积过程中残余应力导致的变形的策略。本文通过实验研究了分形扫描策略和基于分形曲线的分区扫描策略对激光沉积样品变形的影响。结果表明,三种分形扫描策略对应的基板最大变形量分别为:Peano曲线3.3 mm,Sierpinski曲线2.5 mm,Lebesgue曲线3.8 mm,明显小于传统扫描策略对应的基板最大变形量7.5 mm,因此,分形扫描策略可以显著减小样品变形。三种基于分形曲线的分区扫描策略对应的基板最大变形量分别为:Hilbert曲线顺序3.5 mm,Sierpinski曲线顺序3.2 mm,Lebesgue曲线顺序5.4 mm,明显小于传统的分区扫描策略,因此,基于分形曲线的分区扫描策略可以显著减小样品变形。此外,在基于分形曲线的分区扫描策略下,扫描线段的方向和数量可以灵活的调节。在综合考虑扫描线设计的灵活性和变形量的情况下,基于Sierpinski曲线的分区扫描策略为最优策略。 综上所述,本文的研究有助于深入的了解激光沉积过程中的残余应力的分布规律和发展过程,此外,对于减小激光沉积过程中的残余应力和变形具有较好的指导意义。</p

    高度对激光沉积薄壁件残余应力分布的影响

    No full text
    为了研究激光沉积薄壁件的高度对残余应力分布的影响规律,建立了热力耦合有限元模型,并模拟了激光沉积316L不锈钢薄壁件的温度场和应力场。将测试结果与模拟结果进行对比,验证了模型的正确性。结果表明:随着高度的增加,沿着高度方向的纵向应力从均匀分布的较大拉应力逐渐转变为下部拉应力较小、上部拉应力较大。边界处的竖直方向应力随着高度的增加而逐渐增大,且拉应力较大的区域,尺寸逐渐增大。沿着长度方向的纵向应力随着高度的增加而略有减小。由于沉积带来热循环,下层的纵向应力逐渐消减。随着高度的增加,薄壁件底部的竖直应力逐渐变为两端呈拉应力、中间呈压应力,且应力大小随着高度的增加而增加

    基于分形曲线的分区扫描策略对激光熔化沉积基板变形的影响

    No full text
    目的 研究新型扫描策略,减小激光熔化沉积过程中基材的变形。方法 首先采用分形曲线作为全域扫描策略,通过激光熔化沉积实验研究了1种传统扫描策略与3种分形扫描策略的基板变形;其次,本文提出将分形扫描策略和分区扫描策略相结合,按照分形曲线的走向扫描各个分区,形成基于分形曲线的分区扫描策略,通过激光熔化沉积实验研究了1种传统分区扫描策略与3种基于分形曲线的分区扫描策略的基板变形。结果 无论是全域扫描还是分区扫描,基板的四条边均发生了竖直向上的翘曲变形。在扫描路径的终点附近,基板的变形量最大。全域扫描策略下,基板的最大变形量分别为:光栅式扫描7.5mm,Peano曲线3.3mm,Sierpinski曲线2.5mm,Lebesgue曲线3.8mm。分区扫描策略下,基板的最大变形量分别为:光栅式顺序7.5mm,Hilbert曲线顺序3.5mm,Sierpinski曲线顺序3.2mm,Lebesgue曲线顺序5.4mm。结论 基于分形曲线的分区扫描策略可以显著减小基板变形,还可以灵活的调节扫描线段的方向和数量,在综合考虑扫描线设计的灵活性和变形量的情况下,基于Sierpinski曲线的分区扫描策略为最优策略

    基于无量纲工艺图的激光熔化沉积制备Ti6Al4V工艺与性能研究

    No full text
    如何高效获取合适的工艺参数进行激光熔化沉积(LMD)制造高性能零件是一项艰巨的挑战。提出了一种有效进行参数选择的方法,建立了基于LMD工艺的无量纲参数组,利用文献中获取的LMD工艺数据构建无量纲工艺图,确定了本试验LMD制备Ti6Al4V的工艺范围。利用正交试验研究了不同激光功率q、扫描速率v和扫描间距h组合下的无量纲等效能量密度E0*对LMD制备Ti6Al4V块状试样组织和性能的影响。结果表明,LMD制备的试样呈现出明显的柱状晶外延生长特点,柱状晶的宽度随E0*增加而增大。在通过无量纲工艺图确定的最优参数E0*=3.74下LMD制备的Ti6Al4V试样无熔合缺陷,硬度为391.7 HV,抗拉强度为963 MPa,延伸率为13.4%。结果表明,利用构建的无量纲工艺图缩小工艺参数范围,可以获得综合力学性能优良的样件。</p

    Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel

    No full text
    In the present work, 316L stainless steel specimens are fabricated by selective laser melting (SLM) via optimized laser process parameters. The effects of two extrinsic factors, i.e., strain rate and annealing temperature, on the mechanical performance of SLM-processed parts are studied. The two intrinsic factors, namely strain rate sensitivity m and work hardening exponent n, which control the tensile properties of the as-built samples, are quantified. Microstructure characterizations show that cellular structure and crystalline grain exhibit apparently different thermal stability at 873 K. Tensile testing reveals that the yield strength decreases from 584 +/- 16 MPa to 323 +/- 2 MPa, while the elongation to failure increases from (46 +/- 1)% to (65 +/- 2)% when annealing temperature varies from 298 K to 1328 K. The n value increases from 0.13 to 0.33 with the increase in annealing temperature. Due to the presence of fine cellular structures and high relative density achieved in as-printed 316L samples, a strong dependence between tensile yield strength and strain rate is observed. In addition, the strain rate sensitivity of the SLM-produced 316L part (m = 0.017) is much larger than that of conventional coarse-grained part (m = 0.006), whereas the n value increases slightly from 0.097 to 0.14 with increasing strain rate

    激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状

    No full text
    增材制造涉及快速的非平衡热过程,导致成形件中存在大量的亚稳相和缺陷,这些亚稳相和缺陷在构件服役过程中极易成为失效源。因此,打印态构件一般都要经过热处理才能充分发挥其潜在的性能优势。近年来,国内外许多研究机构在激光选区熔化(SLM)制备316L不锈钢方面取得了突破,SLM-316L不锈钢打印态的强度和韧性都远远超过锻件,这是因为材料内部形成了跨越6个数量级的非均匀层级结构(包括晶粒、缺陷、熔池、胞结构、纳米氧化物颗粒),这是增材制造通过其特殊的非平衡热过程调控材料微结构的结果。316L不锈钢具有面心立方结构,在冷却至室温过程中不发生固态相变,这种特性非常有利于开展基础研究,揭示增材制造材料跨尺度结构对其性能的影响规律。本文详细阐述了SLM-316L不锈钢成形在工艺、跨尺度结构及力学性能方面的研究现状,结合笔者的工作,阐明并分析了SLM-316L不锈钢具有高强高韧力学性能的主流学术观点,展望了该材料今后的重点研究方向

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore