54 research outputs found

    Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis

    Get PDF
    Immunitat adaptativa; Envelliment; Esclerosi múltipleInmunidad adaptativa; Envejecimiento; Esclerosis múltipleAdaptive immunity; Aging; Multiple sclerosisPatients with multiple sclerosis (MS) suffer with age an early immunosenescence process, which influence the treatment response and increase the risk of infections. We explored whether lipid-specific oligoclonal IgM bands (LS-OCMB) associated with highly inflammatory MS modify the immunological profile induced by age in MS. This cross-sectional study included 263 MS patients who were classified according to the presence (M+, n=72) and absence (M-, n=191) of LS-OCMB. CSF cellular subsets and molecules implicated in immunosenescence were explored. In M- patients, aging induced remarkable decreases in absolute CSF counts of CD4+ and CD8+ T lymphocytes, including Th1 and Th17 cells, and of B cells, including those secreting TNF-alpha. It also increased serum anti-CMV IgG antibody titers (indicative of immunosenescence) and CSF CHI3L1 levels (related to astrocyte activation). In contrast, M+ patients showed an age-associated increase of TIM-3 (a biomarker of T cell exhaustion) and increased values of CHI3L1, independently of age. Finally, in both groups, age induced an increase in CSF levels of PD-L1 (an inductor of T cell tolerance) and activin A (part of the senescence-associated secretome and related to inflammaging). These changes were independent of the disease duration. Finally, this resulted in augmented disability. In summary, all MS patients experience with age a modest induction of T-cell tolerance and an activation of the innate immunity, resulting in increased disability. Additionally, M- patients show clear decreases in CSF lymphocyte numbers, which could increase the risk of infections. Thus, age and immunological status are important for tailoring effective therapies in MS.This work was supported by grants FIS-PI15/00513, FIS-PI18/00572 and RD16/0015/0001 from the Instituto de Salud Carlos III. Ministerio de Ciencia e Innovación, Spain and FEDER: "Una manera de hacer Europa"

    Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate.

    Get PDF
    The endocannabinoid system (ECS), a signalling network with immunomodulatory properties, is a potential therapeutic target in multiple sclerosis (MS). Dimethyl fumarate (DMF) is an approved drug for MS whose mechanism of action has not been fully elucidated; the possibility exists that its therapeutic effects could imply the ECS. With the aim of studying if DMF can modulate the ECS, the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined by liquid chromatography-mass spectrometry in peripheral blood mononuclear cells from 21 healthy donors (HD) and 32 MS patients at baseline and after 12 and 24 months of DMF treatment. MS patients presented lower levels of 2-AG and PEA compared to HD. 2-AG increased at 24 months, reaching HD levels. AEA and PEA remained stable at 12 and 24 months. OEA increased at 12 months and returned to initial levels at 24 months. Patients who achieved no evidence of disease activity (NEDA3) presented the same modulation over time as EDA3 patients. PEA was modulated differentially between females and males. Our results show that the ECS is dysregulated in MS patients. The increase in 2-AG and OEA during DMF treatment suggests a possible role of DMF in ECS modulation.post-print1392 K

    Teriflunomide and Epstein–Barr virus in a Spanish multiple sclerosis cohort: in vivo antiviral activity and clinical response

    Get PDF
    BackgroundEpstein–Barr virus (EBV) and human herpesvirus 6 (HHV-6) have been associated with multiple sclerosis (MS). Teriflunomide is an oral disease-modifying therapy approved for treatment of relapsing forms of MS. In the preclinical Theiler’s murine encephalitis virus model of MS, the drug demonstrated an increased rate of viral clearance versus the vehicle placebo. Furthermore, teriflunomide inhibits lytic EBV infection in vitro.Objective1. To evaluate the humoral response against EBV and HHV-6 prior to teriflunomide treatment and 6 months later. 2. To correlate the variation in the humoral response against EBV and HHV-6 with the clinical and radiological response after 24 months of treatment with teriflunomide. 3. To analyze the utility of different demographic, clinical, radiological, and environmental data to identify early biomarkers of response to teriflunomide.MethodsA total of 101 MS patients (62 women; mean age: 43.4 years) with one serum prior to teriflunomide onset and another serum sample 6 months later were recruited. A total of 80 had been treated for at least 24 months, 13 had stopped teriflunomide before 24 months, and 8 were currently under teriflunomide therapy but with less than 24 months of follow-up. We analyzed the levels of the viral antibodies titers abovementioned in serum samples with ELISA commercial kits, and the levels of serum neurofilament light chain (Nf-L).ResultsAntiviral antibody titers decreased for EBNA-1 IgG (74.3%), VCA IgG (69%), HHV-6 IgG (60.4%), and HHV-6 IgM (73.3%) after 6 months of teriflunomide. VCA IgG titers at baseline correlated with Nf-L levels measured at the same time (r = 0.221; p = 0.028) and 6 months later (r = 0.240; p = 0.017). We found that higher EBNA-1 titers (p = 0.001) and a higher age (p = 0.04) at baseline were associated with NEDA-3 conditions. Thus, 77.8% of patients with EBNA-1 >23.0 AU and >42.8 years (P50 values) were NEDA-3.ConclusionTreatment with teriflunomide was associated with a reduction of the levels of IgG antibody titers against EBV and HHV-6. Furthermore, higher EBNA-1 IgG titers prior to teriflunomide initiation were associated with a better clinical response

    Herpesvirus Antibodies, Vitamin D and Short-Chain Fatty Acids: Their Correlation with Cell Subsets in Multiple Sclerosis Patients and Healthy Controls

    Get PDF
    Although the etiology of multiple sclerosis (MS) is still unknown, it is commonly accepted that environmental factors could contribute to the disease. The objective of this study was to analyze the humoral response to Epstein-Barr virus, human herpesvirus 6A/B and cytomegalovirus, and the levels of 25-hydroxyvitamin D (25(OH)D) and the three main short-chain fatty acids (SCFA), propionate (PA), butyrate (BA) and acetate (AA), in MS patients and healthy controls (HC) to understand how they could contribute to the pathogenesis of the disease. With this purpose, we analyzed the correlations among them and with different clinical variables and a wide panel of cell subsets. We found statistically significant differences for most of the environmental factors analyzed when we compared MS patients and HC, supporting their possible involvement in the disease. The strongest correlations with the clinical variables and the cell subsets analyzed were found for 25(OH)D and SCFAs levels. A correlation was also found between 25(OH)D and PA/AA ratio, and the interaction between these factors negatively correlated with interleukin 17 (IL-17)-producing CD4+ and CD8+ T cells in untreated MS patients. Therapies that simultaneously increase vitamin D levels and modify the proportion of SCFA could be evaluated in the future

    TRAIL/TRAIL Receptor System and Susceptibility to Multiple Sclerosis

    Get PDF
    The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV

    Get PDF
    [Background] Multiple Sclerosis (MS) is an autoimmune demyelinating disease that occurs more frequently in women than in men. Multiple Sclerosis Associated Retrovirus (MSRV) is a member of HERV-W, a multicopy human endogenous retroviral family repeatedly implicated in MS pathogenesis. MSRV envelope protein is elevated in the serum of MS patients and induces inflammation and demyelination but, in spite of this pathogenic potential, its exact genomic origin and mechanism of generation are unknown. A possible link between the HERV-W copy on chromosome Xq22.3, that contains an almost complete open reading frame, and the gender differential prevalence in MS has been suggested.[Results] MSRV transcription levels were higher in MS patients than in controls (U-Mann–Whitney; p = 0.004). Also, they were associated with the clinical forms (Spearman; p = 0.0003) and with the Multiple Sclerosis Severity Score (MSSS) (Spearman; p = 0.016). By mapping a 3 kb region in Xq22.3, including the HERV-W locus, we identified three polymorphisms: rs6622139 (T/C), rs6622140 (G/A) and rs1290413 (G/A). After genotyping 3127 individuals (1669 patients and 1458 controls) from two different Spanish cohorts, we found that in women rs6622139 T/C was associated with MS susceptibility: [χ2; p = 0.004; OR (95% CI) = 0.50 (0.31-0.81)] and severity, since CC women presented lower MSSS scores than CT (U-Mann–Whitney; p = 0.039) or TT patients (U-Mann–Whitney; p = 0.031). Concordantly with the susceptibility conferred in women, rs6622139*T was associated with higher MSRV expression (U-Mann–Whitney; p = 0.003).[Conclusions] Our present work supports the hypothesis of a direct involvement of HERV-W/MSRV in MS pathogenesis, identifying a genetic marker on chromosome X that could be one of the causes underlying the gender differences in MS.This work was supported by grants from: Instituto de Salud Carlos III-Fondo Investigaciones Sanitarias FIS (10/01985 and 09/02074), Fundación Genzyme, Fundación Alicia Koplowitz, Fundación Mutua Madrileña, and Fundación LAIR.Peer Reviewe

    Multiple sclerosis retrovirus-like envelope gene: Role of the chromosome 20 insertion

    Get PDF
    Background: The genetic basis involved in multiple sclerosis (MS) susceptibility was not completely revealed by genome-wide association studies. Part of it could lie in repetitive sequences, as those corresponding to human Endogenous Retroviruses (HERVs). Retrovirus-like particles were isolated from MS patients and the genome of the MS-associated retrovirus (MSRV) was the founder of the HERV-W family. We aimed to ascertain which chromosomal origin encodes the pathogenic ENV protein by genomic analysis of the HERV-W insertions. Methods/results: In silico analyses allowed to uncover putative open reading frames containing the specific sequence previously reported for MSRV-like envelope (env) detection. Out of the 261 genomic insertions of HERV-W env, only 9 copies harbor the specific primers and probe featuring MSRV-like env. The copy from chromosome 20 was further studied considering its size, a truncated homologue of the functional HERV-W env sequence encoding syncytin. High Resolution Melting analysis of this sequence identified two single nucleotide polymorphisms, subsequently genotyped by Taqman chemistry in 668 MS patients and 678 healthy controls. No significant association of these polymorphisms with MS risk was evidenced. Transcriptional activity of this MSRV-like env copy was detected in peripheral blood mononuclear cells from patients and controls. RNA expression levels of chromosome 20-specific MSRV-like env did not show significant differences between MS patients and controls, neither were related to genotypes of the two mentioned polymorphisms. Conclusions: The lack of association with MS risk of the identified polymorphisms together with the transcription results discard chromosome 20 as genomic origin of MSRV-like env

    Design of antimicrobial peptides against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus

    No full text
    17 p.-6 fig.-2 tab.BACKGROUND:Antimicrobial peptides are on the first line of defense against pathogenic microorganisms of many living beings. These compounds are considered natural antibiotics that can overcome bacterial resistance to conventional antibiotics. Due to this characteristic, new peptides with improved properties are quite appealing for designing new strategies for fighting pathogenic bacteria.METHODS:Sixteen designed peptides were synthesized using Fmoc chemistry; five of them are new cationic antimicrobial peptides (CAMPs) designed using a genetic algorithm that optimizes the antibacterial activity based on selected physicochemical descriptors and 11 analog peptides derived from these five peptides were designed and constructed by single amino acid substitutions. These 16 peptides were structurally characterized and their biological activity was determined against Escherichia coli O157:H7 (E. coli O157:H7), and methicillin-resistant strains of Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) were determined.RESULTS:These 16 peptides were folded into an α-helix structure in membrane-mimicking environment. Among these 16 peptides, GIBIM-P5S9K (ATKKCGLFKILKGVGKI) showed the highest antimicrobial activity against E. coli O157:H7 (MIC=10µM), methicillin-resistant Staphylococcus aureus (MRSA) (MIC=25µM) and Pseudomonas aeruginosa (MIC=10 µM). Peptide GIBIM-P5S9K caused permeabilization of the bacterial membrane at 25 µM as determined by the Sytox Green uptake assay and the labelling of these bacteria by using the fluoresceinated peptide. GIBIM-P5S9K seems to be specific for these bacteria because at 50 µM, it provoked lower than 40% of erythrocyte hemolysis.CONCLUSION:New CAMPs have been designed using a genetic algorithm based on selected physicochemical descriptors and single amino acid substitution. These CAMPs interacted quite specifically with the bacterial cell membrane, GIBIM-P5S9K exhibiting high antibacterial activity on Escherichia coli O157:H7, methicillin-resistant strains of Staphylococcus aureus and P. aeruginosa.This project was founded by COLCIENCIAS (Project Number: 110265740828) and MINECO ((Spain project number CTQ2013-41507-R).LR was supported by grants from Subdirección General de Redes y Centros de Investigación Cooperativa-FEDER, RICET RD12/0018/0007, and RD16/0027/0010,Peer reviewe
    corecore