6 research outputs found

    Deuterium retention in tungsten and tungsten-tantalum alloys exposed to high-flux deuterium plasmas

    Get PDF
    A direct comparison of deuterium retention in samples of tungsten and two grades of tungsten-tantalum alloys-W-1% Ta and W-5% Ta, exposed to deuterium plasmas (ion flux similar to 10(24) m(-2) s(-1), ion energy at the biased target similar to 50 eV) at the plasma generator Pilot-PSI was performed using thermal desorption spectroscopy (TDS). No systematic difference in terms of total retention in tungsten and tungsten-tantalum was identified. The measured retention value for each grade did not deviate by more than 24% from the value averaged over the three grades exposed to the same conditions. No additional desorption peaks appeared in the TDS spectra of the W-Ta samples as compared with the W target, indicating that no additional kinds of traps are introduced by the alloying of W with Ta. In the course of the experiment the same samples were exposed to the same plasma conditions several times, and it is demonstrated that samples with the history of prior exposures yield an increase in deuterium retention of up to 130% under the investigated conditions compared with the samples that were not exposed before. We consider this as evidence that exposure of the considered materials to ions with energy below the displacement threshold generates additional traps for deuterium. The positions of the release peaks caused by these traps are similar for W and W-Ta, which indicates that the corresponding traps are of the same kind

    Surface modification of tungsten and tungsten-tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention

    Get PDF
    Samples of tungsten and tungsten-tantalum alloy (with 5 mass per cent of Ta) were exposed to high-flux deuterium plasma at different fluences. The surface modification was studied with scanning electron microscopy, and deuterium retention was measured by thermal desorption spectroscopy (TDS). In the high fluence range of similar to 3.5 x 10(26)-10(27)m(-2), multiple large-size blisters are formed on the W surface, while blisters on the W-Ta surface are considerably smaller in size and number. Deuterium retention in this fluence range was found to be systematically higher in W than in W-Ta. Correlation between the evolution of the blistering patterns and the TDS spectra as a function of fluence suggests that trapping in the sub-surface cavities associated with blisters is the predominant trapping mechanism in tungsten in the case of high fluence exposures. We attribute the lower retention in W-Ta under the investigated conditions to the weaker blistering.</p

    Special considerations for studies of extracellular vesicles from parasitic helminths: A community‐led roadmap to increase rigour and reproducibility

    Full text link
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Depth profiling of the modification induced by high-flux deuterium plasma in tungsten and tungsten–tantalum alloys

    No full text
    The present work reports the results of an experimental study of the depth distribution and fluence dependence of deuterium plasma-induced material modification of tungsten and tungsten–tantalum alloys. Plasma-induced damage was created by exposure to high-flux deuterium plasma in the plasma generator Pilot-PSI, followed by the degassing and subsequent decoration of created defects with deuterium by another plasma exposure. The depth distribution of deuterium from the decorating exposure reflects the distribution of plasma-induced defects. Depth profiling of this decorating deuterium, was performed by nuclear reaction analysis. It was found that plasma-induced material modification, which manifested itself as an increase of the deuterium concentration in the samples pre-exposed with high-flux plasma in comparison to the samples without such pre-exposure extends down to more than5 µ m from the surface. This increase features a tendency to saturation with increasing fluence of the damaging high-flux plasma. Over the entire probing range, with the exception of the narrow surface region and the deep region beyond5 µ m, the deuterium content is lower in pre-exposed W–Ta than in similarly pre-exposed W. Sub-surface features formed as a result of high-flux plasma exposure were studied with the help of focused ion beam cross-sectioning. W was found to contain plasma-induced cavities down to much larger depth than W–Ta

    Saturation of deuterium retention in self-damaged tungsten exposed to high-flux plasmas

    No full text
    Polycrystalline, annealed tungsten targets were bombarded with 12.3MeV W4+ ions to various damage levels. Deuterium was implanted by high-flux plasmas in Pilot-PSI (>10(24) m(-2) s(-1)) at a surface temperature below 525 K. Deuterium retention has been studied by nuclear reaction analysis and by thermal desorption spectroscopy. We found that deuterium retention is strongly enhanced by the tungsten bombardment and that saturation occurs at a W4+ fluence of about 3 x 10(17) m(-2). The maximum deuterium concentration in the damaged region was measured to be 1.4 at.%. This is in accordance with other experiments that were carried out at much lower fluxes. We therefore conclude that the saturation behaviour and the maximum retention are not affected by the high fluxes used in our experiments. A simple geometric model is presented that assumes that the saturation solely originates in the tungsten irradiation and that explains it in terms of overlapping saturated volumes. The saturated volume per incident MeV ion amounts to 3 x 10(4) nm(3). From our results, we are able to obtain an approximate value for the average occupation number of the vacancies

    Laser-based diagnostics applications for plasma-surface interaction studies

    No full text
    Several laser based diagnostics are implemented on to the linear plasma generator Magnum-PSI, wherein ITER divertor relevant plasma-wall conditions are realized. Laser Induced Desorption Quadrupole Mass Spectroscopy (LID-QMS) and Laser Induced Breakdown Spectroscopy (LIBS) are installed to measure deuterium retention in plasma facing components. Combined with Thermal Desorption Spectroscopy, LID-QMS can be used to measure lateral retention profiles. LIBS is used to measure the surface composition qualitatively, after plasma exposure. An advanced Thomson Scattering (TS) system measures electron density, neutral density and electron temperature profiles (spatial resolution &lt; 2 mm) across the maximum 100 mm plasma diameter. Very low electron density (9 × 10 18 m −3 ) can be measured within seconds with accuracies better than 6%. The minimum measurable electron density and temperature are &nbsp; 1 × 10 17 m −3 and &nbsp; 0.07 eV, respectively. By virtue of the high system sensitivity, single pulse TS can be performed on high density pulsed plasmas (used for replicating ELMs). For measuring the ion temperature and flow velocity of the plasma a Collective TS system (CTS) is being built: the small Debye length of the Magnum-PSI plasma enables application of this method at relatively short laser wavelength. In a feasibility study it was shown that forward CTS with a seeded Nd:YAG laser operating at 1064 nm, can be applied at Magnum-PSI to measure ion temperature and axial velocity with an accuracy of &lt; 8% and &lt; 15%, respectively. Two high spectral resolution (~&nbsp; 0.005 nm) detection schemes are applied simultaneously: an Echelle grating spectrometer (enabling profile measurements) and a system based on a Fabry-Perot etalon that enables wavelength scanning over its free spectral range, by tilting the device. The status and performance of the various laser based plasma and surface diagnostics will be reported along with experimental results.</p
    corecore