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Abstract 
  

  

Interactions between fundamental degrees of freedom in solids are essential in the modern 

condensed matter physics field. Since such interactions exist in most cases, it is crucial to 

determine the interaction mechanism's consequence. Spin-lattice coupling is a type of these 

interactions in which interactions occur between the spin and lattice degrees of freedom. 

Although it is an old concept already appearing in literature in the 1950s, a complete 

understanding of the spin-lattice coupling is still lacking. 

For example, magnon–phonon coupling, the dynamical aspect of spin-lattice 

coupling, has been recently studied in hexagonal manganite and delafossite chromates by 

taking advantage of the state-of-the-art neutron and X-ray instruments. Both are 

noncollinear magnets with a triangular lattice. Because of the nonocollinearity, the 

interaction between magnon and phonon or magnon is expected to exist theoretically. 

Although studies have successfully explained several features that arise from the couplings, 

they are limited to quantifying two different interactions. The inelastic neutron scattering 

study on HoMnO3 can reveal the anomalous features in magnon dispersions and which is 

the dominant interaction. The simple linear spin-wave theory cannot reproduce the 

measured magnon spectra, the energy renormalization of overall magnons, and the 

unexpected dispersion shape. Using models including magnon–magnon interaction and 

magnon–phonon coupling, we can demonstrate that the dominant interaction in HoMnO3 

is the magnon–phonon coupling that originates through the exchange-striction mechanism. 
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The exchange-striction model is the usual candidate to explain the spin-lattice 

coupling that appeared in magnetic materials. However, unconventional spin-phonon (SP) 

coupling occurs in the 5d transition metal oxide Cd2Os2O7. The phonons obtained by the 

infra-red optical spectroscopy study show that strong energy renormalization occurs 

through spin ordering. The main driving factor for the SP coupling has been known to be 

single-ion anisotropy. Since phonons measured by optical spectroscopy is limited to a long-

wavelength limit, more comprehensive investigations of the phonons are highly desirable 

to shed light on the spin-phonon coupling. We studied the phonon mode and momentum 

dependence of the SP coupling using inelastic X-ray scattering experiments. Our first-

principle calculations considering spin-orbit coupling (SOC) and noncollinear magnetic 

structure are in good agreement with the phonons at the coupled phase, suggesting that our 

theoretical model captures the SP coupling physics without invoking any other factors. By 

controlling the SOC strength, we can reproduce the observed phonon mode dependency 

and temperature dependence of the SP coupling. As a result, SOC is assumed to be the 

primary factor for SP coupling. 

 

 

Keywords: spin-lattice coupling, magnon-phonon coupling, spin-phonon coupling, 

inelastic neutron scattering, inelastic x-ray scattering, hexagonal manganite, pyrochlore 

oxide. 
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Chapter 1  
Introduction 

  

1.1 Coupling between spin and lattice 

There are four fundamental degrees of freedom in solids—spin, lattice, charge, and orbital. 

The basic physical properties of a solid are determined by how these degrees of freedom 

work inside solids. Each degree of freedom has its distinct characteristic features; they can 

couple with each other and exhibit a distinct behavior that deviates from the normal states. 

One type of coupling that I will focus on in this thesis is the spin-lattice, sometimes called 

a magnon-phonon, coupling. The spin-lattice coupling usually appears when spins in 

magnetic materials order. The atomic positions change abruptly from their equilibrium 

positions resulting in different crystal symmetries or increasing/decreasing lattice constants. 

Consequently, lattice changes also induce changes in other properties such as 

ferroelectricity, resistivity, elastic constant, and thermal conductivity. 

 The spin-lattice coupling also appears in the form of magnon–phonon coupling. 

Magnons and phonons are the collective excitations of spin and lattice vibrations. They can 

get coupled to one another when they are close enough to interact in the momentum and 

energy space. As a result, the phonon and magnon energies are renormalized, or a new 

hybridized excitation (called electromagnon or magneto-elastic excitation) emerges. A 

lattice change is not necessary for the magnon–phonon coupling. The interaction strength 

and the energy difference between magnons and phonons are critical factors for the 

magnon-phonon coupling. 
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Although the magnon–phonon coupling concept has been developed since the 

1950s by none other than C. Kittle in his seminal paper, it is still an important topic to study 

more. However, the full investigation of the coupling over a broader range of energy and 

momentum space is not yet done extensively. And the phase diagram for such coupling 

strength needs to be investigated experimentally. The phase diagram might be challenging 

to be confirmed experimentally because it is hard to control coupling strength as an external 

parameter, for example, pressure, magnetic field, or doping level. Nevertheless, it would 

be exciting to investigate such a phase diagram since several theories estimate a large 

change in ground state and excitations. 

Throughout my thesis, I will discuss the change in magnons or phonons due to the 

magnon–phonon or spin–phonon coupling in two materials, hexagonal manganite HoMnO3 

and 5d pyrochlore oxide Cd2Os2O7. 

 

1.1.1 Magnon-phonon coupling in a noncollinear magnet 

Magnons and phonons are quasiparticles that arise from magnetic and crystalline ordering 

in solids. Both obey the Bose-Einstein statistics; therefore, they are considered as bosons. 

The concept of magnon–phonon coupling was already studied in the 1950s by C. Kittel, 

who developed the theoretical treatment of magnon–phonon coupling in a 

ferromagnet [Ref. 1.1]. Many experimental observations and theoretical confirmations 

have since followed. For example, a gap opening between acoustic phonon and magnon 

due to the magnon–phonon coupling in iron halides, a collinear magnet, was examined 

in [Refs. 1.2–1.5]. The same physics in rare-earth metals was also examined by several 
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studies [Refs. 1.6 & 1.7]. 

 Materials having a large spin-lattice coupling are expected to exhibit magnon–

phonon coupling as well. One of the spin-lattice-coupled compounds, hexagonal manganite 

h-RMnO3 [Refs. 1.8 & 1.9] can be a promising candidate to study the magnon–phonon 

coupling. The hexagonal manganites' multiferroic behavior indicates that the magnetic and 

ferroelectric ordering coexist in the same phase [Ref. 1.10]. This functionality is highly 

desirable for possible applications in magnetic memory and data-storage technologies.  

 From a fundamental viewpoint, magnon–phonon coupling is an important topic 

that enables us to understand how elementary quasiparticles interact and highlight features 

from the coupling. The recent works on hexagonal manganite h-RMnO3 revealed several 

anomalous features arising from the magnon–phonon coupling [Ref. 1.11–Ref. 1.14]. J. Oh, 

et al. conducted an inelastic neutron scattering (INS) experiment to study magnons in (Y, 

Lu)MnO3 and found some anomalies in magnon dispersion and magnon energies, as shown 

in Fig. 1.1 [Ref. 1.12]. 

 

Figure 1.1 Inelastic neutron scattering (INS) spectra for (Y,Lu)MnO3. (a) A 

comparison between the observed spectra and calculated results from linear spin-
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wave theory. The red boxes denote the region where the anomalous features appear. 

(b) The INS spectra along the 𝜞𝑴𝑴ᇱ direction. The top panel shows the full-width at 

half-maximum (FWHM) of the magnons and calculated decay rate from the magnon–

phonon coupling Hamiltonian. The middle and bottom panels show the experimental 

data and calculations from the magnon–phonon coupling Hamiltonian. The left panel 

is for YMnO3 and the right panel is for LuMnO3. Part of the figures is reprinted 

from [Ref. 1.15] and adapted from [Ref. 1.12]. 

 In their study, J. Oh, et al. found the negative slope of the magnon branch, which 

is not in agreement with the theoretical expectation from linear spin-wave theory (LSWT). 

Second, the lower magnon branch was found flattened at the M point. Third, they observed 

a non-negligible signal at an energy transfer of approximately 17 meV, which was also not 

predicted by the LSWT calculations. Finally, the broadening of magnon was much larger 

than that obtained experimentally; moreover, it is momentum-dependent. The simple 

Heisenberg model does not explain all the features within the LSWT formalism. Instead, 

adding a magnon–phonon coupling term to the spin Hamiltonian can explain those features. 

Subsequently, an additional mode at 17 meV was obtained and subsequently identified as 

a magneto-elastic excitation or an electromagnon. An electromagnon is a new hybridized 

quasiparticle that exhibits both magnon and phonon characteristics. This will be introduced 

in Chapters 2 and 4 later. 

 One of the primary conditions for this magnon–phonon coupling is a noncollinear 

magnetic structure. The hexagonal manganite has a 120° ordering state. In principle, this 

noncollinearity allows, otherwise forbidden, a linear coupling between the one-magnon 
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operator and the phonon operators in the magnon–phonon coupling Hamiltonian. This will 

be discussed in detail in Chap. 2. Some delafossite ACrO2 compounds [Refs. 1.16 & 1.17] 

have features similar to those of the hexagonal manganite. This compound also has a nearly 

120° ordering state with a helix structure. The similar features found in both compounds 

are as follows: (1) magneto-elastic excitations and (2) local minimum at the M point is 

observed in both inelastic neutron and X-ray scattering experiments. Interestingly, the 

magneto-elastic excitations in YMnO3 [Ref. 1.14] and LiCrO2 [Ref. 1.16] was observed by 

the inelastic X-ray scattering (IXS). Since the IXS cannot detect magnetic signals, 

observing magneto-elastic excitations through IXS provides evidence of duality in the 

magneto-elastic excitations. 

 Although the studies on magnon–phonon coupling in hexagonal manganite are 

well established, there is a limitation in obtaining a perfect triangular lattice in (Y, Lu)MnO3 

because of the trimerization problem [Refs. 1.9 & 1.18], which makes it difficult to 

compare experimental data and theoretical calculations directly. In contrast, HoMnO3 

provides an ideal platform to study this topic because it forms a nearly perfect triangular 

lattice at low temperatures. According to the neutron diffraction measurements [Refs. 1.8 

& 1.19], the Mn position x of HoMnO3 is almost 1/3, as shown in Fig. 1.2. 
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Figure 1.2 Mn positions x in the unit cell according to the neutron diffraction 

measurement. The figures are reprinted from [Ref. 1.9], and the data are adapted 

from [Refs. 1.8 & 1.19].  

 A direct comparison between theory and experiment is desirable in HoMnO3. 

Therefore, we conducted an INS experiment to measure the magnons in HoMnO3. 

Moreover, based on the magnon broadening observed in LuMnO3 [Refs. 1.11 & 1.12], 

magnon–magnon interactions (or higher-order interactions) are expected to exist in 

hexagonal manganites. Therefore, we could quantify magnon's strength–phonon coupling 

and magnon–magnon interaction in HoMnO3. The study on HoMnO3 has been discussed 

later in Chap. 4. 
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1.1.2 Spin-phonon coupling in 5d transition metal oxide 

The primary mechanism of magnon–phonon coupling in hexagonal manganites is the 

exchange-striction model. The basic description of this model is that the modulation of 

atomic positions perturbs the exchange interaction between magnetic atoms. Some works 

suggest different mechanisms, such as single-ion anisotropy [Refs. 1.2, 1.20–1.22] or 

Dzyaloshinskii-Moriya (DM) interaction [Ref. 1.23]. Both the single-ion anisotropy and 

the DM interaction are originated from the spin-orbit coupling in the magnetic materials. 

So, the main mechanism of spin-phonon (SP) coupling in 5d transition metal oxide is 

considered as strong spin-orbit coupling.  

One of the examples for spin-orbit coupling induced SP coupling was discovered 

in 5d transition metal oxides Cd2Os2O7. In Cd2Os2O7, the phonon energy changes abruptly 

during spin ordering at TN = 227 K, as shown in Fig. 1.3 [Ref. 1.24]. It is explained not just 

by the temperature effect, such as the Grüneisen parameter. C. H. Sohn et al. found that the 

main origin of this phonon change is large single-ion anisotropy. They also mentioned that 

the modulation of atomic positions induces a change in the crystal field around the OsO6 

octahedra and renormalizes phonons. Therefore, one could think that a strong SOC is 

important to explain the observed SP coupling mechanism in Cd2Os2O7 because a large 

SOC affects the anisotropy in a material.  
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Figure 1.3 Infra-red optical spectroscopy results on Cd2Os2O7. The temperature 

dependence of the phonon energy 𝝎ሺ𝑻ሻ , linewidth 𝜞ሺ𝑻ሻ , and phonon plasma 

frequency 𝛀ሺ𝑻ሻ are shown. The figure is adapted from [Ref. 1.24]. 

 

 Cd2Os2O7 also exhibits another exciting property, metal-insulator transition (MIT). 

A. W. Sleight et al. reported MIT in 1974 [Ref. 1.25], and many researchers since then have 

attempted to understand MIT's mechanism. It was first suggested that the primary 

mechanism should be Slater-type transition [Ref. 1.26]. After some debates, peoples’ 

opinions narrowed down to Lifshitz-type transition [Ref. 1.27]. Interestingly, this MIT 

occurs at the same temperature as magnetic ordering, TMIT = 227 K. Therefore, the 

possibility of electron-phonon coupling exists. This issue was already considered in a 
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previous infra-red study; electron-phonon coupling is weaker than the SP coupling [Ref. 

1.24]. 

 The other example of spin-orbit coupling induced SP coupling is Y2Ir2O7. In this 

compound, the O-Ir-O bond change from vibration induces the variation of DM interaction. 

According to the stress tensor of the spin part, the phonon energy change can be induced 

by the deviation of DM interaction. J. Son et al. [Ref. 1.28] found that the large phonon 

energy renormalization of O-Ir-O bond bending mode by using optical spectroscopy. Also, 

in their calculation, the DM interaction is sensitive to the O-Ir-O bond angle. And the 

phonon mode, which affects the bond angle when they vibrate, has a similar dependency 

with the calculations. 

 Although both examples show the importance of spin-orbit coupling in SP 

coupling, we still think that a complete understanding of SP coupling is required. Because 

the information obtained from optical spectroscopy is restricted to phonons in the long-

wavelength limit, only detecting few IR active phonons. From our perspective, to 

thoroughly investigate the phonons in Cd2Os2O7, the phonons should be measured in a wide 

range of momentum and energy space using IXS. If there is a possibility of magnon–

phonon coupling, similar to the HoMnO3 case, we need to obtain phonon dispersions. The 

results of Cd2Os2O7 are discussed in detail in Chap. 5. 

 

1.2 Outline of the thesis 

In this section, I will briefly introduce the outline of the thesis. In Chap. 2, I will explain 

the theoretical backgrounds used in the study on the magnon–phonon coupling. 
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Furthermore, the basic principles of the LSWT and the formalism of the magnons and 

phonons are discussed. In detail, I also introduce a way for understanding the higher-order 

interaction, such as magnon–magnon interaction. 

 In Chap. 3, I will focus on the experimental tools that I used at the large facilities 

for the inelastic neutron and X-ray scatterings. The basic principles of each scattering 

experiments and methods are presented in this chapter. Moreover, the formalism of the 

scattering cross-sections that are directly observed from the experiments is described. Some 

details of experimental techniques are also included. 

 In Chap. 4, I will discuss the INS results on HoMnO3 single crystal. The main 

experimental findings are summarized in this chapter. Furthermore, a theoretical approach 

using three different models, such as magnon–magnon interaction and magnon–phonon 

coupling, are explained. Finally, this chapter will be concluded by a discussion on 

determining the dominant interaction in HoMnO3. 

 In Chap. 5, I will summarize the results of the IXS experiment performed on 

Cd2OS2O7. Based on the observed phonon dispersion and spectra, I confirmed several 

anomalous features from the SP coupling. The direct comparison between the observation 

and the calculated phonon spectra using the density-functional theory revealed an excellent 

agreement. 
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Chapter 2 

Theoretical backgrounds 

 

2.1 Linear spin-wave theory   

In this chapter, I would like to introduce the linear spin-wave theory (LSWT) briefly. It is 

a primary method to explain the interaction between spins. We can use the LSWT to 

interpret spin-waves usually observed in inelastic neutron scattering (INS). Spin-waves are 

one kind of collective excitations in magnetic compounds. If the spins are ordered at a 

specific temperature, the continuous symmetry is spontaneously breaking. Based on the 

Goldstone theorem, it forces the emergence of the gapless excitations. As spin-waves are 

also called magnons in the viewpoint of quasiparticles, their dispersion relations can also 

be analyzed using the LSWT. Here, I would explain some well-known formulas adapted 

from several references [Refs. 2.1–2.7].  

 

2.1.1 Spin Hamiltonian for triangular antiferromagnet 

The simplest spin Hamiltonian for the magnetic material can be described by the nearest-

neighbor Heisenberg exchange interaction Jij and the atoms’ spin Si and Sj. 

𝐻௘௫ ൌ ෍ 𝐽௜௝𝑺௜ ∙ 𝑺௝
ழ௜௝வ

 

A type of exchange interaction can be determined by a sign of J. If 𝐽 ൏ 0, spins have a 

ferromagnetic exchange interaction, whereas if 𝐽 ൐ 0 , spins have an antiferromagnetic 

exchange interaction. Depending on the crystal and magnetic structure, we need to add 



 
 
 
 
 

Chapter 2 

15 
 

 

 

 

 

further-nearest neighbor exchange interaction to describe the spin dynamics fully.  

In case the materials having an anisotropy, the spin Hamiltonian should include 

the anisotropy term. 

𝐻௔௡௜௦௢ ൌ 𝐷෍ሺ𝑺௜ ∙ 𝒏௜ሻଶ

௜

 

D is a single-ion anisotropy, and 𝒏௜  is a unit vector that explains the local anisotropy 

direction. If 𝐷 ൐ 0, it is called an easy-plane type anisotropy so that spins tend to align 

within a specific plane. If 𝐷 ൏ 0, it is an easy-axis type anisotropy, and spins are aligned 

parallel to 𝒏௜ direction. 

 

Figure 2.1 The 120º ordering state in a triangular lattice. 

 Here, I would like to focus on describing the spin Hamiltonian for the two-

dimensional triangular lattice antiferromagnet. All natural triangular magnetic systems 

have nonzero D, and the magnetic ground state when 𝐷 ൐ 0 shows that spins are confined 

to the ab plane. If 𝐷 ൏ 0, the magnetic ground state is that spins are aligned perpendicular 

to the ab plane. In h-RMnO3, the usual magnetic ground state in zero fields is the 120º 

ordered state, as shown in Fig. 2.1. To solve the Hamiltonian, we need to figure out the 
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number of bases in the magnetic unit cell. For the case of triangular systems, we need three 

bases to interpret the spin Hamiltonian as follows. Based on the transformation from the 

laboratory coordinates ሺ𝑥଴,𝑦଴, 𝑧଴ሻ to the local coordinates ሺ𝑥,𝑦, 𝑧ሻ, the spin operator can 

be formulated as follows, 

𝑺௜ ൌ ൮

𝑆௜
௫బ

𝑆௜
௬బ

𝑆௜
௭బ

൲

௟௔௕

ൌ ൭
1 0 0
0 𝑐𝑜𝑠𝜑௜ െ𝑠𝑖𝑛𝜑௜
0 𝑠𝑖𝑛𝜑௜ 𝑐𝑜𝑠𝜑௜

൱ቌ
𝑆௜
௫

𝑆௜
௬

𝑆௜
௭
ቍ

௟௢௖௔௟

, 𝑖 ൌ 1,2,3 

The 120º ordering state, i.e., the noncollinear magnetic structure, has a unique effect in the 

spin excitations different from the collinear magnetic structure. By using the above 

transformation, we can re-write the spin Hamiltonian 𝐻௘௫. 

𝐻௘௫ ൌ 𝐽 ෍ 𝑺௜ ∙ 𝑺௝
ழ௜௝வ

ൌ 𝐽 ෍ ቂ𝑆௜
௫𝑆௝

௫ ൅ 𝑐𝑜𝑠𝜑௜௝ቀ𝑆௜
௬𝑆௝

௬ ൅ 𝑆௜
௭𝑆௝

௭ቁ ൅ sin𝜑௜௝ቀ𝑆௜
௭𝑆௝

௬ െ 𝑆௜
௬𝑆௝

௭ቁቃ
ழ௜௝வ

 

Here, we assume that the spins lie in the xz plane. 𝜑௜௝  indicates the angle difference 

between spin 𝑺௜ and 𝑺௝. In the 120º ordering state, it is a constant of 2𝜋/3. 

 

2.1.2 Holstein-Primakoff transformation 

The local spin operators can be transformed into bosonic forms by the Holstein-Primakoff 

transformation [Ref. 2.8], as formulated below,  

𝑆௜
ା ൌ √2𝑆 ቆ1 െ

𝑎௜
ற𝑎௜
2𝑆

ቇ

ଵ
ଶ

𝑎௜ ൌ √2𝑆 ቆ1 െ
1
2
𝑎௜
ற𝑎௜
2𝑆

൅ ⋯ቇ𝑎௜ 

𝑆௜
ି ൌ √2𝑆𝑎௜

ற ቆ1 െ
𝑎௜
ற𝑎௜
2𝑆

ቇ

ଵ/ଶ

ൌ √2𝑆𝑎௜
ற ቆ1 െ

1
2
𝑎௜
ற𝑎௜
2𝑆

൅⋯ቇ 
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𝑆௜
௭ ൌ 𝑆 െ 𝑎௜

ற𝑎௜ 

, where 𝑆௜
േ ൌ 𝑆௜

௫ േ 𝑖𝑆௜
௬. 𝑎௜ is a magnon operator and satisfies the relation of ൣ𝑎௜ ,𝑎௝

ற൧ ൌ

𝛿௜௝ . As shown in the above formula, the spin operator 𝑆௜
േ  can be expressed by Taylor 

expansion. In the classical limit, we can assume 𝑎௜
ற𝑎௜ ≪ 𝑆௜ so that we can neglect the 

൫𝑎௜
ற𝑎௜ 2𝑆⁄ ൯

௡
  terms. It makes a linear approximation of the spin operators, and each 

operator can be simplified as, 

𝑆௜
௫ ൎ ඨ

𝑆
2
൫𝑎௜ ൅ 𝑎௜

ற൯,   𝑆௜
௬ ൎ െ𝑖ඨ

𝑆
2
൫𝑎௜ െ 𝑎௜

ற൯,     𝑆௜
௭ ൌ 𝑆 െ 𝑎௜

ற𝑎௜ . 

Based on these formulations, we can re-write the 𝐻௘௫ in magnon operators forms. 

𝐻௘௫ ൌ 𝐻଴ ൅ 𝐻ଵ ൅ 𝐻ଶ ൅ 𝐻ଷ ൅ 𝐻௡வଷ. 

𝐻଴ ൌ 𝐽𝑆ଶ ෍ 𝑐𝑜𝑠𝜑௜௝
ழ௜௝வ

 

𝐻ଵ ൌ 𝑖𝐽𝑆ඨ
𝑆
2
෍ 𝑠𝑖𝑛𝜑௜௝൫𝑎௜ െ 𝑎௜

ற െ 𝑎௝ ൅ 𝑎௝
ற൯

ழ௜௝வ

 

𝐻ଶ ൌ
𝐽𝑆
2
෍ൣ൫1 െ 𝑐𝑜𝑠𝜑௜௝൯൫𝑎௜𝑎௝ ൅ 𝑎௜

ற𝑎௝
ற൯ ൅ ൫1 ൅ 𝑐𝑜𝑠𝜑௜௝൯൫𝑎௜

ற𝑎௝ ൅ 𝑎௜𝑎௝
ற൯

ழ௜௝வ

െ 2𝑐𝑜𝑠𝜑௜௝൫𝑎௜
ற𝑎௜ ൅ 𝑎௝

ற𝑎௝൯൧ 

𝐻ଷ ൌ 𝑖𝐽ඨ
𝑆
2
෍ 𝑠𝑖𝑛𝜑௜௝൫𝑎௜

ற𝑎௜൫𝑎௝ െ 𝑎௝
ற൯ െ ൫𝑎௜ െ 𝑎௜

ற൯𝑎௝
ற𝑎௝൯

ழ௜௝வ

 

Here, 𝐻௡ indicates the Hamiltonian including n-th powers of the magnon operators so that 

it has an order of ቀ
ଵ

ௌ
ቁ
భ
మ
௡ିଶ

. I neglect 𝐻௡ terms for the 𝑛 ൐ 3 cases. Because 𝐻௡ value 
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decreases as 𝑛  increases. 𝐻ଵ  vanishes automatically because the 120º spin structure 

corresponds to a minimum of the classical energy [Ref. 2.7]. The quadratic term 𝐻ଶ is the 

lowest-order terms and we usually consider 𝐻ଶ in the LSWT to describe spin-waves. 𝐻ଷ 

term includes three magnon operators, and if this term is large, an anharmonic behavior 

appears in magnon dispersion. The 𝐻ଷ term will be discussed later in Sect. 2.2. 

 In order to explain magnon dispersion relations based on the spin Hamiltonian, 

we need to do a Fourier transformation from real space to momentum space. I adapted 

formulas from [Ref. 2.7]. 

𝑎௜ ൌ
1

√𝑁
෍𝑒௜𝒌∙𝒓𝒊𝑎𝒌
𝒌

, 𝑎௜
ற ൌ

1

√𝑁
෍𝑒ି௜𝒌∙𝒓𝒊𝑎𝒌

ற

𝒌

 

Substituting the above equations to 𝐻ଶ corresponds to below, 

𝐻ଶሺ𝒌ሻ ൌ෍൤𝐴𝒌𝑎𝒌
ற𝑎𝒌 െ

1
2
𝐵𝒌ሺ𝑎𝒌

ற𝑎ି𝒌
ற ൅ 𝑎ି𝒌𝑎𝒌ሻ൨

𝒌

. 

𝐴𝒌 ൌ 3𝐽𝑆 ൬1 ൅
1
2
𝛾𝒌൰ ,   𝐵𝒌 ൌ

9
2
𝐽𝑆𝛾𝒌 

𝛾𝒌 ൌ
1
6
෍𝑒௜𝒌∙𝝂

𝝂

ൌ
1
6
෍𝑒௜ሺ௞ೣ,௞೤ሻ∙ቀୡ୭ୱቀ

௡గ
ଷ ቁ,ୱ୧୬ቀ

௡గ
ଷ ቁቁ

଺

௡ୀଵ

ൌ
1
3
ቆcos 𝑘௫ ൅ 2 cos

𝑘௫
2
𝑐𝑜𝑠

√3
2
𝑘௬ቇ 

To diagonalize 𝐻ଶሺ𝒌ሻ, we could use the Bogolyubov transformation as follows, 

𝑎𝒌 ൌ 𝑢𝒌𝑏𝒌 ൅ 𝜐𝒌𝑏ି𝒌
ற , 𝑎ି𝒌

ற ൌ 𝜐𝒌𝑏𝒌 ൅ 𝑢𝒌𝑏ି𝒌
ற  

𝑤ℎ𝑒𝑟𝑒, 𝑢𝒌
ଶ െ 𝜐𝒌

ଶ ൌ 1, 𝑢𝒌
ଶ ൅ 𝜐𝒌

ଶ ൌ
𝐴𝒌

ට𝐴𝒌
ଶ െ 𝐵𝒌

ଶ
, 2𝑢𝒌𝜐𝒌 ൌ

𝐵𝒌

ට𝐴𝒌
ଶ െ 𝐵𝒌

ଶ
. 

Considering up to quadratic terms of the spin Hamiltonian, we can get the final spin-wave 

Hamiltonian as below, 
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𝐻௘௫ሺ𝒌ሻ ൌ 𝐻଴ሺ𝒌ሻ ൅ 𝐻ଶሺ𝒌ሻ ൌ െ
3
2
𝑁𝐽𝑆ሺ𝑆 ൅ 1ሻ ൅෍𝜀𝒌 ൬𝑏𝒌

ற𝑏𝒌 ൅
1
2
൰

𝒌

, 

𝜀𝒌 ൌ ට𝐴𝒌
ଶ െ 𝐵𝒌

ଶ ൌ 3𝐽𝑆𝜔𝒌 ൌ 3𝐽𝑆ඥሺ1 െ 𝛾𝒌ሻሺ1 ൅ 2𝛾𝒌ሻ. 

 

2.2 Magnon-magnon interaction 

As one might notice, 𝐻௘௫ includes 𝑐𝑜𝑠𝜑௜௝ and 𝑠𝑖𝑛𝜑௜௝ terms. In collinear magnets, the 

𝑠𝑖𝑛𝜑௜௝ term vanishes, whereas the 𝑠𝑖𝑛𝜑௜௝ term survives in noncollinear magnets. As a 

result, 𝐻ଷ, which contains three magnon operators or cubic terms, does not vanish, and 

acts as a perturbation in the LSWT. It is usually small to be neglected, but it is possible to 

have a sizable magnon-magnon interaction in 𝑆 ൌ 1/2  case. A. V. Chubukov et al. 

demonstrated that the first-order correction in the 1/S expansion could be non-negligible 

for the 𝑆 ൌ 1/2 case [Ref. 2.9]. Later, A. L. Chernyshev and M. E. Zhitomirsky et al. 

conducted a comprehensive theoretical study on the quantum corrections to the spin-wave 

dispersion and the magnon lifetime in triangular lattice antiferromagnet [Refs. 2.7, 2.10, 

and 2.11]. W. Zheng et al. performed a quantum Monte-Carlo simulation and found the 

effects of the magnon-magnon interaction on the magnon dispersion and energy [Ref. 2.12]. 

M. Mourigal et al. provided the dynamical structure factor's detailed calculation results, 

including the magnon-magnon interaction [Ref. 2.13]. In this section, I would like to show 

some characteristic features of the magnon-magnon interaction effects. 

 

 



 
 
 
 
 

Chapter 2 

20 
 

 

 

 

 

2.2.1 Three-magnon interaction term 

Using the Holstein-Primakoff transformation, the spin Hamiltonian for the three-magnon 

interaction term 𝐻ଷ can be re-written as below [Ref. 2.7], 

𝐻ଷ ൌ
1
2!
෍Γଵሺ𝒒,𝒌 െ 𝒒;𝒌ሻቀ𝑎𝒌ି𝒒

ற 𝑎𝒒
ற𝑎𝒌 ൅ ℎ. 𝑐. ቁ

𝒒,𝒌

൅
1
3!
෍Γଶሺ𝒒,െ𝒌 െ 𝒒,𝒌ሻቀ𝑎𝒒

ற𝑎ି𝒌ି𝒒
ற 𝑎𝒌

ற ൅ ℎ. 𝑐. ቁ
𝒒,𝒌

. 

Here, Γଵሺ𝒒,𝒌 െ 𝒒;𝒌ሻ is the vertex function that describes the decay of one-magnon into 

the two-magnon states. We called this term magnon-magnon interaction here. 

Γଶሺ𝒒,െ𝒌 െ 𝒒,𝒌ሻ indicates the creation of three magnons. The cubic terms' effects appear 

in both the magnon energy and the lifetime due to the induced decay process. Using the 

standard Green’s function method, the lowest-order normal self-energies from the cubic 

vertexes can be expressed in the following formulae [Ref. 2.7], 

Σଵሺ𝒌,𝜔ሻ ൌ
1
2
෍

|Γଵሺ𝒒;𝒌ሻ|ଶ

𝜔 െ 𝜀𝒒 െ 𝜀𝒌ି𝒒 ൅ 𝑖0
,

𝒒

 

Σଶሺ𝒌,𝜔ሻ ൌ െ
1
2
෍

|Γଶሺ𝒒;𝒌ሻ|ଶ

𝜔 ൅ 𝜀𝒒 ൅ 𝜀𝒌ା𝒒 ൅ 𝑖0
.

𝒒

 

Here, some explicit expressions are not explained, and one can find those in [Ref. 2.7]. 
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Figure 2.2 (a) The calculated magnon dispersion and (b) the decay rate for the 

triangular lattice with S=1/2. The dashed line indicates the LSWT calculation results, 

and the solid line indicates the results with 1/S corrections. The shaded area shows the 

width of the spectral peaks due to decay. (c) The shaded area is the region in which 

the decay process occurs. When the anisotropy Δ decreases, the decay region also 

shrinks. The calculated dynamical structure factor from the 1/S corrections is plotted 

in (d) S=1/2 and (e) S=3/2. The figures are reprinted from  [Ref. 2.1], adapted 

from [Refs. 2.7 & 2.13]. 

  

The main features observed in actual experiments such as INS are strong 

renormalization of magnons, shortening of magnon lifetime, and momentum dependence. 
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As shown in Fig. 2.2(a), a local minimum of the magnon exists at the M point and flattened 

magnon energy around the M point. The local minimum is sometimes called a roton-like 

minimum since the local minimum feature is similar to a roton excitation feature in 4He. 

Not only the magnon energy but also the decay rate is strongly dependent on the 

momentum. And the strong dampening of the magnons and the broad continuum state are 

expected due to the decay. The decay process should satisfy some conditions: (1) 𝛤ଵሺ𝒒;𝒌ሻ 

is nonzero, and (2) the kinematic conditions of momentum and energy conservation are 

satisfied. The decay rate 𝛤𝒌  is directly related to the magnon lifetime, which is 

approximately determined as below, 

𝛤𝒌 ൌ
𝜋
2
෍|Γଵሺ𝒒;𝒌ሻ|ଶ𝛿ሺ𝜀𝒌 െ 𝜀𝒒 െ 𝜀𝒌ି𝒒
𝒒

ሻ. 

The decay rate in the S=1/2 triangular lattice case is shown in Fig. 2.2(b). The decay rate 

abruptly increases in the middle of 𝛤 and 𝐾 point, which is a similar behavior with the 

magnon energy renormalization. As expected, the dynamical structure factor calculation 

revealed that the broadening of the magnons and the diffuse intensity of the magnon 

continuum above the one-magnon exist, as shown in Fig. 2.2(d). The effect of magnon-

magnon interaction is somewhat suppressed in the case of S=3/2, as plotted in Fig. 2.2(e). 

The reason for this suppression is that the large S would reduce the magnon-magnon 

interaction. Also, the quantum fluctuation would decrease the interaction as well. 
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2.3 Magnon-phonon coupling 

A magnon-phonon coupling can be considered one type of spin-lattice coupling, or 

sometimes called magneto-elastic coupling. The concept of magneto-elastic coupling was 

started a long time ago, and it is extensively studied. For example, h-RMnO3 is a famous 

compound that has strong spin-lattice coupling. The coupling causes a change of atomic 

positions accompanied by a magnetic order, and it induces the electric polarization in the 

materials [Ref. 2.14], well-known as the magneto-electric coupling. The applicability of 

the magneto-electric coupling attracts many researchers to study it as well as the spin-lattice 

coupling. Various experimental tools observed abrupt changes through the magnetic 

transition appeared in fundamental properties, for example, X-ray/neutron diffraction [Refs. 

2.14–2.18], infra-red (IR) or Raman spectroscopy [Refs. 2.19–2.26], thermal 

conductivity [Refs. 2.27 & 2.28], elastic moduli [Refs. 2.29 & 2.30], and thermal 

expansion [Refs. 2.31 & 2.32] measurements. 

 Although the spin-lattice coupling is essential to determine the fundamental and 

static properties, it also affects some of the dynamical properties. When the phonons and 

magnons are close to each other, they can interact and repel each other. Or, they can 

hybridize and form a magneto-elastic excitation [Ref. 2.33]. These magneto-elastic 

excitations have both phonon and magnon characters so that we can probe the excitations 

using both x-ray and neutron scattering. For example, in YMnO3, the magneto-elastic 

excitations were observed in INS and IXS [Refs. 2.33 & 2.34]. The similar magneto-elastic 

excitations in LiCrO2 are also discovered using both INS and IXS [Ref. 2.35]. There are 

several scenarios to explain how the magneto-elastic excitations emerge. Here, I would like 
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to introduce one of the mechanisms, called exchange-striction. 

 

2.3.1 Exchange-striction model 

In this section, I would like to introduce the exchange-striction model. The primary 

mechanism is that the modulation of atomic positions due to lattice vibration induces the 

exchange interaction between atoms. Because the exchange interaction J depends on the 

bond length 𝑟௜௝ ൌ ห𝒓௝ െ 𝒓௜ห between site i and j. Using Taylor expansions, the exchange 

interaction can be expressed as below, 

𝐽௜௝൫𝒓௜ ,𝒓௝൯ ൌ 𝐽௜௝൫𝑹௜ ,𝑹௝൯ ൅ ቀ𝒖௜ ∙ ∇𝒓೔ ൅ 𝒖௝ ∙ ∇𝒓ೕቁ 𝐽௜௝ ൅
1
2!
ቀ𝒖௜ ∙ ∇𝒓೔ ൅ 𝒖௝ ∙ ∇𝒓ೕቁ

ଶ
𝐽௜௝ ൅ ⋯

ൎ 𝐽଴ ൭1 െ
1
𝐽଴

𝜕𝐽
𝜕𝑟
𝒆௜௝ ∙ ൫𝒖௝ െ 𝒖௜൯൱ 

where 𝒓௜ ൌ 𝑹௜ ൅ 𝒖௜ is the position of atom i and 𝑹௜ and 𝒖௜ are the equilibrium position 

and the atomic displacement of atom i. The second quantization form of the atomic 

displacement (or phonon displacement) is as follow, 

𝒖௜ ൌ෍ඨ
ℏ

2𝑁𝑚௜𝜔𝒌,ఒ
𝑒𝒌,ఒ൫𝑏𝒌,ఒ ൅ 𝑏ି𝒌,ఒ

ற ൯𝑒௜𝒌∙𝑹೔

𝒌,ఒ

. 

𝒖௜ contains a linear term of phonon creation and annihilation operators. In noncollinear 

magnets, 𝐻௘௫ contains one-magnon terms in the Hamiltonian. As a result, if we substitute 

the atomic displacement 𝒖௜ and the exchange interaction 𝐽௜௝൫𝒓௜ , 𝒓௝൯ into the 𝐻௘௫, we can 

get the magnon-phonon coupling Hamiltonian [Ref. 2.1], which have a linear coupling 

between magnon and phonon operators, 
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𝐻௠௣ ൌ෍𝑔𝒌,ఒ൫𝑎𝒌
ற െ 𝑎ି𝒌൯𝑏𝒌,ఒ ൅ ℎ. 𝑐. ,

௞

 

𝑔௞,ఒ ൌ െ𝑖
3
4
𝛼ඨ

𝑆ଷℏ
𝑀𝜔𝒌,ఒ

𝑒𝒌,ఒ ∙ 𝑓𝒌, 

where 𝛼 ൌ
ௗ

௃

డ௃

డ௥
 (d is a bond length between the site i and j) is a dimensionless unit of the 

exchange-striction coefficient, and 𝑓𝒌 ൌ ∑ sinሺ𝑸 ∙ 𝝂ሻ ሾcosሺ𝒌 ∙ 𝝂ሻ െ 1ሿ𝝂𝝂  is a geometrical 

factor. So, the total Hamiltonian 𝐻௧௢௧  including all the Hamiltonian of phonon  𝐻௣௛ , 

magnon 𝐻௠௔௚, and magnon-phonon coupling term 𝐻௠௣ can be re-write using the basis 

of phonon and magnon operators. The magnon-phonon coupling term 𝐻௠௣ contributes to 

the off-diagonal component of the 𝐻௧௢௧ [Refs. 2.3 & 2.4]. 

 

Table 2.1 Exchange-striction coefficients 𝜶 for selected oxides 

Materials 𝜶 Refs. 

CuGeO3 3.5  [Ref. 2.36] 

La2CuO4 2-7  [Refs. 2.37 & 2.38] 

(Y,Lu)MnO3 8-10  [Ref. 2.33] 

HoMnO3 12.8  [Ref. 2.39] 

LiCrO2 & CuCrO2 15.7 & 15.8  [Refs. 2.35 & 2.40] 

 

 The exchange-striction coefficient 𝛼  is an indicator of the magnon-phonon 

coupling strength. It can be directly extracted from the observed magnon dispersion. 

Alternatively, one can estimate 𝛼 from the measurement of Néel temperature and the bond 
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length as a function of pressure with the following formula [Ref. 2.33], 

𝛼 ൌ
𝑑ሺ𝑃଴ሻ 𝜕𝑇ேሺ𝑃ሻ 𝜕𝑃⁄

𝑇ேሺ𝑃଴ሻሺ𝜕𝑑ሺ𝑃ሻ 𝜕𝑃⁄ ሻ
. 

Some of the exchange-striction coefficients are summarized in Table 2.1. 

 

2.3.2 Einstein site phonon model 

The Einstein site phonon (ESP) model [Ref. 2.41,Ref. 2.42] is the more straightforward 

and approximate version of the magnon-phonon coupling Hamiltonian mentioned above. 

Based on the crystal symmetry and the number of atoms in the unit cell, the number of the 

basis for the phonons is sometimes large. This makes it somewhat difficult to calculate 

magnon-phonon coupling Hamiltonian. Also, if the overlap between magnon and phonon 

is large, the expected coupling constants should be small enough to ignore it. The ESP 

model concept is that we choose an optimal optical phonon branch and integrate out the 

site Einstein phonons. This is equivalent to simply minimizing the Hamiltonian with 

respect to the set of 𝒖௜. By doing this, we can have two advantages: (1) it requires only 

one control parameter of the coupling constant, and (2) it mimics a richness of phase 

diagram successfully.  

 Turn back to the magnon-phonon coupling Hamiltonian 𝐻௠௣ , we can add the 

phonon Hamiltonian to describe all the magnons and phonons in the system as below, 

𝐻௧௢௧ ൌ 𝐽 ෍ ቆ1 െ 𝛼
൫𝒖௜ െ 𝒖௝൯ ∙ 𝒆௜௝

𝑑
ቇ 𝑺௜ ∙ 𝑺௝

ழ௜௝வ

൅ 𝐻௣௛௢ሺሼ𝒖௜ሽሻ. 

In the ESP model, the atomic displacements are independently determined, and the bond 
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distances between atoms are defined from those. So, we can write the phonon Hamiltonian 

as 𝐻௣௛௢ሺሼ𝒖௜ሽሻ ൌ
௄

ଶ
∑ |𝒖௜|ଶ௜ , where 𝐾 is an elastic constant. 

 

Figure 2.3 Zero-field phase diagram of the triangular lattice calculated by the ESP 

model. Filled and empty circles mean the direction of the spins (up or down). The 

figure is adapted from [Ref. 2.42]. 

 

By integrating out the lattice displacement 𝒖௜, the effective spin Hamiltonian can 

be written as follows [Ref. 2.42], 

𝐻ாௌ௉ ൌ 𝐽 ቎෍ 𝑺௜ ∙ 𝑺௝
ழ௜௝வ

െ 𝑐𝑆ଶ෍𝑭௜
ଶ

௜

቏. 

𝑭௜ ൌ ෍
൫𝑺௜ ∙ 𝑺௝൯

ଶ

𝑆ଶ
𝒆௜௝

௝∈ேሺ௜ሻ

,    𝑐 ൌ
𝛼ଶ𝐽𝑆ଶ

2𝐾
 

 

Here, c is a dimensionless spin-phonon coupling constant and 𝑭௜ is a dimensionless force 

on site i. 𝑁ሺ𝑖ሻ indicates the nearest-neighbor sites of the site i. The 𝑭௜ already implies 

that the spin-lattice coupling is favorable in this model. If spins are uniformly ordered and 

〈𝑺௜ ∙ 𝑺௝〉 ൌ 𝑐𝑜𝑛𝑠𝑡. , then 𝑭௜ ൌ 0  results in the Hamiltonian is as same as the simple 
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Heisenberg model. But, to minimize the Hamiltonian, 𝑭௜ tends to have non zero value, 

and it enforces the distortion of the lattice as the spins are ordered. Based on the 𝐻ாௌ௉ in 

a triangular lattice, the phase diagram of the magnetic ground state shown in Fig. 2.3 has 

been discussed in [Ref. 2.42]. 

 

2.4 Phonon Hamiltonian 

Phonon is also a fundamental quasiparticle describing the collective behavior of lattice 

vibration. The simplest way to express the phonon Hamiltonian is the harmonic 

approximation without invoking any phonon-phonon, electron-phonon, or other 

interactions. The phonon Hamiltonian is simply written as follows, 

𝐻௟௔௧ ൌ෍
𝑷௟,ௗ
ଶ

2𝑀ௗ
൅

1
2

෍ 𝒖௟,ௗΦ௟,ௗ
௟ᇲ,ௗᇲ𝒖௟ᇲ,ௗᇲ

௟,ௗ,௟ᇲ,ௗᇲ

.
௟,ௗ

 

Here, 𝑷௟,ௗ is a momentum operator for the d-th atom in the l-th unit cell. Φ௟,ௗ
௟ᇲ,ௗᇲ is an 

interatomic force-constant matrix with a dimension of 3ൈ 3. 𝒖௟,ௗ  means the atomic 

displacement of the d-th atom in the l-th unit cell. The corresponding equation of motion 

for the 𝐻௟௔௧ is  

𝑀ௗ𝒖ሷ ௟,ௗ ൌ െ෍Φ௟,ௗ
௟ᇲ,ௗᇲ𝒖௟,ௗ .

௟,ௗ

 

Solving this equation of motion based on the assumption of solutions to be formed by a 

superposition of normal modes with periodicity 𝒒  and frequency 𝜔 , we can get the 

following formula,  
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𝑀ௗ𝜔𝒒ఔଶ 𝑒𝒒ఔௗ
ఈ ൌ ෍𝐷ఈఉሺ𝑑𝑑ᇱ,𝒒ሻ𝑒௤ఔௗᇲ

ఉ

ௗᇲ,ఉ

. 

Here, 𝑒𝒒ఔௗ
ఈ  indicates the 𝛼-axis component of the eigenvector of the d-th atom with 𝒒 

and band index 𝜈. And the 𝐷ఈఉሺ𝑑𝑑ᇱ,𝒒ሻ is a dynamic matrix, which is a Fourier transform 

of the force-constant matrix. The dynamical matrix is defined as below, 

𝐷ఈఉሺ𝑑𝑑ᇱ,𝒒ሻ ൌ
1

ඥ𝑀ௗ𝑀ௗᇲ
෍Φ௟,ௗ

௟ᇲ,ௗᇲ

௟ᇲ

𝑒௜𝒒∙ൣ𝒓೗ᇲି𝒓೗൧. 

 The density-functional theory (DFT) can usually calculate the interatomic force 

constant Φ௟,ௗ
௟ᇲ,ௗᇲ  . Based on the crystal structure setting, crystal symmetry, electron 

correlation, magnetic moment, and other parameters taking effects on atomic forces, the 

total energy is calculated until it converges. After determining final atomic positions based 

on the energy minimization, the force constants are calculated using the frozen phonon 

method. In Cd2Os2O7, which will be discussed in Chapter 5, we used the electron 

correlation U = 2.0 eV, and an all-in-all-out magnetic ordering structure was considered. 

More importantly, we added spin-orbit coupling in the calculations to calculate the effect 

from 5d Osmium atoms. The example of calculations for Cd2Os2O7 phonons is shown in 

Fig. 2.4. 



 
 
 
 
 

Chapter 2 

30 
 

 

 

 

 

 

Figure 2.4 The calculated phonon dispersion relations of Cd2Os2O7. 

To obtain the phonon frequencies and eigenvectors from the force constants, we 

implemented the codes in PHONOPY [Ref. 2.43]. In the above calculation, we used the 

finite displacement method.  
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Chapter 3 

Experimental techniques 

 

3.1 Inelastic neutron and X-ray scattering 

Inelastic neutron scattering (INS) is a unique and well-developed experimental technique 

to measure spin dynamics in magnetic materials. Although the recently updated resonant 

inelastic x-ray scattering (RIXS) technique is also available for detecting magnons [Ref. 

3.1], INS is still the best tool to examine a dispersion relation of magnetic excitations with 

a high resolution of few meV scales. Since the neutron has no charge, it can penetrate deep 

inside solids and approach the nuclei closer. So, INS can probe phonons as well, which is 

an essential property in condensed matter systems.  

Non-resonant inelastic x-ray scattering (IXS) is also an established tool for 

investigating phonons in materials. This method can provide a good momentum resolution 

and negligible background signals. The other benefit of IXS is that it only measures non-

magnetic signals from the spectra. As a result, we could entirely focus on phonons from 

this method. The advantage of IXS is that it is less dependent on sample conditions. Using 

neutrons, we need to consider several things to avoid irrelevant situations. For example, 

neutron scattering amplitude is high when the light atoms are involved in the target. It 

prevents you from getting the information that you want to observe. If some elements with 

a large neutron absorption rate are inside the target, the scattering cross-sections cannot 

distinguish the desired signals. Also, INS needs a large sample intrinsically to get visible 

intensity due to a limit of incident neutron flux. On the other hand, IXS can easily avoid 
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the mentioned cases.  

 

3.1.1 Basic principles 

To measure the excitations such as magnons or phonons experimentally, the probe's 

wavelength should be in the same order as the distances of atoms in solids. Besides, since 

magnons' and phonons' typical energy is the 1-100 meV energy scale, it is necessary to 

have a comparable resolution. As mentioned above, the probing technique also needs 

interaction with the nuclei or magnetic moments. Both INS and IXS techniques are suitable 

for solving those problems. The basic principles of inelastic scattering can be expressed as 

below. 

𝑸 ൌ 𝒌௙ െ 𝒌௜ ് 0 

ℏ𝜔 ൌ 𝐸௙ െ 𝐸௜ ൌ
ℏଶ

2𝑚௡
ሺ𝒌௙

ଶ െ 𝒌௜
ଶሻ 

The elementary excitations reflect the characteristic features of the governing Hamiltonian. 

For that reason, the inelastic scattering technique is extensively used to deepen the 

understanding of the Hamiltonian. Based on the scattering theory, we directly observe the 

scattering cross-sections from INS and IXS. I briefly introduce the formulations of the 

inelastic scattering cross-sections for phonons and magnons. 

 In INS, the scattering cross-sections for phonons and magnons are different. 

Phonons are created when incident neutrons are scattered from nuclei of atoms. Magnons 

are created when spins of atoms scatter incident neutrons. So, different processes occur. 

The scattering cross-sections for phonons can be described as below [Ref. 3.2]. 
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Here, 𝑘 and 𝑘ᇱ are the momentum vectors of the incident and scattered neutrons. 𝜔ୱ is 

the phonon energy for mode s. 𝑀ௗ is the mass of the atom at position d. 𝑏ௗതതത is the average 

scattering length of the atom at position d. 𝒆ௗ௦ is the polarization vector for the atom at 

position d and mode s. 𝑊ௗ is the Debye-Waller factor, which is defined as below, 

𝑊ௗ ൌ
ℏ

4𝑀ௗ𝑁
෍

|𝜿 ∙ 𝒆ௗ௦|ଶ

𝜔௦௦

〈2𝑛௦ ൅ 1〉. 

〈𝑛௦ ൅ 1〉 and 〈2𝑛௦ ൅ 1〉 can be considered as a function of temperature and described as 

following, 
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൰
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ሻ െ 1
, 〈2𝑛௦ ൅ 1〉 ൌ

൬exp ൬
ℏ𝜔௦
𝑘஻𝑇

൰ ൅ 1൰

൬exp ൬
ℏ𝜔௦
𝑘஻𝑇

൰ െ 1൰
ൌ coth ൬

1
2
ℏ𝜔௦
𝑘஻𝑇

൰  

As formulated, to obtain the finite scattering cross-sections, two conditions should be 

satisfied. One is 𝜔 ൌ 𝜔௦, and the other is 𝜿 ൌ 𝒌 െ 𝒌ᇱ ൌ 𝝉 ൅ 𝒒. The first condition means 

that the amount of energy loss of neutrons should be the same as a phonon's energy, called 

energy conservation. The second condition also describes the conservation of momentum. 

For the non-resonant IXS case, we can only probe the phonons, and the scattering cross-

sections can be expressed as similar to the above neutron case except for the scattering 

length 𝑏ௗ. It needs to be replaced with the atomic form factor 𝑓ሺQሻ. 
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Figure 3.1 The magnetic form factor of Mn3+. 

 In the case of magnon, the inelastic scattering cross-section is formulated as below, 

ቆ
𝑑ଶσ
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Here, 𝛾 is a positive constant of 1.913. 𝑟଴ is defined as 𝑟଴ ൌ
ఓబ
ସగ

௘మ

௠೐
. 𝐹ሺ𝑄ሻ is called the 

magnetic form factor. It is a momentum and atom dependent quantity, and it decreases when 

Q becomes large. This is why the signals of magnons from INS are small when we take the 

spectra at high Q. An example of the magnetic form factor of Mn3+ is shown in Fig. 3.1. 

The exp൫െ2𝑊ொ൯  is the Debye-Waller factor and the 𝛿ఈఉ െ
ொഀொഁ
ொమ

  is the polarization 

vector. 𝑆ఈఉሺ𝑄,𝜔ሻ is the dynamical structure factor, which can explain the spin correlation 

between atoms. 
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3.1.2 INS experiment at 4SEASONS in J-PARC 

To measure the spin waves of HoMnO3, we used a 4SEASONS spectrometer in J-PARC. 

4SEASONS is a direct geometry spectrometer and uses a thermal neutron chopper covering 

the range of 1-100 meV [Ref. 3.3]. In the direct geometry spectrometer, the momentum of 

the incident neutron is fixed. Thus, the neutrons with chosen incident energy are selected 

when it is passing through the chopper. The overall schematics for the 4SEASONS 

spectrometer is presented in Fig. 3.2. 

 

 

Figure 3.2 The schematics of the 4SEASONS spectrometer at J-PARC. 
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Figure 3.3 The schematics for describing the time-of-flight neutron scattering method. 

 4SEASONS spectrometer uses the so-called time-of-flight (ToF) method. Neutron 

beam is coming out from the source and the scattered by the sample. Detectors can 

accumulate the number of the neutron at non-zero energy transfers and momentum transfers. 

The ToF method is a robust way to obtain INS spectra for a wide range of momentum space. 

Once the neutron enters through the guide, the rotating chopper cuts the neutrons except 

for those with the desired velocity (i.e., energy). Then, the selected neutron is scattered by 

the sample. The two-dimensional detector array accumulates the number of scattered 

neutrons. Depending on the neutron flight's time and length, the neutron's energy or energy 

loss is determined. So, both elastic and inelastic scattering signals could be obtained.  

 Another technique, the so-called repetition rate multiplication (RRM) method, 
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was also used to efficiently get INS spectra [Ref. 3.4]. Based on this method, INS spectra 

at different incident neutron energy can be obtained simultaneously. As shown in Fig. 3.4, 

the chopper selects two energies within one rotation. The detectors can accumulate the 

signals since the number of neutrons arrived at different times. As illustrated in Fig. 3.4, 

there is no contamination from the other scattering process if the detectors' arrival time for 

the scattering of Ef(1) is shorter than ti(2). 

 

Figure 3.4 ToF diagram explaining the RRM method adapted from [Ref. 3.4]. 

Using the parameters for the 4SEASONS instrument, the multiple neutron energy regions 

can be determined if the chopper's frequency is fixed. 

𝐸௜ሺଵሻ െ 𝐸௙ሺଵሻ ൌ 𝐸௜ሺଵሻ െ 𝐴 ቈ2𝑓
𝐿ଶሺ𝐿ଵ െ 𝐿ଷሻ

𝐿ଵ
቉
ଶ

 

In our HoMnO3 experiment, we fixed the chopper frequency at f = 250 Hz to obtain the 



 
 
 
 
 

Chapter 3 

43 
 

 

 

 

 

different data set for Ei = 8.5, 12, 18, 30, and 60 meV. 

 For the INS experiment, we prepared a single crystal HoMnO3 with a size of 

5ൈ5ൈ22 mm3 and a total mass of about 3 g. The sample was grown using an optical floating 

zone method by coworker Dr. H. Sim. The details for the sample growth can be found 

in [Ref. 3.5]. The single crystals are mounted in the holder made of almost pure aluminum 

to reduce background signals. The picture of the mounted sample at 4SEASONS is 

presented in Fig. 3.5. 

 

Figure 3.5 A photograph of the mounted HoMnO3 sample at 4SEASONS. 
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 Finally, we could carry out the INS experiment with the collaboration of 

coworkers Drs. K. Iida and K. Kamazawa. Before the actual INS experiment, we checked 

whether the sample alignment is correct or not. From the measurement of magnetic Bragg 

peaks, we could confirm that the sample was well-aligned, as shown in Fig. 3.6. After the 

confirmation, we conducted the INS experiment. For each scan, we had to choose the 

rotating angles, speeds, and steps for the sample, determining the data statistics and the 

region of allowed momentum transfers. INS results are explained in Chap. 4 in detail. 

 

 

Figure 3.6 The Laue scattering patterns of HoMnO3. (Top) The [220] plane. (Bottom) 

The [002] plane. 

 



 
 
 
 
 

Chapter 3 

45 
 

 

 

 

 

3.1.3 IXS experiment at BL43LXU in SPring-8 

We conducted an IXS experiment at BL43LXU [Ref. 3.6] in SPring-8 helped by coworkers 

Drs. A. Q. R. Baron and D. Ishikawa. The instrument at BL43LXU provides a high 

resolution of energy transfers and consists of several developed parts such as a 10-m scale 

spectrometer arm, analyzer crystals, and detector array. A schematic and a photograph of 

the beamline instrument are shown in Fig. 3.7. 

 

 

Figure 3.7 (Top) A schematic for the instrument. (Bottom) A photograph of the 

spectrometer arms, the analyzers, and the sample stage. The figure is adapted 

from [Ref. 3.7]. 

By using a high-resolution monochromator, the bandwidth of incident x-ray is reduced to 
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the meV energy scale. And it is scattered from the sample and passes through an analyzer 

and the spectrometer. The analyzer array is a type of two-dimensional array, and it is an 

efficient way to collect the IXS spectra at several different momentum transfers 

simultaneously [Ref. 3.7]. Before the actual experiment, we should first obtain the 

instrumental resolution. We measured the elastic peaks from the silicon with fixed x-ray 

energy of 21.75 keV. Backscattering using silicon (11 11 11) reflection was used to attain 

an energy resolution of 1.5 meV. The instrument resolution profiles at each detector are 

presented in Fig. 3.8. 

 

Figure 3.8 The measured Si (11 11 11) reflections at each detector, which describe the 

instrumental resolution of 1.5 meV. 
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As introduced in Sect. 3.1.1, the scattered cross-sections are proportional to the 

atomic form factor 𝑓ሺ𝑸ሻ. And the factor is dependent on the magnitude of the momentum 

transfer (𝑓ሺ𝑸ሻ ∝ |𝑸|ଶ). The orientation of a single crystal and the scattering geometry is 

important to get a visible spectrum. For the Cd2Os2O7 IXS experiment, we mainly focused 

on the geometry that we can gather large intensity of the IXS spectra, mostly from the [6 6 

6], [6 6 8], and [8 6 6] Brillouin zones. The [1 1 1] plane was aligned parallel to the incident 

x-ray beam. This geometry makes us obtain the large intensity of the IXS spectra. A 

photograph of the sample stage and the mounted sample are shown in Fig. 3.9. 

 

Figure 3.9 A photograph of (left) the sample stage and (right) the mounted sample. 

The surface of the sample shown in the figure is associated with the [1 1 1] plane. 

The size of the sample is 0.7ൈ0.45ൈ0.5 mm3 with a mass of about 0.9 mg. 

 

 To precisely set the sample geometry, we need to define the UB matrix. We can 

calculate the instrumental parameters of the four-circle-diffractometer from the UB matrix. 

It makes us obtain the IXS spectra at the desired momentum transfer and provides the 

possible range of momentum transfers within the instrumental environment. We used (6 6 
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6) and (8 4 4) Bragg peaks to define the UB matrix. 

 After the check all the conditions, we finally obtained the IXS spectra. The 

measurement procedure is as follows. First, we need to move the spectrometer arm for 

control two-theta to achieve the momentum transfer of interest. And then, we scan the 

incident beam's energy while holding the analyzer energy and position constant. One of the 

examples for the IXS data set is shown in Fig. 3.10. More detailed analyses and studies are 

explained in Chap. 5. 

 

 

Figure 3.10 The IXS data set of Cd2Os2O7 measured at BL43LXU spectrometer. 
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Chapter 4 

Renormalization of spin-excitations in triangular lattice 

antiferromagnet HoMnO3  

  

4.1 Hexagonal rare-earth manganites (h-RMnO3) 

Rare-earth manganites (RMnO3) have several interesting properties to study, such as 

multiferroicity, noncollinear magnetic structure, frustration, and so on. Depending on the 

rare-earth ions, RMnO3 has two types of crystal structure: one is an orthorhombic (o-

RMnO3), and the other is hexagonal geometry (h-RMnO3). With R = Ho, Er, Y, and Lu, it 

has hexagonal symmetry and a 120º Néel order, which naturally introduces geometrical 

frustration to the system.  

At the same time, h-RMnO3 is a proper model system for studying two-

dimensional triangular lattice antiferromagnet. Based on the crystal structure, Mn atoms 

are placed within the ab plane, and the planes are well separated from each other by rare-

earth ions. Although the inter-plane exchange interactions exist, it is sometimes negligible 

since its order is about 0.2 % of intra-plane exchange interactions [Ref. 4.1]. Mn atoms are 

having super-exchange interactions with nearest-neighbor Mn atoms via oxygen atoms. A 

typical energy scale of the interaction is on an order of 10 meV, and the possible magnetic 

structures are plotted in Fig. 4.1. 

In h-RMnO3, there is an another interesting issue of trimerization. The 

trimerization is a kind of lattice distortion that happened in the ab plane. The triangular 

lattice formed by Mn is contracted or expanded depending on the size of rare-earth ions. 
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This gives rise to the different exchange interactions, separating intra-trimer and inter-

trimer exchange interactions. 

 

Figure 4.1 Magnetic structures in h-RMnO3, adapted from [Ref. 4.2]. 

 

4.1.1 An ideal platform to study noncollinear magnetism 

HoMnO3 has been considered as a perfect platform to explore triangular lattice 

antiferromagnet without the trimerization effect and thus make analysis a lot simpler. The 

Mn3+ in HoMnO3 mainly governs the magnetism, and the spin S is 2. The most 

characteristic feature in HoMnO3 is that it has the smallest trimerization among h-

RMnO3 [Ref. 4.3]. If Mn position x is 1/3, then it forms a perfect triangular lattice. Their 

neutron diffraction experiments revealed that Mn position x of HoMnO3 is almost 1/3 below 

50 K, whereas x of ScMnO3 or YbMnO3 are apart from 1/3. When the trimerization exists, 



 
 
 
 
 

Chapter 4 

52 
 
 
 
 

 

a minimum of four exchange interactions is needed to explain spin dynamics. So, HoMnO3 

has the merit of a study on magnetism in the ideal triangular lattice. 

 According to an inelastic neutron scattering (INS) study on HoMnO3, the nearest-

neighbor exchange interaction J is found to be 2.44 meV, and the single-ion anisotropy D 

is obtained as 0.38 meV [Ref. 4.4]. The linear spin-wave theory (LSWT) results based on 

the fitted parameters J and D are in good agreement with the INS data. It is important to 

note that the Ho3+ ions also have magnetism. Based on the antiferromagnetic resonance and 

THz spectroscopy experiment, six crystal field excitations are observed, which is due to 

Ho3+ [Ref. 4.5,Ref. 4.6]. The energy scale of the crystal field excitations is about five meV. 

Although Ho has magnetism, it would take a small effect on magnetism for Mn3+, especially 

in magnons, since the observed magnon modes for Mn3+, which are placed from 10 to 20 

meV, well separated from the crystal field excitations of Ho ions.  

 

 

Figure 4.2 (a) Crystal and (b) magnetic structure of HoMnO3. Open (filled) arrows 

indicate the ordered magnetic moment at z = 0 (z = 0.5) plane. x indicates the Mn 

position. 
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4.1.2 Magnon-magnon interaction 

As introduced in Chapter 2, magnon-magnon interaction exists intrinsically in noncollinear 

magnets. It is usually small to be observed by experiments. However, if the interaction is 

strong enough, anomalous features can appear in magnon dispersions. For example, 

Ba3CoSb2O9, a spin 1/2 triangular lattice antiferromagnet, has a strong renormalization of 

magnon energies and a broadening of magnons due to the strong magnon-magnon 

interaction [Ref. 4.7,Ref. 4.8]. These features are usually enhanced in the spin 1/2 case as 

systemically investigated in theory [Ref. 4.9–Ref. 4.11]. 

 Surprisingly, this kind of anomalous feature is also discovered in h-LuMnO3, 

too [Ref. 4.1]. First, a roton-like minimum at the M point was observed in INS data, 

whereas the LSWT estimates a parabolic-like dispersion. Secondly, the magnon modes at 

18 meV are flattened as compared to the expectation from the LSWT. Finally, there is an 

intrinsic linewidth broadening, and it is a momentum-dependent quantity. Based on these 

observations, it is expected to have a strong magnon-magnon interaction in HoMnO3 as 

well. It also allows studying magnon-magnon interaction in a nearly ideal triangular lattice, 

making it easier to compare with the theoretical estimations. 
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4.1.3 Magnon-phonon coupling 

As mentioned earlier, noncollinear magnets can have a coupling term between magnon and 

phonon operators. When this coupling is strong enough, magnons and phonons can repel 

each other, or they are hybridized with each other, producing magneto-elastic 

excitations [Ref. 4.12,Ref. 4.13]. The magneto-elastic excitations can be expressed by 

mixed magnon and phonon operators in the coupled Hamiltonian as formulated in Chapter 

2. These terms are off-diagonal elements in the Hamiltonian matrix to modify the magnon 

or phonon energy. If these operators are combined as a cubic or higher-order term, it can 

also induce spontaneous decay of magneto-elastic excitations. Both theoretical and 

experimental examinations have been done in the INS study of (Y, Lu)MnO3 [Ref. 4.12].  

 This kind of magnon-phonon coupling behavior can be found in other triangular 

lattice antiferromagnets, too. For example, both INS and IXS studies of LiCrO2 found 

magneto-elastic excitations (or electromagnon) [Ref. 4.14]. In addition, CuCrO2 also has 

similar excitations at around 12.5 meV based on the INS experiment [Ref. 4.15]. Both 

LiCrO2 and CuCrO2 are delafossite compounds with magnetic Cr3+ ions of S = 3/2. The 

magnetic structure is a helix structure with Q = (0.329, 0.329, 0) for CuCrO2 and Q = (1/3, 

1/3, 0) and (-2/3, 1/3, 1/2) for LiCrO2, which shows the noncollinear 120º ordering state in 

triangular lattice antiferromagnet. On the other hand, h-LuFeO3 has no similar features 

originating from the magnon-phonon coupling. Although it has the same crystal and 

magnetic structure as h-RMnO3, magnon-phonon coupling seems to be suppressed in h-

LuFeO3. The possible reason might be less overlap between magnon and phonon than h-

RMnO3, or large spin value S = 5/2, which suppress magnon-magnon interaction. 
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4.2 Spin excitations in HoMnO3 

 

4.2.1 INS data and fitting by using LSWT 

As discussed in Section 4.1, HoMnO3 is a promising material that can possess magnon-

magnon interaction and magnon-phonon coupling. It is also a nearly ideal triangular lattice 

antiferromagnet. Therefore, it is an excellent platform to examine the strength of magnon-

magnon or magnon-phonon interaction. We conducted INS experiments at 4SEASONS 

beamline of J-PARC using the time-of-flight neutron scattering technique to explore this 

issue. 

 

Figure 4.3 INS data for HoMnO3 taken at 4 K. The energy of the incident neutron is 

30 meV. Three model calculations are presented to compare the experimental data. 



 
 
 
 
 

Chapter 4 

56 
 
 
 
 

 

We used the Heisenberg model, and XXZ model with 1/S expansions, and the ESP 

model. (Details about models are described in the text) Black circles are fitted 

positions from INS spectra at each Q position. The inset indicates the Brillouin zones 

and the labels for the momentum positions.  

 

INS data are shown in Fig. 4.3. The INS data are summed from L = -3 to 3 to have enough 

statistics of intensity. Since the interlayer exchange interaction is negligible here, there is 

no L dependency in data along the HK plane, which is the region of interest to us. There 

are clear three magnon modes placed from 10 to 18 meV. And several dispersion-less 

crystal field excitations exist at 1.7, 3.2, and 6.7 meV based on multiple peak fitting results. 

These energies are the same as found in other studies [Ref. 4.5,Ref. 4.6]. To explain the 

data, we calculated magnon dispersion using the conventional Heisenberg model with 

LSWT. 

𝐻ୌୣ୧ୱ ൌ 𝐽 ෍ 𝑺௜
ழ௜௝வ

∙ 𝑺௝ ൅ 𝐷෍ሺ𝑆௜
௭ሻଶ

௜

 

J and D are nearest-neighbor exchange interaction and single-ion anisotropy parameters. 

Based on the best fit shown in Fig. 4.3, we could obtain J = 2.44 meV and D = 0.38 meV, 

which is the same as the previous INS study [Ref. 4.4].  
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4.2.2 Anomalous features in magnon dispersion 

Despite the general match between experimental data and LSWT calculation, there are still 

some distinct features. The magnon mode at 12 meV along the AB direction have downward 

curvature. Also, at the B point, the energy was shifted by about 0.8 meV. In contrast, the 

LSWT calculations expect flat mode along the AB direction. This renormalization of 

magnon energy is not produced by adding further neighbor exchange interaction or 

exchange anisotropy, as shown in Fig. 4.4. This kind of renormalization in magnon energy 

can be considered a result of magnon-magnon interaction or magnon-phonon coupling. 

Both of these interactions should be included in the spin dynamics to explain the anomalous 

features. 

 

Figure 4.4 Comparing results between the simple Heisenberg model and the model 

adding (left) exchange anisotropy or (right) next nearest-neighbor exchange 

interactions. None of them explain the downward curvature along the AB direction. 
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Furthermore, one can see the blurred small intensity of the INS spectra from 20 to 30 meV, 

especially at B and D points, as shown in the color plot in Fig. 4.5. One can also see the 

non-negligible intensity (although the error bars are a bit large) at B, middle of O and C, 

and D points as plotted in constant E cut in Fig. 4.5. This can be regarded as a continuum 

state of magnons due to spontaneous decay. So, it is possible to have a visible magnon-

magnon interaction in HoMnO3 as similar to LuMnO3.  

 

Figure 4.5 (Left) INS data taken at 4 K. The energy of the incident neutron is 60 meV. 

The momentum positions are the same as Fig. 4.3. The red box indicates the 

integration range for constant E cut. (Right) The integrated intensity of energy ranges 

from 24 to 26 meV.  
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4.3 Model fitting using quasiparticle interactions 

 

4.3.1 XXZ+1/S expansion: magnon-magnon interaction 

To theoretically investigate magnon-magnon interaction in HoMnO3, we adapted the 

Heisenberg XXZ model with 1/S expansion, as described in [Ref. 4.10]. 

𝐻ଡ଼ଡ଼୞ାଵ/ୗ ൌ 𝐽 ෍ ቂ𝑆௜
௫𝑆௝

௫ ൅ 𝑆௜
௬𝑆௝

௬ ൅ ∆𝑆௜
௭𝑆௝

௭ቃ
ழ௜௝வ

൅ 𝐻ଷ 

Here, the Δ = Jz/J indicates the exchange anisotropy (or two-ion anisotropy). When ∆൏ 1, 

it can be considered as an easy-plane anisotropy that makes the 120º ordering state is stable 

in a triangular lattice antiferromagnet. The 𝐻ଷ  is the cubic term related to magnon-

magnon interaction, as outlined in Chapter 2. 

 As shown in Fig. 4.3, the XXZ model can reproduce the downward curvature 

along the AB direction. To obtain the best fit to overall magnon energies, we used J = 2.7 

meV and Δ = 0.88. In this model, Heisenberg exchange interaction J = 2.7 meV is larger 

than those used in the above LSWT calculations J = 2.44 meV. This is because the magnon-

magnon interaction term reduces the magnon energies. We need to consider the larger J to 

match the experimental results.  

 

4.3.2 ESP model: magnon-phonon coupling 

As mentioned in Section 4.1.3, the magnon-phonon coupling can also induce magnon 

energy renormalization. To include magnon-phonon coupling in spin Hamiltonian, we 

adapted the ESP model [Ref. 4.16,Ref. 4.17] as introduced in Section 2. This model 
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assumes a coupling between a single magnon and one dispersion-less optical phonon 

branch. 

𝐻୉ୗ୔ ൌ 𝐽 ቎෍ 𝑺௜ ∙ 𝑺௝
ழ௜௝வ

െ 𝑐𝑆ଶ෍𝑭௜
ଶ

௜

቏ ൅ 𝐷෍ሺ𝑆௜
௭ሻଶ

௜

 

𝑭௜ ൌ෍𝑒̂ை೔ೕ ሺ𝑺௜ ∙ 𝑺௝ሻ 𝑆ଶ⁄
௝

 

Here, c is a dimension-less spin-phonon coupling constant defined as 𝑐 ൌ

𝛼ଶ𝐽𝑆ଶ 2𝐾⁄ .  K is an elastic constant (unit: energy), and 𝛼  is an exchange-striction 

coefficient (unit: dimension-less) defined as 𝛼 ൌ
ௗ

௃

డ௃

డ௥
 and d is a bond distance between 

Mn and O. 𝑒̂ை೔ೕ is the unit vector pointing from the Mn site j to the O site 𝑂௜௝ as shown 

in Fig. 4.2(b). 

 The ESP model also succeeded in reproducing the downward curvature of magnon 

modes along the AB direction. Based on the best fit, we could obtain J = 2.53 meV, D = 

0.38 meV, and c = 1/12. J and D parameters seem to be reasonable value in comparison 

with the LSWT calculations. And c = 1/12 is also safe since the theoretical results estimate 

that if c is below 1/8, then the 120º ordering state is stable.  
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Figure 4.6 (Left) INS spectra along the AB direction. The calculated magnon energies 

using three different models are plotted. Blue circles indicate the fitted peak positions 

of each spectrum. 

Figure 4.6 represents the detailed constant Q cuts and the theoretical calculations' 

results along the AB direction. Based on these analyses, we can reproduce the anomalous 

features using the Hamiltonian, including both magnon-magnon interaction and magnon-

phonon coupling.  

We also compare INS spectra's intensity at the B point with the calculated 

scattering cross-sections from the HXXZ and HESP, as shown in Fig. 4.7. As our data show 

good agreement with the calculated intensity by the ESP model, we think that the ESP 

model explains well the spin dynamics in HoMnO3. Especially, the intensity ratio between 

two magnon peaks located at 10 and 16 meV is only reproduced by the ESP model. Besides, 

the overall integrated intensity is also well matched with the ESP model. The INS data's 

integrated intensity is obtained from the summation of two or three fitted peaks at each Q 

position. All calculated intensity shown in Fig. 4.7 is scaled by the same factor 0.6. 
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Figure 4.7 (Left) INS spectrum at the B point and the calculated intensity using three 

different models. The gray shaded area indicates the fitted magnon peaks without 

background signals. (Right) The integrated intensity along the high symmetric path 

in momentum space. The calculated intensity from three models is compared with the 

experimental data. 

 

 

4.4 Discussion and summary 

 

4.4.1 Dominant interaction in HoMnO3 

According to the agreement between experiments and calculations, the magnon-phonon 

coupling can be considered as the dominant interaction driving magnon's renormalization. 

One of the reasons is that the obtained spin-phonon coupling constant c is stronger than (Y, 

Lu)MnO3 [Ref. 4.12]. Since they give the value of exchange-striction coefficient 𝛼, we 

need to covert c to 𝛼 for exact comparison. As we defined earlier, 𝑐 ൌ 𝛼ଶ𝐽𝑆ଶ 2𝐾⁄  and if 

we know the elastic constant K, we can convert it to exchange-striction coefficient. Based 
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on the ultrasonic wave experiments [Ref. 4.18,Ref. 4.19] and DFT calculations for 

YMnO3 [Ref. 4.12], we could estimate that K is approximately 10 eV. It gives that 𝛼ு௢ ൌ

12.8, which is larger than 𝛼௒,௅௨ ൌ 8 [Ref. 4.12]. The other evidence is that the observed 

diffuse signal was placed at around 18 meV. This might be the magneto-elastic excitations 

resulting from the hybridization of magnons and phonons in HoMnO3. This kind of 

magneto-elastic excitations is similar to the observed one in CuCrO2 [Ref. 4.15] and (Y, 

Lu)MnO3 [Ref. 4.12].  

 We also found some evidence for the suppression of magnon-magnon interaction. 

First, the FWHM of magnon peaks located at 16 meV for the B point is found to be 0.85 

meV in HoMnO3, which is much narrower than the observed FWHM of 3.5 meV in 

LuMnO3 [Ref. 4.1]. Since the FWHM of magnon is directly related to the magnon lifetime, 

the broader peaks indicate a short lifetime due to the decay. Based on this fact, the magnon-

magnon interaction in HoMnO3 is smaller than LuMnO3. Another evidence is that we 

observed the weak two-magnon continuum signals. In the XXZ model, the continuum 

intensity at 25 meV energy transfer is expected to be 3.4% of intensity for the single-

magnon; which is too small to be visualized in data. As shown in Fig. 4.5, the spectral 

weight for the energy transfer of 25 meV shows the weak intensity. This can be understood 

by theoretical results that estimate the suppression of magnon decay when the anisotropy 

is large. In theory, if the anisotropy ∆൏ 0.92, then the magnon decay is prohibited [Ref. 

4.10]. This is the consistent result with the experimental observations. 
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4.4.2 Summary 

We have investigated the magnon-magnon interaction and magnon-phonon coupling in 

HoMnO3 using INS experiments. Since HoMnO3 realizes an ideal two-dimensional 

triangular lattice, we could compare the INS data with the theoretical calculations of three 

different models. Using the Heisenberg model, the XXZ model with 1/S expansions, and 

the ESP model, it can quantitatively compare the effects of magnon-magnon interaction or 

magnon-phonon coupling. The anomalous downward curvature along the AB direction can 

be explained by both the XXZ and ESP models. However, based on the comparison 

between the calculated intensity and the experimental data, we think that the ESP model 

works better to interpret the data. Also, we quantified the exchange-striction coefficient α 

and found that HoMnO3 has a larger value of αHo = 12.8 than (Y, Lu)MnO3. Based on all 

the analysis, we can conclude that in HoMnO3, the magnon-phonon coupling is highly 

dominant, whereas the magnon-magnon interaction is suppressed. 
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Chapter 5 

Spin-orbit coupling effect on spin-phonon coupling in 

Cd2Os2O7  

  

5.1 5d pyrochlore oxide Cd2Os2O7 

 

5.1.1 Properties related to spin-orbit coupling 

To understand various strong-correlation phenomena such as Weyl semimetals and 

topological insulators [Ref. 5.1], understanding SOC is essential. In transition metals, 4d 

and 5d transition metal compounds generally have relatively strong SOCs compare to 3d 

transition metal compounds, and they varying strength of these SOCs can modify both the 

electronic and magnetic ground states of the materials. For instance, if the spin and orbital 

degrees of freedom are strongly coupled, then a spin-orbital entangled state is the actual 

ground state, often found in iridates [Ref. 5.2].  

Cd2Os2O7 is one of the candidates having strong SOC due to the presence of Os 

atom. The crystal structure of Cd2Os2O7 is a pyrochlore lattice with the space group of 

𝐹𝑑3ത𝑚 with the lattice parameter a = 10.1604 Å [Ref. 5.3]. The electronic configuration of 

an Os atom is 5d3 corresponding to spin S = 3/2 and orbital angular momentum L = 0. It is 

noteworthy that the electronic ground state of Cd2Os2O7 is S = 3/2, which assumes that the 

SOC does not affect the ground state. According to a previous study on resonant inelastic 

X-ray scattering (RIXS) [Ref. 5.4], no spin-orbit excitons originated from the transition 

between jeff=1/2 and 3/2 state. It implies that the electronic ground state is not the spin-
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orbital entangled state. Therefore, SOC is negligible in the electronic ground state. 

Meanwhile, a recent RIXS study suggested that Cd2Os2O7 may exhibit some 5d4 electron 

configuration characters [Ref. 5.5]. Furthermore, an earlier theoretical study found a 

trigonal distortion in a OsO6 octahedron, and it induces a sizable single-ion anisotropy 

(SIA) [Ref. 5.6]. 

 

 

Figure 5.1 (a) The crystal and magnetic structures of Cd2Os2O7. The arrows indicate 

the magnetic moment ordering. (b) The first Brillouin zone of the pyrochlore lattice. 

 

In Cd2Os2O7, mainly the Os5+ ion is responsible for magnetism since the Cd2+ ion 

is non-magnetic. The magnetic structure of Cd2Os2O7 is the all-in-all-out (AIAO) state [Ref. 

5.4,Ref. 5.7] with the Néel temperature TN = 227 K, as shown in Fig. 5.1(a). Interestingly, 

the electronic band is also changed from metal to insulator at the magnetic ordering 

temperature, i.e., the MIT occurs. The MIT in Cd2Os2O7 has been studied for a long time 

from the first discovery [Ref. 5.8]. People debate the origin of the MIT, and a Slater-type 
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transition was firmly suggested [Ref. 5.9]. The more careful examinations find out that the 

possible mechanism can be a Lifshitz-type MIT [Ref. 5.10,Ref. 5.11]. 

So far, theoretical and experimental studies have been conducted on the AIAO 

ordering state in Cd2Os2O7. Some theoretical results using first-principle and many-body 

quantum-chemistry calculations suggest that the AIAO ordering state becomes stable due 

to a large SIA that is induced by strong SOC [Ref. 5.6,Ref. 5.12]. N. A. Bogdanov et al. 

found that a trigonal distortion in an OsO6 octahedron causes an easy-axis anisotropy of 

6.8 meV. The direction of the easy-axis is the local [111] axis. From the experimental results, 

it was also confirmed that the anisotropy value is comparable to the nearest neighbor 

Heisenberg exchange interaction. Based on the observation of two-magnon scattering in 

Raman spectroscopy, T. M. H. Nguyen et al. revealed that SIA is a similar energy scale with 

the Heisenberg exchange interaction [Ref. 5.13]. In addition, the RIXS studies revealed that 

the spin-flip excitations exist in the spectrum, and the large SIA is required to explain the 

spectrum [Ref. 5.4,Ref. 5.5]. The spin Hamiltonian can be expressed as 

𝑯ୱ୮୧୬ ൌ 𝐽 ෍ 𝑺௜ ∙ 𝑺௝
ழ௜௝வ

൅ ෍ 𝑫௜௝ ∙ 𝑺௜ ൈ 𝑺௝
ழ௜௝வ

൅ 𝐾෍ሺ𝑺௜ ∙ 𝒏௜ሻଶ

௜

, 

where J, D, and K are the Heisenberg interaction, the Dzalyoshinskii-Moriya interaction, 

and the SIA. The ni is a unit vector pointing toward the local [111] axis. According to the 

best fit for the two-magnon continuum observed in Raman spectra, J = 5.1, K = 5.3 meV, 

and D = ~1/3 of J were obtained [Ref. 5.13]. 
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5.1.2 Unconventional spin-phonon coupling 

The observed large SIA in Cd2Os2O7 is suggested as an essential ingredient for the spin-

phonon (SP) coupling in Cd2Os2O7. Using IR optical spectroscopy, a strong 

renormalization of IR-active phonons is observed [Ref. 5.14]. This renormalization occurs 

at the magnetic transition temperature. The renormalization originates from either magnetic 

ordering or electronic band change. C. H. Sohn et al. argued that the primary mechanism 

for the SP coupling is the large SIA. Based on their crystal electric field calculations, the 

crystal field change from each phonon mode can simulate the energy renormalization for 

corresponding phonon modes. This type of SP coupling was first reported by C. H. Sohn et 

al. [Ref. 5.14], and it is considered as an unconventional SP coupling. A well-known 

mechanism of usual SP coupling can be explained in the form of the exchange-

striction [Ref. 5.15], magneto-striction [Ref. 5.16,Ref. 5.17], or magnon-phonon 

coupling [Ref. 5.18–Ref. 5.21]. In Cd2Os2O7, the SIA is the main driving force for the SP 

coupling, which is a distinctive origin. 

Since the SP coupling is mediated by the large SIA, SOC should have an essential 

role in the SP coupling of Cd2Os2O7. Because the SIA is highly related to the effect of SOC. 

However, most studies on effect of SOC have focused on magnetism or electronic bands. 

The relationship between SOC and lattice dynamics in 5d transition metal oxides is rarely 

studied. And there are limitations to getting momentum dependence on phonons from 

optical spectroscopy. Therefore, we investigated phonons in Cd2Os2O7 over the wide range 

of momentum space using IXS, which can provide further information on phonons. 

Furthermore, in density-functional theory (DFT), we can vary strength of SOC and the 
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electron correlation U. Therefore, it is interesting to conduct a theoretical study on the effect 

of SOC on the phonon modes, and compare the results with the experimental data. 

 

 

Figure 5.2 (a) The photograph of the single crystal used in the IXS experiment. The 

white scale bar indicates a length of 100 𝛍 m. (b) The magnetic susceptibility of 

Cd2Os2O7 single crystal as a function of temperature. (c) The single-crystal X-ray 

diffraction result for the [H0L] plane. 

 

5.2 IXS experiments and DFT calculations 

 

5.2.1 Renormalization of phonons 

High-quality Cd2Os2O7 single crystals were synthesized by the group of Prof. Z. Hiroi at 

Institute for Solid State Physics, University of Tokyo, Japan. They used the chemical 

transport method to prepare the single crystals [Ref. 5.11]. Prior to our X-ray experiments, 

we characterized every crystal through single-crystal X-ray diffraction and magnetic 

susceptibility measurements, as shown in Fig. 5.2. The magnetic ordering temperature (TN ) 

observed in the susceptibility data is ~ 227 K, which is the same as that reported in a 

previous study [Ref. 5.11]. The IXS experiments were performed with Dr. D. Ishikawa and 
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Dr. A.Q.R. Baron at the Quantum Nano Dynamics beamline, BL43LXU [Ref. 5.22], of the 

RIKEN SPring-8 Center. The details of the IXS experiments are summarized in Chap. 3. 

In this experiment, we fixed the X-ray energy to 21.75 keV and used a two-dimensional 

array of analyzers to gain the IXS spectra at different momentum positions simultaneously. 

The energy resolution of the spectra is found to be approximately 1.5 meV. We used slits 

of dimensions 40 ൈ  40 mm and the scattered beam path was 8.9 m from the sample 

position, which corresponds to a momentum resolution of (0.048, 0.011, 0.049) Å1. Further, 

we also verified the (6 6 6) Bragg peak and confirmed that the FWHM of the peak is 0.04°, 

which demonstrates high quality of the sample. 

Based on the geometry of the sample alignment, we could access the momentum 

space mainly in the (6 6 6), (6 6 8), and (8 6 6) Brillouin zones. To investigate the SP 

coupling, we collected IXS spectra at 282 and 100 K, which is well above and below the 

TN. The phonon spectra taken at four Q points (X, W, K, and U), which is corresponding to 

the zone boundaries, are shown in Fig. 5.3(a-d) as examples. All the spectra were measured 

at 100 K. We observed acoustic phonon modes and several optical phonon modes at energy 

transfers of up to 35 meV. The signals above the energy transfer of 35 meV are sufficiently 

low to recognize phonons. This can be understood that since the IXS cross-sections are 

inversely proportional to energy, the intensity of phonons for higher energies is required 

much longer acquisition times than we consumed in the experiments. 

To compare the experimental results, we performed DFT calculations. The solid 

red lines in Fig. 5.3 represent the calculated IXS cross-sections based on the DFT 

calculation. For an appropriate comparison of the experimental results, we considered the 
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intensity corrections from the Bose factor and the Debye–Waller factor. The linewidth used 

in the convolution of the calculated spectra is fixed at 1.6 meV, which is similar to the 

instrumental resolution. As shown in Fig. 5.3, the theoretical calculations are in good 

agreement with the observed IXS spectra. Based on the best fit, we obtained electron 

correlation energy U = 2.0 eV and the scaling factor for SOC of 1.0. These values are 

consistent with the values reported in the literature [Ref. 5.10,Ref. 5.12]. The phonon 

dispersion curves are plotted in Fig. 5.3(e), which generally provides a good comparison 

between calculations and experiments. 

 

Figure 5.3 (a–d) The IXS spectra taken at four Q positions as labeled. All spectra were 

obtained at 100 K. The black dashed line is the instrumental resolution profile of the 

elastic peak. (e) Phonon dispersions obtained using IXS and the DFT calculations. Red 

circles and squares represent the observed phonons from Raman and IR 

spectroscopies, adapted from [Ref. 5.13] and [Ref. 5.14]. 
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 We observed energy shifts for some optical phonons from the IXS spectra above 

and below the magnetic transition. Since the optical spectroscopy studies [Ref. 5.13,Ref. 

5.14] intrinsically probe phonons at near the zone center, the information from the IXS 

spectra obtained over the full Brillouin zone is extremely useful for understanding the SP 

coupling in Cd2Os2O7. The IXS spectra obtained at 282 and 100 K with Q = W (6.50 6.00 

7.00) are presented in Fig. 5.4(a).  

  

Figure 5.4 (a, d) The IXS spectra taken at 282 and 100 K at Q = W (6.50 6.00 7.00) and 

near K (6.60 5.95 6.60). The vertical bars under the spectra indicate the fitted peak 

positions. (b, e) The calculated IXS spectra that are based on DFT calculations by 

varying the strength of SOC. (c, f) The calculated IXS spectra that are based on the 
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DFT calculations by varying U values. 

In Fig. 5.4(a), five phonons, labeled as A–E in the increasing order of energies, 

can be seen. Upon magnetic transition, the peaks D and E are shifted toward higher energies, 

whereas no changes in the positions of the three peaks A, B, and C are observed. Moreover, 

in Fig. 5.4(d), at another Q position, near K (6.60 5.95 6.60), four peaks labeled as α, β, 

γ, and δ are observed. No notable energy shifts, except for the broadening of the peak δ, 

can be observed. It is known that there is no structural transition over the temperature range 

of 100–282 K. The observed phonon energy shifts can be originated from the SP coupling. 

It is possible that just a change in lattice parameter can induce a change in phonon 

energy without lowering any crystal symmetry through the phase transition. The Grüneisen 

parameter γୋ can be used to quantify the phonon energy change by the temperature effect. 

Unfortunately, we could not find the experimentally determined Grüneisen parameter for 

Cd2Os2O7. Instead, we would refer to the pyrochlore hafnates [Ref. 5.23]. According to the 

reported value, γG for Y2Hf2O7 is mode-dependent, and its average value is approximately 

6. From this information, we anticipate a volume change of approximately 2.6 Å3 at a 

temperature between 300 and 100 K for Cd2Os2O7. If we assume that the γG value for 

Cd2Os2O7 is similar to that for Y2Hf2O7, then phonon energy change ∆𝜔  can be 

approximated as follows: 

∆𝜔 ൌ γୋ
னయబబ಼

௏యబబ಼
∆𝑉 ൌ 0.015𝜔ଷ଴଴௄. 

However, observed phonon energy shift in peak D is 4.79 %, which is much larger than the 

shift of 1.5 % from the lattice parameter change. So, we assume that the primary origin for 

the phonon energy shift is not the lattice parameter change with temperature. Furthermore, 
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the possibility of electron–phonon coupling has already been discussed in a previous 

study [Ref. 5.14], which argued that the phonon change from the electron–phonon coupling 

is small enough to be neglected.  

Based on the observed energy shift, the SP coupling has a mode dependence at a 

finite Q position. As mentioned, the phonon peaks D and E in the IXS spectra are highly 

related to the vibrations of the magnetic Os atoms, according to the eigenvector calculated 

by the DFT calculations. Hence, this is another evidence of the SP coupling. As the IXS 

spectra measured at near K shows no visible energy change, we consider that it is the first 

and direct evidence of the SP coupling with the visible momentum dependence. 

Another important observation is the linewidth change of the peaks D and E, as 

shown in Fig. 4(a, d). The peaks D and E measured at 100 K are fitted using Lorentzian 

functions, and the FWHM of the peaks are found to be 1.68 and 1.79 meV, respectively, 

which is similar to the energy resolution of 1.5 meV for the instrument we used in the IXS 

experiment. However, above the transition temperature, the obtained linewidths of the 

peaks are 4.59 and 2.56 meV, which are larger than expected if we consider only thermal 

broadening effects. Indeed, this broadening effect should be related to either the electron–

phonon coupling or the SP coupling. But as discussed earlier in a previous study [Ref. 5.14], 

the linewidth change seems to be originated from the SP coupling, and not from the 

electron–phonon coupling. Taken together, the SP coupling is thought to be a more reliable 

origin of the observed broadening in both IR and IXS experiments. 

 

 



 
 
 
 
 

Chapter 5 

77 
 

 

 

 

 

5.2.2 SOC effect on the phonons 

As introduced earlier, we performed the DFT calculations with the help of Dr. C. H. Kim. 

First-principle calculations were performed using DFT + U with the Perdew–Burke–

Ernzerhof (PBEsol) exchange-correlation functional implemented in VASP [Ref. 5.14]. 

The AIAO magnetic structure was applied to the DFT calculations using noncollinear DFT 

formalism. The frozen phonon method was used for the phonon calculation using 

PHONOPY [Ref. 5.24]. As the input parameters, i.e., U = 0.5, 1.0, 1.5, and 2.0 eV, were 

chosen to consider the local Hubbard interaction in Os atoms. We also varied the scaling 

factor of the SOC from 0.4 to 1.0 in the DFT calculations. The scaling factor 1.0 means 

that we fully consider SOC in the calculations, whereas the scaling factor below 1.0 

indicates that we scale down SOC strength during the calculations. For example, the scaling 

factor 0.5 means that we artificially reduced SOC strength as half compare to the value 

when we fully consider SOC. Note that the scaling factor is not an exact unit of eV. 

Before examining the effects of SOC on phonons as a function of SOC strength, 

it is important to note that the current DFT calculations without including any other 

interaction terms are in good agreement with the IXS data obtained at 100 K, i.e., SP 

coupled state. This implies that the DFT calculations already captured the SP coupling in 

Cd2Os2O7. Since the anharmonic or higher-order interactions (e.g., phonon–phonon or 

magnon–phonon [Ref. 5.18]) are not included in the current calculations, the consideration 

of SOC and noncollinear magnetic structure during the calculations are considered as the 

entire origin of the excellent agreement between experiment and calculations. Furthermore, 

the magnon–phonon coupling effect is estimated to be small for the range of observed 
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phonon energies. According to their spin Hamiltonian [Ref. 5.13], the magnons in 

Cd2Os2O7 are placed from 60 to 100 meV. This suggests that a large gap of 35 meV exists 

between the phonons and magnons, and their interaction is expected to be small [Ref. 5.21].  

When the U and the SOC scaling factors are varied, the mode dependency of the 

energy shift is clearly demonstrated in our calculations. As shown in Fig. 5.4(b, c) and Fig. 

5.4(e, f), the calculated IXS cross-sections for a different set of U and SOC exhibit different 

behaviors. When SOC is scaled from 0.4 to 1.0, the peaks D and E are shifted, whereas the 

positions of the peaks A, B, and C remained. However, if we vary U from 0.5 to 2.0 eV, 

then the peaks B, C, D, and E change accordingly. If we define the energy renormalization 

∆𝐸 𝐸଴⁄ ൌ |ሺ𝐸ଶ଼ଶ௄ െ 𝐸ଵ଴଴௄ሻ| 𝐸ଵ଴଴௄⁄  , the ∆𝐸 𝐸଴⁄   of the peaks A and D are found to be 

0.42 % and 4.79 %, respectively. The ∆𝐸 𝐸଴⁄  induced by changing U from 0.5 to 2.0 eV 

are 2.02 % and 8.08 % for the peaks A and D, respectively. Further, the ∆𝐸 𝐸଴⁄  induced 

by changing the SOC strength from 0.4 to 1.0 are found to be 0.63% and 4.79%. The 

similarity of the energy renormalization between the experiments and the calculations 

indicates that varying SOC explains the mode dependency as well as the renormalization 

value. Furthermore, in the case of the IXS spectra at near K point (Fig. 5.4(e, f)), scaling 

SOC moves only the peak δ, while changing U moves the peaks β, γ, and δ. Based on these 

analyses, we found that scaling the SOC strengths affect phonons; this observation is 

similar to the experimental findings. 
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Figure 5.5 (a) Energy renormalization of three IR-active phonons adapted from [Ref. 

5.14]. The calculated energy renormalization for the three phonons from the DFT 

calculations matches the temperature dependence of three phonons simultaneously. 

(b) The nearly linear relationship between SOC and temperature obtained from the 

best fit in Fig. 5.5(a). 

 It is also confirmed that the temperature dependence and the SOC strength 

dependence of IR-active phonons are similar, as shown in Fig. 5.5(a). When we scale down 

the SOC strength, then the energy of the IR-active phonons is reduced, which is similar to 

the experimental observations. Note that the data and the labels for three phonons are 

adapted from the [Ref. 5.14]. To obtain the best fit, we matched the three IR phonon 

energies simultaneously using the SOC strength dependency of the phonon energy. As a 

result, an approximately linear relationship between SOC and temperature is obtained, as 

shown in Fig. 5.5(b). Thus, we assume that SOC can effectively explain the temperature 

dependence of the SP coupling. 
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5.3 Discussion and summary 

 

5.3.1 A common feature of temperature and SOC effect 

One can assume that a direct comparison between temperature and SOC would be 

inappropriate because the SOC is the intrinsic property in materials and cannot be 

considered as a temperature-dependent quantity. All the calculations in this study were 

performed at zero temperature, which does not include any temperature effect. We would 

like to emphasize that scaling the SOC strength can still be an effective way to interpret the 

temperature effects of the SP coupling in Cd2Os2O7. The energy renormalization ∆𝜔ఙ 

from the SP coupling can be explained by the SIA K in the Cd2Os2O7 case, and it is 

expressed as follows [Ref. 5.14]. 

∆𝜔ఙ ൌ෍
𝜕ଶ𝐾
𝜕𝒖௜,ఙଶ

〈ሺ𝑺௜ ∙ 𝒏௜ሻଶ〉
௜

 

Here, 𝒖௜,ఙ is the atomic displacement with an atom index i and band index σ. The 
డమ௄

డ𝒖೔,഑మ
 

term is directly related to the SP coupling constant, and it is dependent on the phonon modes 

that include vibration of the Os atoms. In addition, the SIA K is assumed to be proportional 

to the square of SOC [Ref. 5.25]. Scaling the SOC strength in the calculations can directly 

affect the 
డమ௄

డ𝒖೔,഑మ
  term. Thus, a reduction in the SOC strength decreases the coupling 

constant. Moreover, it induces phonon energy renormalization, as observed experimentally. 

From the temperature viewpoint, the 〈ሺ𝑺௜ ∙ 𝒏௜ሻଶ〉 term is a temperature-dependent quantity. 

The spin fluctuations decrease when the temperature increases above the magnetic 

transition temperature. Therefore, ∆𝜔ఙ should decrease as a result. Changing K by scaling 
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the strength of SOC and changing the magnetic moment fluctuation by changing the 

temperature has the same effect on ∆𝜔ఙ. 

 

5.3.2 Summary  

In summary, we performed an experimental investigation of phonons over the full Brillouin 

zone in Cd2Os2O7 using IXS. We found a clear mode dependence of phonon energy 

renormalization. The IXS spectra of the SP-coupled phase (T<TN) were well captured 

through DFT calculations using U = 2.0 eV and considering full SOC. After manipulating 

both U and SOC in the DFT calculations, the observed mode-dependent SP coupling was 

obtained by mainly varying the SOC, and not U. Furthermore, we found that the SOC can 

practically explain the temperature effect of the SP coupling in Cd2Os2O7. In conclusion, 

we would like to emphasize that SOC is the fundamental factor in describing the SP 

coupling in Cd2Os2O7. These results can be applied further to other compounds that exhibit 

strong spin-lattice coupling or SP coupling. 
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Chapter 6  
Summary and Outlook 
  

6.1 Summary 

I discussed two main projects through my thesis: (1) Magnon-phonon coupling in HoMnO3 

and (2) Spin-phonon coupling in Cd2Os2O7. Both compounds are highly expected to have 

large spin-lattice coupling from the previous results. So, it is expected that the magnons 

and phonons might have distinct behavior from normal states. Therefore, the details of the 

study on excitation spectra like phonons and magnons are needed. Conducting two 

experimental techniques, INS at 4SEASONS in J-PARC and IXS at BL43LXU in SPring-

8, it is possible to examine what features arise from the couplings for each material. 

In HoMnO3, the magnon dispersions at the low temperature were successfully 

obtained, and several anomalous features appear that LSWT cannot explain. The downward 

curvature of the low energy magnon branch and the global energy renormalization are in 

good agreement with the ESP model, including magnon-phonon coupling. The low 

diffusive intensity above the single-magnon branches suggests that the magnon-magnon 

interaction is suppressed in HoMnO3. Notably, the ESP model can explain the intensity 

ratio between the magnons. So, the magnon-phonon coupling is regarded as the dominant 

interaction in HoMnO3. 

The phonon dispersions were successfully obtained based on the second project, 

the investigation of phonons in Cd2Os2O7. The phonon renormalization and its mode 

dependency were found as similar to the previous IR spectroscopy study. The momentum 
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dependence of such spin-phonon coupling is also confirmed based on the IXS spectra at 

different momentum positions. We also provide the effect of SOC on the phonons, and the 

reduction of SOC reproduce the mode and momentum dependence of the phonon 

renormalization well. The temperature dependence of the IR-active phonons is also in good 

agreement with the expectation of SOC dependence. Based on these results, SOC can be 

regarded as the main ingredient of the spin-phonon coupling in Cd2Os2O7. 

 

 

Table 6.1 A summary table for the experimentally investigated triangular lattice 

antiferromagnet materials. It is adapted from [Ref. 6.1]. 

 

Based on these results and the previous studies on magnon-phonon coupling, I 

participated in writing a review paper [Ref. 6.1]. In this review, the hybridization and decay 

of magnetic excitations in triangular lattice antiferromagnet are mainly discussed. Several 

theoretical works on developing formalism of magnon-magnon interaction and magnon-

phonon coupling Hamiltonian are summarized. Besides, experimental evidence of the 

magnon-phonon coupling and magnon-magnon interaction are reviewed. Here, I adapted 
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one summary table of experimental findings in several triangular lattice antiferromagnet 

systems, as shown in Table 6.1. 

 

6.2 Outlook  

During my Ph. D. course, how the magnon-phonon or spin-phonon coupling affects the 

collective excitations and how we can understand by specific models were studied. This 

research is slightly concentrated on the fundamental aspects. The applicability of the 

magnon-phonon coupling is also important to spintronic fields [Refs. 6.2–6.4]. For 

example, suppose magnons can have the phonon characters by forming the magneto-elastic 

excitations. In that case, these hybridized excitations can move more swiftly through the 

medium than the usual magnons. The delivering velocity of the information using the 

magneto-elastic excitations can be more efficient. 

This potential applicability and the understanding of the couplings still need to be 

studied in the fundamental viewpoints. The magnon-phonon coupling or the magnon-

magnon interaction in antiferromagnetic metal are not well-understood yet. There are some 

attempts to examine the magnon-phonon coupling or magnon-magnon interaction in metal, 

such as Mn3Sn [Ref. 6.5] and CrB2 [Ref. 6.6]. The observed intrinsic broadening of the 

magnons can be originated from both the magnon-magnon interaction or the interaction 

between magnons and conduction electrons. However, the full examination is limited due 

to the lack of information on how we can distinguish the effects of the magnon-magnon 

interaction and the metallic state separately. The theoretical methods still need to be 

developed to understand the mechanism widely. 
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The quantum fluctuation may give some distinct features on the magnon-phonon 

coupling. Indeed, the magnon-magnon interaction is elevated up when the spins are 1/2. 

The multiple continuum state from the decay of the magnons in Ba3CoSb2O9 is also 

discovered, totally different from the known properties [Refs. 6.7 & 6.8]. In principle, the 

magnon-phonon coupling can also spontaneously decay and make a continuum state. As a 

result, some new properties like the multiple continuum state of the magneto-elastic 

excitations are also possibly observed.  

The magnon-phonon coupling physics can be expanded in other lattice structures, 

too. So far, this coupling is widely studied in triangular lattice antiferromagnet. The 

noncollinear structure can be found in many cases, for example, kagome lattice and 

pyrochlore lattice. Especially, the AIAO ordering structure is present in pyrochlore lattice. 

Unfortunately, the INS experiment is not possible for Cd2Os2O7, and the phonons with 

higher energy are not detected due to low signals. So, the magnon-phonon coupling features 

are not detected from the present IXS study. Since the evidence of the magnon-magnon 

interaction is suggested in Yb2Ti2O7 [Ref. 6.9], it is also a highly desired platform to study 

such couplings. 
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Appendix A 

Studies on Verwey transition in Fe3O4 nanoparticle  

 

In this chapter, I would like to address my works on Fe3O4 nanoparticles during my degree. 

Fe3O4 is a famous material in various fields due to its interesting physical properties. The 

most extensive studies have been done to understand the Verwey transition in this 

material [Ref. A.1]. Various physical properties, such as magnetization, lattice structure, 

heat capacity, resistivity, and so on, change at the Verwey transition temperature (Tv ~ 124 

K) [Ref. A.2]. It is natural to think that the Verwey transition is a complex phenomenon in 

which several degrees of freedom may correlate with each other. Since the first discovery 

of the transition by E. J. Verwey in 1939 [Ref. A.1], many researchers tried to catch the 

origin and mechanism of the transition. Recently, Prof. J. P. Attfield suggests that the main 

driving force is the orbital ordering, which has peculiar patterns called trimeron [Ref. A.3]. 

What I focus on in this study is how the Verwey transition change in nanoscale. 

The former member of the group, Dr. Jisoo Lee, already found that the Verwey transition 

shows different behavior from the bulk case [Ref. A.4]. The Tv is dependent on the size of 

the nanoparticles, as shown in Fig. A.1. Furthermore, if we go down to 7 nm size, the 

Verwey transition is no longer observed due to the Blocking temperature.  

  



 
 
 
 
 

Appendix 

91 
 
 
 
 
 
 
 

 

 

Figure A.1. Size dependence of Tv, which is adapted from [Ref. A.4]. 

 

We also found that there is a large deviation from the bulk observed in thermal 

hysteresis of the transition. The thermal hysteresis width is size-dependent, and its behavior 
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is similar to the size dependence of coercivity, which indicates the correlation between spin 

and charge degrees of freedom [Ref. A.5]. I will discuss these results in the next section. 

 

 

Figure A.2 (a) Magnetization measurements for several Fe3O4 nanoparticles with various sizes. 

The red(blue) curves are measured upon the heating(cooling) process. (b) The enlarged area 

plots for the thermal hysteresis. The green-colored regions indicate the thermal hysteresis 

width, which can be defined as the difference between Tv for the heating and cooling process. 
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A.1 Large thermal hysteresis of Verwey transition in Fe3O4 nanoparticle 

Verwey transition is known as a first-order transition. It means that there should be a 

thermal hysteresis in the transition. For the bulk case, the thermal hysteresis width is found 

to be approximately 1 K. We found that the thermal hysteresis becomes large when the size 

is reduced down to nanometer scale.  

 We investigated the thermal hysteresis of Verwey transition in various sized 

samples by measuring magnetization as shown in Fig. A.2. The 7 μm sized sample can be 

regarded as the bulk case, and other sample sizes from 7 to 390 nm are synthesized by using 

the same method in the ref. The 7 μm sized sample shows the conventional thermal 

hysteresis width ~ 1 K, but the width becomes large when the size of the sample decreases. 

We found that the width reaches the maximum value of 11 K at 120 nm size. Below 120 

nm, the width decreases as the size reduces. 

 Not only the magnetization but also the nuclear magnetic resonance (NMR) 

spectroscopy observed the large thermal hysteresis of Verwey transition too. As shown in 

Fig. A.3, if we track the NMR spectrum measured from 130 K to 80 K and 80 K to 130 K, 

then the usual peak splitting due to Verwey transition was observed at two different 

temperatures, whether it is cooling or heating. For more details on the peak splitting, please 

see the [Ref. A.6]. For the bulk (7 μm) case, the thermal hysteresis width is found to be 1 

K. For the nanometer scale, the thermal hysteresis width increases up to 10 K for 42 nm as 

similar to the magnetization results. Since the NMR spectroscopy can probe the local 

magnetic field inside the material, we could think that these results show the microscopic 

evidence of Verwey transition as well as the existence of the thermal hysteresis. 
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Figure A.3 (a) NMR spectra for several nanoparticle samples, including bulk case measured 

at 130 and 110 K (above and below Tv). (b) The temperature dependence of the NMR spectra 

for bulk (7 μm) and 42 nm case. (c) The temperature dependence of the spectral broadness for 

each sample.  

 

As the magnetization and NMR spectra probe the spin part of Verwey transition, we need 

to verify that the thermal hysteresis should be observed in the lattice part of Verwey 

transition. To investigate the above thermal hysteresis in a lattice point of view, we carried 

out X-ray diffraction (XRD) measurements upon heating and cooling. We picked (440) 

Bragg peak to probe the Verwey transition, which provides visible change through the 
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transition. As shown in Fig. A.4(a-b), the enlarged thermal hysteresis of Verwey transition 

was also confirmed by the XRD measurements.  

 

Figure A.4 (a) The color plots for the temperature dependence of (440) Bragg peak. (b) The 

temperature dependence of the FHWM of (440) XRD peak. (c) RIXS spectra for several 

nanoparticles measured at 300 and 40 K. (d) Obtained peak area of magnetic polaron for each 

sample at 300 and 40 K. 
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We also investigate the magnetic polaron in Fe3O4 nanoparticles using resonant inelastic 

X-ray scattering (RIXS) experiments. Using near Fe L3-edge and σ polarization, we 

observed the polaronic excitation centered at 200 meV energy transfer. The polaron was 

recently discovered by Prof. D. J. Huang’s group, and its origin is related to orbital 

ordering [Ref. A.7]. As similar to the bulk case, we could not find any temperature 

dependence of the polaron in nanoparticles. Instead, the peak area shows the size 

dependence and almost vanishes when the size goes down to 7 nm. This may be related to 

the suppression of Tv in 7 nm-sized nanoparticle. 

 

Figure A.5 (a) The observed Tv when the sample is heating and cooling. (b) The thermal 

hysteresis width (ΔTv) as a function of nanoparticle size. (c) The ratio between remnant and 

saturated magnetization for each samples. (d) The measured coercive field as a function of size. 
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Taken all the data we measured, we could summarize the size dependence of the thermal 

hysteresis of Verwey transition. As shown in Fig. A.5, the clear size dependence of the 

thermal hysteresis width ΔTv was obtained. Above 120 nm, the ΔTv decreased and was 

successfully fitted by the polynomial equation (proportional to D-1). Below the 120 nm, the 

ΔTv also decreases, but it was fitted by the different equation (proportional to –D-3/2). As 

plotted in Fig. A.5 (d), the size dependence of the ΔTv is similar to the size dependence of 

coercive field Hc. The size dependence of Hc in ferromagnetic material is well-known 

behavior [Ref. A.8] and it is exactly the same with the observations. The critical radius of 

120 nm tells us that the magnetic domain can be a single domain below 120 nm, and a 

multi-domain structure can be formed above 120 nm. Since Hc reflects the kinetic stability 

of magnetization reversal and ΔTv has the same meaning for Verwey transition (charge / 

orbital ordering), we think that the spin and charge degrees of freedom correlate with each 

other, and it naturally appears in the size dependence of the ΔTv and Hc.  

 In summary, we investigated the thermal hysteresis of Verwey transition in Fe3O4 

nanoparticles by using several measurements such as magnetization, NMR spectra, XRD 

patterns, and RIXS spectra. We found that there is a strong similarity between the size 

dependence of the ΔTv and Hc, which indicates the strong coupling between spin and charge 

degrees of freedom. 
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국문초록 

 

HoMnO3 와 Cd2Os2O7 에 대한 
마그논-포논 결합 연구 

 

김태훈 

물리천문학부 물리학전공 

서울대학교 대학원 

 

응집물질물리학에서 고체 내의 기본적인 자유도 간의 상호작용은 흔히 

나타나는 필수적인 현상이다. 대부분의 경우 이런 상호작용들이 존재하기 

때문에 각각의 메커니즘과 그에 따른 결과들을 규명할 필요성이 있다. 스핀-

격자 결합은 하나의 예로서 고체 내 스핀과 격자 자유도 간의 결합을 말한다. 

1950년대부터 연구가 시작된 오래된 개념이지만 아직 완전히 이해되지 

못하고 있다.  

스핀-격자 결합의 한 부분인 마그논-포논 결합 (magnon-phonon 

coupling) 에 대한 연구가 중성자 및 엑스선 기술 발달에 의해 활발히 이루어 

지고 있고 특히 RMnO3 나 ACrO2 등의 물질이 연구되었다. 두 물질 모두 

비선형 자기구조를 가지는 삼각격자 자성체이다. 이론적으로 비선형 

자기구조에서 마그논-포논 결합이나 마그논-마그논 상호작용 (magnon-

magnon interaction) 이 일어날 것으로 예상된다. 이러한 연구에서 이미 

마그논-포논 결합 및 마그논-마그논 상호작용에 의해 나타나는 여러 이상 
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현상들이 실험적으로 관측되었지만, 두 상호작용을 정량적으로 비교하는 데에 

한계가 드러나고 있다.  

본 학위논문의 첫 부분에서는 비탄성 중성자 산란 실험을 통하여 

HoMnO3 의 마그논 분산 관계를 측정하고, 이를 통해 마그논-포논 결합 및 

마그논-마그논 상호작용에 기인하는 이상현상들을 관측한 연구를 다룬다. 

또한 세 가지의 다른 이론적 모델을 이용하여 두 상호작용 중 어떤 부분이 더 

영향을 주는지 규명한다. 간단한 선형 스핀파 이론으로 대부분의 마그논을 

설명할 수 있지만, 마그논-포논 결합 모델을 이용한 계산으로 마그논 에너지 

재규격화 현상과 마그논 분산관계를 완전히 이해할 수 있다. 특히, 측정되는 

신호의 세기까지 일치하는 것으로 볼 때, 마그논-포논 결합이 HoMnO3 에서 

더 지배적인 것으로 판단된다. 

마그논-포논 결합을 설명할 때에 흔히 쓰이는 메커니즘으로 

exchange-striction 모델이 있다. 하지만 스핀-궤도 결합 (spin-orbit 

coupling) 이 강할 경우 다른 메커니즘으로 스핀-격자 결합이 나타날 수 

있다. 5d 전이 금속 산화물 중의 하나인 Cd2Os2O7 에서 강한 자기 

이방성으로 인해 나타나는 스핀-포논 결합 (spin-phonon coupling) 이 

관측되었다. 광학적 분광법으로 측정한 포논에서 자기 상전이 전후로 포논의 

에너지가 급격하게 변한다. 주요 메커니즘으로는 강한 스핀-궤도 결합으로 

인해 나타나는 자기 이방성으로 확인되었다. 광학적 분광법은 포논 

분산관계를 측정하는데 한계가 있으므로, Cd2Os2O7 의 스핀-포논 결합을 

완전히 이해하는데 어려움이 존재한다.  

본 학위논문의 두 번째 부분에서는 비탄성 엑스선 산란을 이용하여 



 
 
 
 
 

Abstract in Korean 

103 
 

 

 

 

 

Cd2Os2O7 의 포논을 넓은 운동량 및 에너지 공간에서 측정하여 분석한 

내용을 다룬다. 또한 제일원리 이론을 통해 계산한 포논과 비교하여 스핀-

궤도 결합에 따른 영향을 알아보았다. 제일원리 계산을 통해 얻은 포논들이 

저온에서 측정된 포논과 일치하였음을 확인하였다. 그리고 스핀-궤도 결합의 

세기를 이론적으로 조절함에 따라 실험적으로 관측된 포논의 온도 의존성을 

설명할 수 있었다. 따라서 스핀-궤도 결합이 Cd2Os2O7 에 나타나는 스핀-

포논 결합에서 중요한 요소임을 확인하였다. 

 

주요어: 스핀-격자 결합, 마그논-포논 결합, 스핀-포논 결합, 비탄성 중성자 

산란, 비탄성 엑스선 산란, 육방정계 망간 산화물, pyrochlore 산화물. 
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