With the recent advancement in visualization devices over the last years, we
are seeing a growing market for stereoscopic content. In order to convey 3D
content by means of stereoscopic displays, one needs to transmit and display at
least 2 points of view of the video content. This has profound implications on
the resources required to transmit the content, as well as demands on the
complexity of the visualization system. It is known that stereoscopic images
are redundant, which may prove useful for compression and may have positive
effect on the construction of the visualization device. In this paper we
describe an experimental evaluation of data redundancy in color stereoscopic
images. In the experiments with computer generated and real life and test
stereo images, several observers visually tested the stereopsis threshold and
accuracy of parallax measuring in anaglyphs and stereograms as functions of the
blur degree of one of two stereo images and color saturation threshold in one
of two stereo images for which full color 3D perception with no visible color
degradations is maintained. The experiments support a theoretical estimate that
one has to add, to data required to reproduce one of two stereoscopic images,
only several percents of that amount of data in order to achieve stereoscopic
perception