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Abstract

Determining and preserving the higher order structural integrity and conformational stability of 

proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and 

adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of 

biopharmaceutical drugs and vaccines. These properties typically must be investigated with 

multiple lower resolution experimental methods, since each technique monitors only a narrow 

aspect of the overall conformational state of a macromolecular system. This review describes the 

use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-

throughput instruments and construct a map of a target macromolecule's physical state as a 

function of temperature, solvent conditions, and other stress variables. We present a tutorial on the 

mathematical methodology, an overview of some of the experimental methods typically used, and 

examples of some of the previous major formulation applications. We also explore novel 

applications of EPDs including potential new mathematical approaches as well as possible new 

biopharmaceutical applications such as analytical comparability, chemical stability, and protein 

dynamics.
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Introduction

The pharmaceutical uses of proteins, nucleic acids and higher order macromolecular 

complexes such as viruses, virus-like particles, plasmid and polymer associations, and 

adjuvanted antigens represent the major advance in the biotechnology and vaccine industries 

in the last 30 years. Due to their more natural biological character, macromolecules offer a 
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degree of safety and efficacy that has resulted in their continuously increased use for a wide 

variety of therapeutic and prophylactic applications.

Traditional analytical methods of ensuring the structural integrity and conformational 

stability of these macromolecules have not, however, kept up with this progress. For 

example, due to the inability of individual experimental methods to monitor all aspects of 

the structural integrity of macromolecules, biological potency assays are required to ensure 

overall structural properties have been maintained. Moreover, in the case of protein-based 

drugs including monoclonal antibodies, loss of conformational integrity leading to 

aggregation during manufacturing and storage has raised potential safety concerns due to 

immunogenicity.1,2 This problem has become especially acute not only in terms of defining 

shelf life and ensuring proper administration, but it arises frequently as a comparability issue 

during the biopharmaceutical drug development process. For example, some of the 

challenges of establishing analytical comparability for different monoclonal antibodies 

during early and late stage development have recently been highlighted.3 With the advent of 

biosimilars, the ability to better define the higher order structure of proteins, nucleic acids, 

and macromolecular complexes in pharmaceutical dosage forms over time will most likely 

emerge as a critical analytical challenge.

Although at one time it was thought that it might be possible to build a “frame-work” type 

structure (especially with monoclonal antibodies) that would behave in a sufficiently 

uniform and reproducible fashion that a similar characterization and subsequent formulation 

process could be used with all homologues, it is clear that this is often not the case. This is 

actually evident when one considers that single mutations (think of sickle cell hemoglobin, 

cryommunoglobulins, many genetic diseases, etc.) can completely alter the physical 

properties of a macromolecule. Thus, each macromolecule, despite its apparent similarity to 

related molecules, must be treated as a physically independent agent.

Because the more complex three dimensional structures of macromolecules (typically 

involving tens of thousands of atoms or more) often play the key role in defining their 

biological activity and efficacy, characterization of higher order secondary, tertiary and 

quaternary structures remains a significant barrier to their pharmaceutical development. The 

problem is simple enough to state, although it remains difficult to address experimentally: 

How does one demonstrate that pharmaceutical macromolecular systems are sufficiently 

structurally similar (at the beginning and end of shelf life or in comparison to an analogous 

macromolecular systems) that they can for all intents and purposes be considered 

sufficiently identical for therapeutic use in terms of their safety, efficacy, and stability?

A number of standard methods currently exist with the ability to obtain high resolution 

structural information for proteins, nucleic acids and their complexes, resulting in commonly 

used representations such as stick and ball models, ribbon diagrams and van der Waals and 

electrostatic surface maps. Such three dimensional images of structure are the most common 

way to think of macromolecular systems. Among the experimental methods used to generate 

these images are X-Ray crystallography, nuclear magnetic resonance (NMR), cryo-electron 

microscopy and molecular mechanics calculations based on detailed force potentials. At 

present, however, these approaches are seldom directly applicable to biopharmaceutical 

Maddux et al. Page 2

J Pharm Sci. Author manuscript; available in PMC 2014 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dosage forms due to practical limitations. For example, X-Ray crystallography requires 

crystallization, while NMR spectroscopy requires isotopic labeling and high concentrations. 

Moreover, complete structural characterization is most appropriate when it serves the overall 

goal of developing formulations. For these reasons, lower resolution biophysical methods 

are commonly employed to monitor structural integrity and hydrodynamic properties. These 

techniques include circular dichroism (CD), fluorescence, differential scanning calorimetry 

(DSC), chromatography, and light scattering, among others (see Table 1).

Unfortunately, no one method provides sufficient information to establish the identity and 

integrity of complex macromolecular systems. Therefore, the use of more than one of these 

methods is generally preferred to better characterize these entities. The multidimensional 

nature of such data sets makes adequate characterization of higher order structural integrity 

problematic. To develop stable dosage forms, formulation scientists typically collect data on 

stress-induced transitions in macromolecular structure under varying solution conditions and 

in the presence of different excipients. The data analysis is performed utilizing techniques 

that look at the data locally, such as visual inspection and/or mathematical fitting of thermal 

unfolding curves to sigmoidal functions. Unfortunately, the global features of high-

dimensional data spaces are not always revealed by such local data inspection. A more 

comprehensive analysis of the complex behavior typically observed is clearly desirable.

We review here the use of a global mathematical analysis technique developed for 

evaluation of large data sets generated from the biophysical analysis of biopharmaceuticals 

and vaccines. The mathematical methodology analyzes datasets, finding and quantifying 

multidimensional regularities that often are difficult to detect with local inspection. The 

mathematical information is converted into a visual map that serves to better define and 

investigate structural integrity and conformational stability of biomolecules and 

macromolecular complexes.

From the dozens of test cases to date, we find that these maps tend to be segmented into 

regions of distinct structural behavior. We call areas of a single contiguous color on these 

maps “apparent” phases, and the related diagram an empirical phase diagram (EPD). The 

word “empirical” serves to distinguish the diagrams from thermodynamic phase diagrams, 

in which the phase transformations are necessarily reversible. In spite of a common lack of 

reversibility in many protein transformations, the word “phase” to describe a physically 

distinctive form of a substance reasonably applies to a pharmaceutical usage, as described in 

more detail below.

An example is shown in Figure 1 of a representative dataset generated for a monoclonal 

antibody (IgG1), along with the resulting EPD. Various analytical methods were used to 

monitor both the structural integrity as well as the dynamic properties of the 

immunoglobulin as a function of temperature and solution pH.4 These data sets are then 

summarized for analysis in the form of an EPD. This approach has been applied widely by 

our laboratory to different proteins, plasmid DNA-lipid complexes, virus like particles and 

viruses. As shown in Figure 2, dozens of EPDs have been generated and published over the 

past 7-8 years. (Refer to Table 2 for references and more detailed information concerning 

each EPD. All EPDs in this article have been reformatted for uniform layout.)
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The EPD method has found many uses in the development and optimization of various types 

of biopharmaceutical and vaccine formulations. Empirical phase diagrams serve as guides to 

the interpretation of multidimensional data, determining regularities that may be difficult to 

visualize otherwise. These data sets are presented in an easy to inspect format, assisting in 

the determination of protein state and transition points as a function of environmental 

conditions such as temperature and solution pH. Many case studies have been published 

concerning not only the application of EPDs to various macromolecular systems, but also 

their extension by the addition of new biophysical measurement techniques and search space 

variables. Common pharmaceutical applications have been to aid in selecting stress 

conditions for excipient screening, finding optimal ranges of stabilizing solution conditions, 

and investigating the overall physical behavior of large macromolecular complexes. EPDs 
have been applied to the characterization, stabilization and formulation of proteins,4-21 virus 

like particles,22,23 viruses,24-27 nucleic acids and their complexes with lipid delivery 

vehicles,28 as well as whole bacterial cells.29 In principle, one can incorporate almost any 

kind of information into EPDs, including measurements of structural dynamics, chemical 

integrity or biological function. Empirical phase diagrams have also been shown to contain 

information concerning the functional and evolutionary relationships of proteins.10-12,16,17 

These applications will be discussed in more detail below.

The greatest potential application of the EPD method from a formulation development point 

of view, however, may be to drastically reduce the size of high throughput screening 

searches to identify stabilizing excipients. The accelerated time-lines of modern drug 

formulation efforts, and the complexity and size of the search spaces involved, typically 

result in suboptimal screening.5,30 The limited procedures available to screen a wide 

formulation design space can often result in suboptimal formulations or potentially even 

product failure during long term storage. A brute-force approach would test conformational 

and chemical stability at every relevant solvent condition. This approach is, however, cost 

prohibitive because of the exponentially large number of solvent conditions to test. For 

example, if one tested 5 different excipients at 4 different concentrations each, the number 

of combinations to test would be 45, or 1024 experiments. The use of empirical phase 

diagrams permits the size of these high throughput screening search spaces to be reduced in 

a very natural and pragmatic way. Using EPDs, macromolecule identity has been found to 

be conserved over contiguous regions of search space. The identification of unique and/or 

consistent conformational states reduces the search space from an exponentially large and 

unexplorable one to one that is much smaller yet adapted to the system of interest. More 

time consuming and extensive excipient screening and analytical characterization tests can 

then subsequently be performed on the smaller set of conditions to better design and develop 

optimized formulation conditions.

Experimental Methods

X-Ray Crystallography (XRC) and Nuclear Magnetic Resonance (NMR)

Since these two methods have the potential to determine the full three dimensional structure 

of macromolecules, they would be ideal were it not for confounding factors. Both methods 

require costly instrumentation and highly trained support staff. XRC requires the preparation 
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of crystals, which cannot always be grown, and do not necessarily represent structure in the 

solution state. The experimental procedure typically takes at least days to weeks to optimize 

and perform. Full structure determination by NMR currently takes a similar length of time, 

but only works for small to medium size proteins (thus not including monoclonal 

antibodies). Furthermore, isotopic labeling is necessary for full structural determination. 

These limiting aspects of NMR may, however, be reduced in the future.63,64 Both 

methodologies are also difficult to apply to pharmaceutical dosage forms due to interfering 

effects of excipients. The goal in the work described here is primarily to find transitions in 

higher order structure as a function of environmental conditions (e.g. temperature and pH in 

the presence of different excipients), which requires far less information than that required 

for full structure determination.

A wide variety of lower resolution biophysical techniques are available for characterization 

of biomolecules and their macromolecular complexes. In general, these methods can be 

employed over a wide range of concentrations (from a few micrograms to hundreds of 

milligrams per milliliter), although interference by factors such as light scattering, 

absorbance flattening and solute interference can sometimes be a problem. Very brief 

descriptions of many of these techniques now follow. References and a summary of the 

capabilities of each method are shown in Table 1.

Near and Far Ultraviolet Absorbance Spectroscopy (UVAS)

Both proteins and nucleic acids contain a number of environmentally sensitive 

chromophores which absorb in the UV region. While the peptide bonds of proteins display 

intense absorbance in the far UV (180-220nm) region, thus yielding secondary structure 

information, analysis in this region is normally done by circular dichroism or FTIR due to 

their better resolution (see below). In contrast, derivative analysis of protein spectra in the 

near UV typically provides 5 to 6 well resolved peaks from the three aromatic residues 

(Trp,Tyr,Phe), which are quite sensitive to structural changes. Nucleic acids also produce 

distinct spectra from the bases in the same spectral region, which can be used to follow 

structural alterations. Conveniently, when a macromolecular system aggregates, optical 

density (OD) in non-absorbing regions (>340nm) can be used to monitor this phenomenon 

simultaneously with near UV spectral analysis.

Near and Far Ultraviolet Circular Dichroism (CD)

Due to the high optical activity of helical structures, CD can be used to detect changes in 

both nucleic acid and protein secondary structure in the far-UV region for proteins and mid-

UV region for nucleic acids. The optical asymmetry of the environment of the aromatic side 

chains in proteins also produces distinct signals typically of some complexity in the near-UV 

region. Thus by monitoring both regions, structural changes in secondary and tertiary 

structure can be detected. Deconvolution analysis of CD spectral shape in the far UV region 

also allows fairly accurate estimates (within 2-3%) of actual secondary structure content. 

The induced CD of certain dyes can also be used to determine structural information, 

especially with nucleic acids and polysaccharides.
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Intrinsic and Extrinsic Fluorescence

The intrinsic UV fluorescence (UV-IF) of proteins is dominated by emission from indole 

side chains when Trp residues are present and not endogenously quenched. Such 

fluorescence is very environmentally sensitive, making the peak position and intensity of 

Trp fluorescence a particularly useful probe of protein structural change. The use of 

extrinsic fluorescence (EF) probes is applicable to virtually all forms of macromolecules and 

their complexes, including proteins, nucleic acids, and membranes. For example, dyes are 

available which are particularly attracted to apolar regions in proteins as well as the 

characteristic intermolecular β-structures which often form when proteins associate. A wide 

variety of fluorophores bind both within nucleic acid grooves as well as between bases 

(intercalation). In addition, there exist a large number of dyes that interact with lipid bilayers 

such as those present in some viruses and virus-like particles as well as bacterial cells. Some 

of the most commonly used dyes are 8-anilino-1-naphthalenesulfonate (ANS), used in 

protein studies; laurdan, used for lipid bilayers; and YOYO-1, used for DNA. In all of the 

above cases, large changes in fluorescence intensity, peak position, and polarization often 

occur as these dyes bind to their various targets. Thus, they can be used to probe a plethora 

of aspects of macromolecular structure and associated changes.

Infrared and Raman Spectroscopy

The complex series of vibrational transitions present in macromolecules can be used to 

obtain structural information from either infrared or Raman spectroscopy. Infrared 

spectroscopy is performed almost exclusively in a Fourier transform mode (FTIR). While 

FTIR is an absorptive technique and Raman is a scattering measurement, both have 

significant although sometimes different utility. Each can be used to examine the secondary 

structure of both proteins and nucleic acids (as well as complexes such as viruses) through 

deconvolution of constituent amide bands (signals from peptide bonds and various nucleic 

acid base signals). FTIR is the more widely used technique due to instrument availability 

and sensitivity. In contrast, signals from side-chains tend to be much better detected in 

Raman spectra.

Static and Dynamic Light Scattering (SLS, DLS)

The size and shape of macromolecules both in their monomeric and associated forms can be 

characterized by static and dynamic light scattering. In the former, the intensity of the 

scattered light is measured (often as a function of angle), while in the latter, fluctuations in 

intensity of scattered light due to Brownian motion are analyzed. Size and shape information 

obtained are model dependent and complicated by the presence of non-homogeneous 

scatterers, although various data analysis methods exist to produce useful numerical values 

from both methods. Imposition of an external electromagnetic field can be used to obtain 

zeta-potential values. A method we do not discuss here is analytical ultra-centrifugation 

(AUC). Although AUC is very information rich in terms of evaluating hydrodynamic 

properties of biomolecules and macromolecular complexes, this methodology is not 

available in a high throughput mode, unlike the scattering based methods.
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Differential Scanning Calorimetry (DSC)

By measuring differential heat capacities in macromolecules, transitions in state can be 

detected. Virtually every biomolecule from proteins and nucleic acids to membranes and 

viral particles undergo thermally induced transitions that can be detected by this method and 

used as indicators of thermal stability. Like the methods described above, DSC is now 

available in a high throughput mode making it useful for the formulation and stability 

purposes discussed below.

High Performance Liquid Chromatography (HPLC)

Although not generally adaptable to a high throughput mode in the sense of the above 

methods (i.e. one cannot easily and rapidly perform measurements over a wide range of pH 

and temperatures), the use of auto-samplers does permit a variety of chromatographic 

methods to be used after exposure to a wide range of conditions. Probably the three most 

useful to the formulation scientist are size-exclusion (SEC), ion-exchange (IE), and reversed 

phase (RP) chromatography. All three methods will be well known to most readers so we 

just mention their applicability to size, charge, and polarity changes, respectively. To 

characterize chemical degradation (oxidation, deamidation, hydrolysis, etc.), RP-HPLC is 

commonly used in combination with fragmentation and mass spectrometry to characterize 

sites of covalent alteration. Methods such as capillary isoelectric focusing are also 

commonly used for this purpose.

Measurements sensitive to intramolecular dynamics

It has become increasingly apparent that macromolecular stability is dependent on the 

various types of internal molecular motions present in macromolecular systems, such as 

side-chain movements, breathing modes, domain motions, etc. Thus, measurements of such 

motions should ultimately be included in a thorough analysis of stability. A number of 

methods are available for this purpose, and can sample a wide range of such motions. 

Methods specifically designed for this purpose such as isotope exchange and various forms 

of NMR are not generally applicable to high-throughput applications, although this may 

change in the future. In contrast, a number of high-throughput methods are available, 

including ultrasonic spectroscopy (to measure compressibility), pressure perturbation DSC 

(to measure coefficients of thermal expansion), as well spectral approaches such as 

temperature induced pre-transition peak shifts in second derivative UV absorbance spectra, 

fluorescence anisotropy (rotational correlation times), red-edge fluorescence excitation, and 

fluorescence and UV absorbance solute-induced spectral shifts.

Multi-mode Machines (“Protein Machines”)

Instruments are currently being developed by several vendors that simultaneously collect 

data using several of the above methods. For example, the Chirascan from Applied 

Photophysics collects near and far UV CD and near and far UV absorbance. Fluorescence 

emission spectra can also be collected, although not simultaneously with the other 

techniques. The Protein Machine from Olis Instruments collects far UV CD, near UV 

absorbance, fluorescence emission and excitation spectra, and red-edge excitation spectra. 
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Both instruments can also acquire light scattering signals during several of these 

measurements.

Simultaneous near and far UV measurements require intermediate path lengths and 

concentrations. In the far UV region, peptide bonds yield very strong absorbance. Longer 

path lengths or higher concentrations produce excess absorbance, causing absorbance 

flattening in far UV measurements. To avoid absorbance flattening in this region one must 

use short path lengths or low concentrations. The near UV absorbance spectra of aromatic 

residues are comparatively weak, so short path lengths or low concentrations yield too little 

signal, resulting in a significant amount of noise in near UV measurements. It is not possible 

in principle to find an optimum tradeoff between path length and concentration, because 

both have the same effect on absorbance. Changing slit widths can overcome these problems 

to only a very limited extent. Thus, the existence of conflicting requirements makes it 

technically difficult, but not impossible, to simultaneously collect data in the near and far 

UV regions. Nevertheless, these instruments do permit simultaneous collection of data from 

multiple techniques with good to excellent resolution. In combination with multiple sample 

holders, EPDs can be obtained directly from such instruments over periods of 3-12 hours.

Currently, the only way to simultaneously collect data in the near and far UV is to use very 

long integration times in the near UV, to reduce excessive noise. These long integration 

times offset the time saved by simultaneous collection. Short of waiting for instruments with 

lower noise to be developed, there is at least one possible option to be considered: variable 

path length cells would permit automatic adjusting of absorbance for each wavelength range. 

This feature is available in a few UV-Vis absorbance instruments built for measuring 

concentrations, and could potentially be applied to multi-modal spectrometers.

Data Interpretation Challenges

One accumulates a wealth of data when several of the above methods are employed under 

varying environmental conditions. Figure 1A-F shows one of these data sets for an IgG 

molecule.4 Data were collected as a function of temperature and pH, from pH 3 to 8 at one 

pH unit increments (6 different conditions), and temperatures from 20 to 90°C at 2.5°C 

intervals (29 different conditions), resulting in a 6×29 assay grid. At each point on this grid, 

measurements were taken of CD molar ellipticity at 218 nm (Panel A), intrinsic fluorescence 

peak position and intensity (Panels B and C), tryptophan fluorescence lifetime (Panel D), 

static light scattering (Panel E), and ANS fluorescence intensity (Panel F).

The data set shown in Figure 1A-F presents challenges as well as opportunities. 

Traditionally, we look for evidence of conformational changes, unfolding, and aggregation, 

then estimate transition temperatures. This approach suffers three major drawbacks. First, 

experimental methods sometimes disagree on transition temperatures and protein state. 

Second, plots like Figure 1A do not convey much information to the non-expert. Third, 

important variations and/or regularities in the data may not carry through to the final 

analysis when they are unexplained, too complex to easily observe, or partially hidden by 

noise.
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Each experimental technique provides a picture of one or more different aspects of a protein 

or other macromolecular system. The formulation scientist must assemble this information 

into an overall picture of the behavior of the protein. The situation is similar to the tale of the 

blind men and the elephant (e.g., “The Blind Men and the Elephant: A Hindu Fable”, a 

poem by John Godfrey Saxe), where the macromolecular drug is the elephant, and the 

experimental methods are the blind men touching different parts of the elephant (tusk, trunk, 

ear, tail, etc). The formulation scientist is the one who must assemble the information from 

the others and decide what the elephant looks like. When experimental methods disagree, 

the formulation scientist must make an educated guess. Sometimes even a single method 

will report conflicting information, as when transition temperatures between folded and 

unfolded conformations of a biomolecule differ for measurements from two different 

wavelengths during the same circular dichroism temperature melt experiment.

Although each experimental method is sensitive to different aspects of protein behavior, 

different methods often provide overlapping information as well. This manifests itself as 

regularities in the combined data sets. One would not expect these regularities to always be 

easily visible in data such as that shown in Figure 1A-F. In these plots we show the results 

from six biophysical methods to monitor the higher order structure of an IgG molecule as a 

function of pH and temperature. Similar experiments can generate even larger data sets with 

many more instruments and/or environmental conditions. To find the regularities, we would 

need to find patterns in a high dimensional space. This is not possible in the simple plots of 

Figure 1A-F. An empirical phase diagram of the data in Figure 1A-F is shown in Figure 1G 

(Figure 1H will be discussed in the applications section). The red region of Figure 1G tells 

us that high temperature behavior is clearly different between low and high pH (pH values 

above 4). Inspecting the data, the distinction appears to be subtle and complex, but the EPD 
shows us that in the multidimensional space, the difference is actually pronounced. 

Furthermore, focusing on measurements at pH 3 (shown in black), we see that the positions 

of transitions near 40°C are not well defined. On the phase diagram, the transition is sharper 

and positioned near 40°C.

Formulation scientists must often resort to educated guesses when further information is 

hidden in the complex data sets generated from a series of measurements.EPDs use the 

results of a global analysis, increasing the use of information and reducing the role of 

guesswork. Such plots present the results in a simple format, so the eye of a non-expert can 

pick out regularities and transitions with little difficulty.

Mathematical Methods

Search space, protein phase space, and measurement phase space

To better understand the mathematical aspects of generating empirical phase diagrams, we 

first review terms and concepts that arise naturally from the quantitative characterization of 

large data sets. Each mathematical term can be made as formal as desired, which we avoid 

here. Instead, our emphasis is on conveying relevant concepts by using precise mathematical 

terms in a manner as informal and pictorial as possible.
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Search space

The seach space is defined by the experimental control variables. One may use virtually 

anything as a control variable, such as concentrations of excipients, temperature, pH, or 

variables describing protein history. We cannot test every point in the space, so one usually 

forms a grid of points to test. We will call this the “search grid”. The terms “search space” 

and “search grid” are borrowed from the field of protein crystallization. In Figure 3A, a one 

dimensional grid has been chosen consisting of 4 pH values. If we had varied both solution 

pH and temperature, we would have needed two variables to define the solvent state, and we 

would have tested points in a two dimensional grid (as will be discussed later in Figure 6A).

Macromolecule phase space

The state of a target biomolecule or macromolecular complex can be described by a list of 

numbers. For example, we can use a long list of the positions of all the atoms in a protein.65 

If we consider each list as a point in a high dimensional phase space, then changes in protein 

shape equate to movement of the corresponding point in phase space. In Figure 3A we have 

illustrated a protein phase space with ratios of secondary structure. An exhaustively 

complete protein phase space would require thousands of variables to completely describe a 

protein state.

Preferred molecule states correspond to equilibrium points caused by energy minima in 

phase space. Due to thermal vibrations, the molecular states fluctuate around these energy 

minima, and can be visualized as a cloud of points around each minimum, usually described 

by a Boltzmann distribution56,65,66.

For a given solvent condition, there can also be more than one accessible stable protein state, 

due to the existence of multiple minima in the protein energy landscape.65 Instead of a 

single cloud of points for the given solvent condition, there may be several (see Figure 3A, 

pH 5 and 6). When we collect spectroscopic data, we see the average of the contributions 

from all the protein states.

Measurement phase space

This space is defined by all of the measurements used to probe a macromolecular state. For 

example, in Figure 3B we show how 2 measurements define a 2 dimensional measurement 

space. If we collect CD data at 3 wavelengths and UVAS data at 2 wavelengths, we can join 

these into a single 5 dimensional vector (as will be discussed in more detail later; see Figure 

6B).

The measurements in a data set contain information generated by multiple physical 

processes. The types of information derived from these physical processes possess varying 

levels of prominence in the data. Some stand out on their own, while others require 

extensive processing to isolate.

We also attribute varying levels of significance to the different types of information. For 

example, for formulation purposes, information concerning aggregation is highly significant, 

while information concerning protonation may be less so.
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Since the data are generated by physical processes, one cannot expect prominence to be 

related to significance. Thus, data usually require a certain amount of preprocessing.

Data preprocessing

Data preprocessing steps are designed to extract significant information from data in which 

it may be hidden in complex ways amid less important information. Preprocessing usually 

consists of finding the position, width, or intensity of spectral or calorimetric peaks, using 

methods such as second derivative processing, Fourier self deconvolution, or determination 

of the spectral center of mass. Another preprocessing practice is the hand-selection of data 

that is deemed to be pertinent, information rich, and sufficiently free of noise.

For example, the simulated data in Figure 3B is similar to preprocessed data from near 

UVAS second derivative peak position analysis. A spectrum would have been collected and 

preprocessed for each pH value, yielding the positions of several peaks. Selection of two of 

the peaks would have resulted in a data set like the one plotted in Figure 3B.

Typically, on the order of ten measurements remain after preprocessing. It is best to not 

overdo preprocessing, which may erase information about transitions. Preprocessing 

constitutes a bias concerning the significance of types of information, so it must be applied 

judiciously. An example of extreme preprocessing would be to take an FTIR absorbance 

spectrum measured at 3000 frequencies and reduce it to a single frequency. The global 

analysis we will describe is capable of finding optimal low-dimensional representations of 

high dimensional data, and tends to perform better when a large number of measurements 

are used.

Data standardization

Preprocessing results in a collection of numbers that cannot be expected to have appropriate 

units, scales, or dimensions. The units of most data are standardized by scientific and 

engineering conventions that have no relation to their significance for formulation 

development. For example, fluorescence emission photon peak counts of proteins tend to 

range from 104 to 106, but absorbance values tend to be kept below 1 AU. The scale of data 

must be adjusted so that artificial unit conventions do not cause one type of data to 

overwhelm another. Furthermore, mathematics alone does not contain knowledge of 

formulation, so it cannot in principle determine the scale choices, preprocessing, and 

standardization that will lead to useful summaries. Perhaps surprisingly, once these choices 

are made by the user, mathematics can determine optimal low dimensional representations 

of data. Fortunately, the adjustment of scale variables is straightforward as described below 

and rather robust outcomes are not difficult to obtain.

We now discuss an example of the influence of scales on estimates of transition values. 

Figures 3C and 3D illustrate how measurements can disagree on the position of transitions. 

Plotting the measurements separately, measurement 1 (Figure 3C) shows a transition 

between pH 5 and 6, but measurement 2 (Figure 3D) shows a transition between pH 6 and 7. 

The two dimensional plot (3B) shows the largest transition between pH 6 and 7. 

Measurement 2 dominates the two dimensional plot since that peak's variation stretches over 

a larger range.
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Our current approach to resolving the conflict is to resize the variation in each measurement 

so that they have equal magnitude. There are many ways to do this, and we show only one 

of them. Since we are only interested in transitions, we begin by centering the measurements 

at the origin by subtracting the mean measurement within each measurement type (Figure 

4A). This is done separately for each measurement type. Then we can normalize each 

measurement to equalize their variation (Figure 4B). This is also done separately for each 

measurement type. We see in Figure 4B that the largest transition occurs between pH 5 and 

6.

Singular Value Decomposition

Once the data has been processed and standardized, we seek a way to visualize and inspect 

it. Since the data set is high dimensional (usually around 10 numbers per search grid point) 

the human eye cannot find its patterns. Humans prefer two-dimensional diagrams. Thus, a 

method is required to lower the dimensionality of data for visual representation.

Hypothetically speaking, if humans could only perceive one dimension, we would want to 

represent the data in one dimension while preserving the information content as much as 

possible. A standard way to reduce the dimensionality of data is called the Singular Value 

Decomposition (SVD). Figure 4C conceptually illustrates the result of applying SVD to a 

data set. We begin with points in a 2 dimensional space (the black dots), and we seek to 

project the data onto an optimal 1 dimensional space. The term “optimal” is defined by 

minimizing the projection error, indicated by the red lines. SVD gives us the optimal 1 

dimensional space, shown as a blue line. This is still, however, a 2 dimensional plot. For a 1 

dimensional plot, we can plot the distance along the blue line (the position inside the 1 

dimensional space). This is shown in Figure 4D.

The entire procedure we use to project data is known as Principal Components Analysis 

(PCA). PCA consists of subtracting the mean from a data set and applying SVD. These steps 

are shown in Figure 4A and 4C. The extra step of normalizing the measurements, shown in 

4B, is a known extension to PCA.

We illustrate higher dimensional SVD with another simple example (Figure 5). Some 

familiarity with linear algebra will assist the reader, but the following discussion should also 

be accessible to a general audience. Suppose we are given the following measurements of a 

protein at different temperatures.

Δλ1 Δλ2 Δλ3

10°C 3 −2 −1

30°C 2 −1 −3

50°C 0 −1 −1

70°C −3 1 2

90°C −2 3 3
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For instance, the data might represent second derivative ultraviolet absorbance peak shifts in 

hundredths of a nanometer.

A plot of this data is shown in Figure 5A. Each row is plotted as a point in three dimensions, 

and each point corresponds to a different temperature. The data is three dimensional in the 

sense that at each temperature we have three numbers, Δλ1, Δλ2, and Δλ3, which represent 

the state of the target molecule.

If we could perceive two dimensions but not three, the transition between 50°C and 70°C 

might be difficult to see. So we would want to reduce the data to two dimensions in a way 

that optimally retains the information in the original data set. To see how to do this, refer to 

Figure 5B. The black points are the data points, and the pink area represents a plane. The red 

points are the positions within the plane that are nearest to the data points. They are two 

dimensional approximations to the data points. The red lines represent the error in the 

approximation. We seek the plane which minimizes the total error, defined as the sum of the 

squares of the lengths of all of the red lines.

To show how this works, we first express the data as a matrix:

SVD finds an optimal, unique two dimensional approximation, which we will call D̃

(For readers familiar with the terms, we note that the matrix A consists of the left singular 

vector matrix multiplied by the singular value matrix, and retains only the top 2 singular 

vectors. We have done this to simplify the presentation. For a summary of the properties of 

SVD, see the appendix.)
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The two rows of the matrix X are perpendicular to each other. In Figure 5B, the two rows of 

X are represented as blue vectors. They are axes in a two dimensional plane (shown in pink), 

and serve to define that plane. This plane is the unique plane that minimizes the total error. 

When we perform the matrix multiplication AX, each row of A specifies a linear 

combination of the rows of X. The matrix multiplication places the approximated data points 

within the plane defined by the row vectors of X.

In this example, SVD actually returned three optimal axii and we have chosen and shown 

only the two most important ones (the two rows of X, shown as blue vectors in Figure 5B). 

When we choose optimal axii to define the lower dimensional space, we generally discard 

the other axii returned by linear algebra. If we had used only the first row of X, we would 

have approximated the data within a one dimensional space (Figure 5D). In that case, the 

error would have been larger. (On the other hand, the optimal one dimensional axis may 

well encompass most of the data, depending on the relative magnitude of the singular 

values.)

When we use all of the axii given by SVD, there is no error, and the approximation D̃ is 

equal to the original matrix D. Error results from excluding axii, as we have done in Figures 

5D and 5B. If we exclude axii that only result in a small increase in error, the approximation 

D̃ can be very close to the original matrix D.

For many data sets, the most common result is that only a few of the axii are important, 

resulting in a large increase in error when they are dropped. The rest of the axii can usually 

be eliminated with very little effect on the approximation. We can choose in advance the 

number of axii to use. In this example, we have three dimensional data that we want to 

reduce to two dimensions. We can minimize the error for a two dimensional projection by 

using the two most important axii returned by SVD.

Since we want a true two dimensional representation of D, it is self-consistent to use the 

positions within the optimal plane instead of the three dimensional positions. The two 

dimensional positions within the plane are given by the matrix A, and are plotted in Figure 

5C. Each point in Figure 5C represents a row of A.

The error in the approximation from D to D̃ can be defined numerically. It is the sum of the 

squares of the lengths of all the error vectors (the red lines in Figure 5B). This is the error 

that SVD minimizes. It can be expressed as

To quantify how well the data has been approximated we compute the percent error, defined 

as:
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(1)

It is important to note that the procedure gains its power from the fact that it works the same 

way in higher dimensions. Instead of three peak shifts, as in the previous example, we might 

be given 5 measurements at each temperature. These are vectors in a five dimensional space. 

After standardization, we apply SVD to the matrix of data, returning up to 5 axii. The most 

significant axii are then used to define a lower dimensional space. The projection onto that 

space is the best possible approximation to the data that can be made based on the number of 

dimensions retained. Just as in the example above, the approximated matrix still appears 

high dimensional. Yet we can get a true low dimensional view of the data by using the data 

point positions within the space defined by the retained axii (as illustrated for two 

dimensional projections in Figure 5C).

The Empirical Phase Diagram

We begin by choosing a search grid (Figure 6A). The most common search grid previously 

used for protein phase diagrams covers pH values from 3 to 8 in one pH unit increments and 

temperatures from 10 to 85°C in 2.5°C increments. Measurements typically include a series 

of biophysical techniques such as CD, fluorescence, and UV absorbance spectroscopy as 

well as light scattering. In this simulated example, we choose a simpler case of two pH 

values (5 and 6) and two temperature values (10°C and 50°C) as measured by CD (at 3 

wavelengths) and UVAS (at 2 wavelengths).

After collecting and preprocessing the data, a matrix is created in which the rows correspond 

to all search grid positions and the columns correspond to all measurement types (Figure 

6B). The matrix is standardized and projected down to 3 dimensions (as described in the 

previous section). The result of standardization and projection is shown in Figure 6C. The 

number of rows remains the same but the number of columns has been reduced to 3.

To provide a convenient visual image, the resulting 3 dimensional positions are converted 

into ratios of red, green and blue color. First the data is shifted and resized so that all the 

numbers fit in the range (0,1) (Figure 6D). Then the 3 dimensional positions are expressed 

as colors. To create the phase diagram, the colors are reorganized into a grid and plotted 

(Figure 6E).

History

It should be mentioned that the singular value decomposition is attributed to the 

mathematicians Beltrami and Jordan, who discovered a version in the 1870's. The physicist 

Carl Eckhart is credited with extending the procedure to non-square matrices. It seems to 

have been re-discovered many times, and is sometimes associated with Householder and 

Karhunen-Loeve67.
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A technique similar to our procedure was used in 1989 to merge satellite imagery.68 It is 

called “PCA based image fusion”, is widely employed in geo-sensing and in-vivo 

imaging,69,70 and is spreading to other areas such as art conservation and astronomy.71,72 

Unaware of this history, we first applied PCA in 2003 to characterize transitions in higher 

order protein structure under different environmental stresses6.

Interpreting Empirical Phase Diagrams

Once the empirical phase diagram has been generated, the mathematical work is done. What 

remains is interpretation. The first step is to inspect the phase diagram to determine regions 

of conserved structure. Areas of search space that produce similar measurements in the 

abstract 3-dimensional space manifest themselves on the phase diagram as areas of a single 

contiguous color. Transitions are then manifested as changes in color, with noise showing as 

irregular and often quite subtle color variation. When clear structural transitions are not 

evident, the phase diagram can be dominated by effects unrelated to the higher order 

structure of the target macromolecule, such as a decrease in absolute fluoresence intensity 

with rising temperature.

Once the EPD has been inspected to determine regions of conserved structure, one tries to 

determine as much as possible about the actual physical state of the protein or 

macromolecular complex within those regions. To do this, one must refer to the original 

measurements and consider the physical processes that generated them. To reiterate, the best 

one can hope from quantitative analysis is optimal projection, which still needs expert 

scientific evaluation of the original biophysical data, and perhaps further targeted 

experimentation. By referring back to the source data, empirical phase diagrams can usually 

be segmented into the following types of structure: low temperature inactive, active form, 

molten globule states, high temperature or acidic pH unfolded forms, and forms which are 

aggregated or dissociated to various extents. Sometimes, however, a region of an EPD may 

have no ready interpretation, indicating that the data and mathematics have found something 

the expert does not readily recognize.

The color of an area is itself a “code”, not universally meaningful information. To get an 

idea of why this is, refer to Figures 5B and 5C. PCA gave the two vectors X1 and X2, 

defining a plane for the optimal two dimensional projection. An entirely different data set 

projected into 2 dimensions will also give an optimal plane whose absolute orientation 

relative to the first cannot be known without comparing the sets with each other. Thus, two 

different meanings can (and generally will) be applied to a given color code. This is not a 

matter of much concern, because the color code is not actually used in a quantitative 

analysis. The colors serve no purpose other than to identify areas of different behavior. One 

might just as well have labeled contiguous regions with names or numbers, as in traditional 

thermodynamic phase diagrams.

While the results of PCA are unique for any given data set, small changes in a data set can 

sometimes result in rotation of the principal axii. That will occur when two large, important 

singular values are nearly equal. Then distinguishing them by size-ordering can hinge on 

small variations. The result of swapping the order of axes is a swap of two colors. The 

shapes of the regions and transitions will, however, remain the same, because the projection 
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plane in question is an absolute concept that does not depend on the labeling. Notice in 

Figure 5C that a deliberate rotation of X1 and X2 does not alter any information about the 

transition.

In a study of Clostridium difficile toxins and toxoids, discussed below, phase diagrams were 

generated jointly to achieve uniform meaning of their colors.16 In such an analysis, the 

target macromolecule becomes one of the control variables. For example, if the control 

variables had been pH and temperature, they will now also include the target 

macromolecule. The matrix shown in Figure 6B will contain additional rows to incorporate 

the increased number of combinations of control variable positions. The matrix is then 

standardized, projected into 3 dimensions, rescaled, and interpreted as colors, as shown in 

Figures 6C and 6D. Finally, the colors are made into multiple phase diagrams, one for each 

target macromolecule.

Applications and Case Studies

Here we summarize some applications and case studies using empirical phase diagrams to 

formulate and stabilize various biomolecules and larger macromolecular complexes. As 

highlighted earlier, common pharmaceutical applications have been to select stress 

conditions for high throughput excipient screening, to find ranges of solution conditions 

resulting in optimized stability, and to investigate the overall structural integrity and 

conformational stability behavior of large macromolecular complexes.

Selection of stress conditions for excipient screening

Screening compounds and polymers for stabilization of a liquid formulation of a 

biomolecule or macromolecular complex is a time consuming process due to both the large 

number of excipients that should be tested, and the time it takes to complete each test. The 

latter can be reduced by selecting conditions which accelerate degradation processes 

(although the danger always exists that the degradation reactions induced may not be 

directly relevant to actual storage conditions). The EPD approach can be used to select these 

accelerated conditions. Since each region of color in an EPD represents a different state of 

the system, it is presumably related to a local minimum in the energy landscape. Thus, at 

transitions between these regions, the system may have a somewhat higher energy and be 

farther from equilibrium. This makes it more likely (but not guaranteed) that the system can 

access other minima in the energy landscape under these conditions. By selecting transition 

conditions within pharmaceutically accessible regions, it seems probable that relevant 

degradation mechanisms during real time storage will be enhanced under these accelerated 

conditions. This basic concept has been applied to many formulation projects with 

significant success as described below, and is a commonly used general assumption in 

pharmaceutical preformulation and formulation efforts.

Finding stabilizing conditions

By the same argument, we can also find stabilizing solution conditions (e.g. pH and ionic 

strength) for a liquid formulation by selecting conditions distant from EPD boundaries. 

More routinely, EPDs have assisted in the more standard stabilization and formulation 
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process, in which one finds solution conditions that increase stability as measured by the 

elevation of thermal unfolding/melting temperatures or reduction of aggregation24,73.

Using EPDs to investigate the similarity of two proteins

In the construction of EPDs, we perturb the system by varying solution conditions such as 

temperature, pH, and ionic strength, while measuring the system's response. Rather than 

focusing on transitions, we can also use an EPD in its entirety to gain additional information 

about the identity of the system's native form. We have found that EPDs of proteins of 

similar function do indeed appear similar.10-12,16,17 For example, the two heat shock 

proteins Hsc70 and gp96 have very little sequence homology, but demonstrate apparent 

phase changes in their EPDs which are nearly identical10.

Investigating protein dynamics

The intramolecular mobility of large molecular systems is a critical factor in their behavior, 

and a role in molecular recognition and enzymatic catalysis is now generally 

recognized.74-77 The relationship of the dynamic behavior of such systems to their stability 

remains, however, poorly understood.55 In this regard, EPDs have been employed to 

characterize the intramolecular dynamics of an IgG1 monoclonal antibody on a temperature-

pH perturbation grid.4 This study employed measurements sensitive to protein dynamic 

motions such as molecular tumbling, domain movement, and the degree of solvation. A 

combination of the following measurements was used: adiabatic compressibility determined 

from PPC, coefficient of thermal expansion determined from HRUS, REES, and rotational 

correlation times determined by TRFS anisotropy (see Table 1 for instrument abbreviations). 

An EPD was also generated based on the following time averaged methods: steady-state 

UV-IF, far-UV CD, light scattering, and ANS-EF. The latter methods are sensitive to 

alterations in protein secondary and tertiary structure. The EPDs from the dynamic and static 

measurements are shown in Figures 1G and 1H, respectively. In both EPDs, a very different 

conformational state was observed at pH values 3 and 4. The EPD based on the dynamics 

measurements is more complex overall, with low temperature events seen that are not 

present in the static EPD. This study indicates that measurements of protein dynamics 

potentially provide a more sensitive probe of protein stability and the effect of potential 

stabilizers. Related approaches are under further development in our laboratories.

Evaluating a Peptide Drug (Pramlintide)

The EPD method has not yet been used with small molecule pharmaceutical drugs, but it has 

been employed to characterize peptides. An analogue of amylin, the 37-residue peptide 

Pramlintide is currently used as an antihyperglycemic agent to treat diabetes. This peptide 

was characterized using a combination of CD, intrinsic Tyr fluorescence, second derivative 

UV absorbance, and optical density as a function of pH, temperature, and peptide 

concentration.7 Despite the fact that the data shows that the peptide is primarily unstructured 

at low concentration (confirmed by isotope exchange NMR), the EPDs are still surprisingly 

complex with distinct pH and temperature dependence reflecting very gradual structural 

alterations and some limited aggregation (Figure 7A-C). When the characterization was 

conducted over a wide range of Pramlintide concentrations, much more distinctive changes 
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in color were observed with transitions shifted to much lower temperatures and a narrower 

range of pH (Figure 7D-E).

Investigating the behavior of larger macromolecular complexes

The EPD approach enables visualization of high dimensional data, assisting in the 

determination of regularities and transition points. For the EPD approach to work, only two 

conditions are necessary, including that the system under study possess a well-defined 

structural identity, and that transitions in this identity are manifested in the data. A complete 

physical understanding of the processes governing the transitions is not necessary.

For example, viruses, virus like particles (VLPs), carbohydrate-conjugates, gene delivery 

vehicles, and other related macromolecular complexes have defined shapes, sizes, structural 

features and stability profiles. With selection of appropriate techniques, transitions in 

structure will be manifested in the data as multidimensional transitions in the measured 

values. These transitions can reflect significant structural changes that may be associated 

with changes in biological activity.

Signals obtained from such large systems, however, are the sum of signals from many 

subsystems which are themselves large. Thus, unlike smaller biomolecules such as purified 

proteins, it is unlikely that one will be able to directly relate the changes seen to actual 

molecular events in these larger macromolecular complexes. It may well be, however, that 

the experimental signals observed are due to subsystems that are present in multiple copies, 

and therefore reflect stress induced changes in key components of the complexes (for 

example, many copies of a viral coat protein within an intact virus.) Thus, such EPD data 

may still be quite useful in characterization studies. The EPD approach has, in fact, been 

applied successfully to the development and stabilization of numerous vaccines, including 

live attenuated bacterial vaccines,24 inactivated and live viruses and VLPs,21-23,25-27,29 as 

well as gene deliver complexes28,35.

Clostridium difficile Toxins and Toxoids

To further describe the EPD approach, we present a few representative examples of 

applications to biopharmaceutical drugs and vaccines based on proteins and larger 

macromolecular complexes. For example, studies using the EPD method were conducted of 

the A and B toxoids of Clostridium difficile, which are in clinical trials as a diarrheal 

vaccine.16 The proteins were characterized with CD, intrinsic and extrinsic (ANS) 

fluorescence, optical density, UV absorbance, and DLS. Clearly defined regions 

corresponding to folded protein, partially unfolded states as well as both soluble and 

unsoluble aggregates are observed (Figure 8A-B).16 Differences in EPDs are seen when the 

two toxins are crosslinked with formaldehyde to produce toxoids for use as vaccines (Figure 

8C-D) including enhanced thermal stability. Further utility of EPDs is illustrated by their use 

in pre-formulation characterization studies of the toxoid. Based on the apparent phase 

boundaries observed in the initial studies, a high throughput screening study was developed 

based on thermally induced aggregation of the proteins at low pH. A collection of 30 GRAS 

compounds was then screened and a number were identified which inhibited aggregation. To 

differentiate effects on conformational stability and aggregation, the proteins were also 
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studied with spectroscopic methods in the presence of presumptive stabilizers. Finally, 

stabilization studies of the toxoids on the surface of an aluminum salt adjuvant were 

conducted using DSC. Thus, a series of stabilizers were identified which were successfully 

employed in final formulations of a candidate C. difficile vaccine.

Norwalk Virus-like Particles

Multimeric biocomplexes can also be analyzed by use of EPDs. The most successful 

recombinant protein vaccines are, in fact, of the virus-like particle (VLP) type (i.e. Hepatitis 

B vaccine, HBV, and the human papillomavirus vaccine, HPV). One recent example of a 

candidate vaccine based on VLP technology is that of the Norwalk virus. This VLP consists 

of an icosahedral assembly of 180 copies of the VP1 capsid protein of the native virus with 

only a few copies of the VP2 protein also present. The resultant 38 nm particle was 

characterized by a combination of CD, DSC, intrinsic and extrinsic fluorescence, near UV 

absorbance and DLS, as a function of pH and temperature.23 A series of apparent phases 

could be identified in the EPD corresponding to a variety of conformational and aggregative 

states (Figure 9), including various states of dissociation of the particles. The precise nature 

of the latter was established by complementary transmission electron microscopy (EM) 

experiments. (This research and EPD were originally published in the Journal of Biological 

Chemisty. Ausar SF, Foubert TR, Hudson MH, Vedvick TS, Middaugh CR. 2006. 

Conformational stability and disassembly of Norwalk virus-like particles: Effect of pH and 

temperature. J Biol Chem 281:19478–88. © the American Society for Biochemistry and 

Molecular Biology.) Again, the EPD was used as a basis to select conditions to analyze the 

aggregation state of, in this case, the virus like particles. Compounds which were found to 

inhibit aggregation were also examined for their effects on ANS-EF, DSC and CD, with 

sucrose, trehalose, glutamate, and chitosan all found to both inhibit aggregation and 

conformationally stabilize the Norwalk VLP's.78 This study led to formulation of a 

candidate vaccine which has been successful in Phase II trials79,80.

Stabilization of Measles Virus

Larger macromolecular complexes such as killed and live viruses have also been 

characterized by the EPD approach. For example, the relatively unstable attenuated measles 

virus which is the basis for the important live virus measles vaccine has been examined 

using EPDs.24 This enveloped attenuated virus contains multiple copies of six different 

proteins as well as a ssRNA genome. Analysis is further complicated by the fact that the vast 

majority of viral particles have been inactivated during large scale preparation of the virus. 

Thus, the potential utility of biophysical studies is based on the assumptions that any change 

that affects the biological activity (immunogenicity in this case) of immediate interest is still 

detectable in a significant number of the remaining complexes and that individual 

measurements detect significant amounts of altered components (presumably due to their 

presence in multiple copies). While this is no doubt not always true, we have found such 

assumptions in most cases to be reliable. The measles virus was first purified from its crude 

vaccine preparation and then examined by the usual combination of spectroscopic and light 

scattering techniques.24 One additional EPD method not previously described involved the 

use of the fluorescent dye laurdan, a probe of membrane fluidity. The resulting EPD 
displays at least 6 regions of differing structure (Figure 10). (This research and EPD were 
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originally published in Kissmann J, Ausar SF, Rudolph A, Braun C, Cape SP, Sievers RE, 

Federspiel MJ, Joshi SB, Middaugh CR. 2008. Stabilization of measles virus for vaccine 

formulation. Human Vaccines 4:350–59.) An excipient screening method based on 

aggregation of the virus was used to identify potential stabilizers as determined by melting 

temperatures with the generalized polarization of laurdan fluorescence used as a 

confirmatory method. The compounds identified were then examined in cellular infectivity 

assays and served as a basis for a significant improvement in the thermal stability of the 

vaccine.

Polymeric and Liposomal Gene Delivery Systems

As a final example, polyplexes and lipoplexes containing plasmid DNA molecules 

complexed to various polymers and cationic lipids, respectively, were examined by the EPD 
method. Because of the high thermal stability of the DNA component, pH and ionic strength 

(rather than temperature) were used as the stress variables. Due to the electrostatic nature of 

the complexes, they were characterized over a wide range of positive and negative nitrogen 

to phosphate ratios using circular dichroism, extrinsic fluorescence with a DNA intercalating 

dye (YOYO-1) and dynamic light scattering.28 The EPDs derived for the polyplexes and 

lipoplexes lacked the sharp definition of those obtained in the proteinaceous systems 

described above, but still manifested distinct structural phases which were more complex 

than plasmid DNA alone (Figure 11). Application of EPD analyses to plasmid DNA and 

their delivery vehicle systems is still in its infancy, but appears to be a promising approach.

Current Research

The development and use of EPDs has provided a high throughput method to quickly 

determine relative higher order conformational states of biomolecules and larger 

macromolecular complexes over a large “search space” using multiple biophysical 

techniques. The optimal determination of regions of conserved structure in the EPD can, 

however, be hindered by several factors including the presence of noise in the 

measurements, transitions (during exposure to varying stress conditions) that occur very 

gradually and are thus difficult to detect, or the presence of important structural information 

from multiple measurements that cannot be readily reduced to 3 dimensions for display in 

the EPD.

The EPD method's speed of data collection can also be hindered by the size of the search 

space. Its practicality can be further limited by the complexity of data processing. In 

addition, in the absence of reliable automated pattern recognition, the need for an expert 

scientist to interpret the biophysical data to assign structural meaning to the various phases 

observed in the EPD, often on the basis of limited information, can also inhibit the method's 

speed, accuracy, and utility. Here we report on tactics under investigation in our laboratory 

to tackle and diminish such current limitations of the EPD approach.

A number of new pharmaceutical applications of EPDs are also being explored. These areas 

include extensions of the current approach to different stresses and a variety of 

pharmaceutical and vaccine dosage forms. In addition, possible applications of EPDs to 

describe the chemical stability of macromolecules will also be discussed. Finally, the EPD 
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methodology could potentially be applied to analytical comparability due to its ability to 

generate and analyze a large amount of biophysical data assessing the overall higher-order 

(secondary, tertiary and quaternary) structure of biomolecules as a function of solution 

conditions.

Maximum use of data

One typically provides the EPD method with a limited selection of peak positions, widths, or 

intensities, obtained from various experimental techniques. This results in a drastic reduction 

of the potential data set that precedes any global analysis. Data reduction in advance of 

processing is undesirable, since the excluded data may contain significant information 

concerning individual structural states and the transitions between them. More information 

would also allow the mathematical steps (PCA) to better distinguish signal from noise. To 

address these issues, one seeks a way to pass all of the data through a global analysis first, 

using minimal preprocessing. The first approach one might consider is to pass unprocessed 

spectra directly to the empirical phase diagram method. We have attempted this with FTIR 

and UV absorbance spectra, but the results do not resemble EPDs obtained by using the 

usual peak parameters (data not shown). Instead, the pH columns in the diagram show very 

large color differences from each other, dominating much smaller transitions in temperature 

or pH. The very large pH dependent signal is presumably due to changes in the charge state 

of amino acids.

We might also apply preprocessing methods that are known to highlight useful information 

without explicitly dropping data. The second derivative of a spectrum contains information 

on peak position and width. We can therefore use it to highlight information involving peak 

parameters. Another method is the use of a mid-pass Fourier filter to emphasize mid-size 

spectral features, while suppressing offsets and noise. To apply these methods, one simply 

filters spectra and passes them to the EPD method. A preliminary result is shown in Figure 

12E, in which the Fourier mid-pass method has been applied to the FTIR spectra of an IgG 

molecule. The spectra covered the 900 to 4000cm−1 range, and were measured over the 

temperature-pH search grid shown in the EPD.

Representing more than three dimensions

The error given by equation 1 can sometimes be large. Some criterion for what is too large, 

such as an error of 20% or greater, must be assigned and validated by the user. Large errors 

signal the presence of information that cannot be reduced to 3 dimensions. The color-coded 

EPD are limited by the colors the eye can perceive, given as ratios of red, green, and blue 

intensities. This is not due to a limitation in PCA or SVD: data can just as easily by 

projected into more than 3 dimensions. The challenge is to represent the extra dimensions. 

To represent more than 3 dimensions in each pixel, we can use the eye's ability to recognize 

shapes, textures, or other signals.

This is not to say that the number of phases that can be shown on an EPD is limited by the 

number of primary colors used to generate the EPD. Different ratios of red, green, and blue 

can generate a multitude of colors. Therefore a color coded EPD can display a multitude of 
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phases. The goal of displaying more than 3 dimensions in each pixel of an EPD is to reduce 

the role of projection and the accompanying error.

We show an example of 4-dimensional visualization in Figure 12F. In Figures 12A-C, we 

show the primary color images (red, green and blue) of an empirical phase diagram. They 

are ordered by descending significance from left to right. For axis information, see Figures 

12E and F. After solid red, green, and blue, we can use images containing structure that is 

smaller than the EPD pixels. This will represent information as changes in texture. Perhaps 

the easiest way to generate these images with small scale structure is through the use of 

different 2 dimensional harmonic modes, which is what we have done here. The projection 

error of the example in Figure 12 is significantly smaller for the four dimensional EPD than 

for the 3-dimensional one. In this case, the fourth principal component shows an additional 

transition between low and mid range temperatures.

The main reason for expressing information from the EPD method with three colors or 

selected textures is to exploit the visual processing power of the human eye and brain to 

segment the EPD into different phases. The traditional “black and white” representation of 

different regions in a phase diagram is also perfectly acceptable. It amounts to assigning a 

name, or number, for each distinctly observed and coherent region of the system's physical 

properties. The 15 known phases of ice are conventionally represented by 15 numbers 

labeling regions of the pressure-temperature diagram.

Machine learning techniques exist and are being developed to perform the task of 

segmenting an image. Among the techniques are clustering, support vector machines 

(SVM's), and Kohonen networks. The main advantage of these techniques is that they can 

operate on high dimensional data, reducing the role of projection and its accompanying 

error. In Figure 12F we show the results of a simple image segmentation. We have selected 

5 characteristic points on the phase diagram to represent the 5 visible phases. Then, the 

remaining temperature-pH points have been categorized by their euclidean distance from the 

characteristic points, where the distance is calculated in measurement space. This is one 

example; mathematics and computer science possess an abundance of methods designed to 

recognize and organize information.

Information management

After an EPD is generated, the colors must be assigned meaning based on the information in 

the experimental data. The standard approach is for a scientist to assign meaning to the 

colors based on inspection of the original experimental data and the principal components 

given by PCA. As discussed earlier, however, local inspection of multidimensional data is 

difficult and does not maximize its utility. It should be better to pursue the assignment of 

meaning within a general mathematical framework, allowing data to be automatically 

correlated with observables of interest, such as aggregation pathways and known protein 

conformational states. Working within a general mathematical framework will also allow 

determination of the significance of types of information for a given task, so that data 

collection can be streamlined by the selection of optimal techniques, wavelengths, and 

integration times.
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Relevant mathematics will need to be provided with a starting point. Fortunately, much is 

known about the determination of protein conformational state from spectroscopic 

techniques. Also, many proteins have been fully characterized with the EPD approach. The 

main difficulty in getting started with an automated approach is that raw multi-instrument 

digital data sets from different experiments tend to be organizationally very complex. They 

involve multiple data formats and missing data points due to instrument hiccups and 

differing experimental protocols. The interpretation of an archived data set often requires 

additional information that must be located. Without an organizing software framework it is 

difficult to enforce uniform, comprehensive documentation and organization of different 

biophysical data from diverse sources.

We are working on two solutions to address this issue. One approach consists of a point-

and-click program, used for generating phase diagrams. In this interface the user organizes 

the data and generates phase diagrams. The data are automatically saved with full 

documentation in the desired format. The other approach is automated, consisting of a 

framework for importing, processing, and plotting complex information. This automated 

approach is guided by a short user-programmable script.

Automation

As described in the introduction, modern biopharmaceutical drug formulation challenges, 

including accelerated time-lines and limited material availability, can result in suboptimal 

formulations or even product failure due to instability. Because of these challenges, one 

wishes to explore as much of a search space as possible, using mathematical techniques to 

obtain the maximum possible amount of information from the data. This collection of 

techniques can also automate the interpretation of data. Machines and mathematics excel at 

quickly obtaining and processing massive amounts of data. To this end, it is our goal to 

automate data collection and interpretation as much as possible, so that the formulation 

scientist's participation will consist primarily of determining goals, methods, preparing 

experiments and designing final formulations based on the results. In the next level of 

automation, scientists would still determine goals and methods, but the machine would 

choose and prepare its own experimental test cases.

An automated method would potentially work roughly as follows. The equipment would 

consist of a modern liquid handler, such as the Labcyte Echo®, robotically coupled to a 

microplate reader, and controlled via a suitable programming interface. First, spectroscopic 

measurements of the native form of a macromolecule would be characterized over a region 

in search space. By characterize we mean finding the simplest accurate mathematical 

description. This would be akin to a more sophisticated version of the empirical phase 

diagram. To cover the search space we would use an advanced “Design of Experiment” 

technique known as “adaptive sampling”.81 Essentially, the customary grid of points in 

search space (the test cases) would be replaced by a growing set of points, in which each 

new point is chosen based on the information contained in previous points. Next, 

measurements of the macromolecule after accelerated stress would be characterized. In this 

second step, prior information would be available from both the initial characterization and 

from the characterization of other macromolecular systems. The prior information would be 
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used to optimally distribute the test cases in search space, reducing the required number of 

such studies. We mention this idea because it is the natural end point of current research. At 

present, however, it is only hypothetical.

New pharmaceutical applications of EPDs

Several new pharmaceutical applications for EPDs are currently being explored in our 

laboratories. One straight forward new application is the extension of the current EPD 
approach to different stresses and different dosage forms. As shown in Table 2, most EPDs 
generated to date have evaluated liquid formulations using temperature, solution pH, ionic 

strength and macromolecular concentration as the primary stresses to perturb the structure of 

a biomolecule or macromolecular complex. Additional environmental stresses that could 

easily be adapted to EPD analysis include freeze-thaw, lyophilization and shaking/agitation. 

For example, in terms of development of a frozen liquid or lyophilized dosage form, the 

effect of multiple freeze/thaw steps as well as the effect of freeze-drying cycles and 

reconstitution could be evaluated using the same biophysical techniques described above. 

Measurements of protein conformational integrity and stability in the solid state itself could 

also be explored by EPDs using FTIR and Raman spectroscopies, as well as DSC. 

Identification of phase transition regions could then be used to setup an excipient screening 

approach for these stresses.

The EPD approach could also be applied to develop a better understanding of different 

degradation pathways as a function of environmental conditions. In the case of shaking or 

agitation stress, different shaking speeds, or rotations per minute, could replace temperature 

as a stress factor. Moreover, new biophysical analytical approaches could be added 

including detection of protein particles by multiflow digital imaging (MFI) or Nanosight 

technology. If combined with SE HPLC and OD350 measurements, an EPD could be 

generated to better characterize protein aggregation and subvisible particle formation. In 

addition, the EPD approach could also be used to examine chemical stability of 

macromolecules. For example, the rate and extent of specific Asn deamidations or Met 

oxidations in a protein could be mapped as a function of temperature and solution pH. These 

“chemical” EPDs could also be overlaid with conformational EPDs to better understand the 

inter-relationships(s) between chemical and physical stability.

Finally, the unique ability of the EPD method to use a wide variety of biophysical 

techniques to generate and analyze a large amount of data assessing overall structural 

integrity and conformational stability of biomolecules could potentially be applied to 

analytical comparability during development of different biopharmaceutical drugs and 

vaccines. For example, since the EPD method does not require much protein (1-10 mg), and 

since availability of protein is often a limiting factor in early formulation development, the 

generation of EPDs for different candidate molecules could be used as a tool to select the 

best candidate in terms of “developability” properties such as stability and solubility 

profiles. Moreover, during later development, process and product changes are usually 

required to scale up the process for commercial use. These changes often lead to subtle or 

more dramatic changes in the biomolecules post-translational modifications or degradation 

profiles (e.g., glycosylation pattern or extent of oxidation of a specific Met residue). The 
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ability to monitor the effect of these changes on the overall structural integrity and 

conformational stability of biomolecules remains an area of ongoing interest, especially as a 

possible surrogate for more complex assessments of conformation such as biological assays. 

The ability of the EPD approach to compare the same biomolecule with differing 

glycosylation patterns and/or chemically altered amino acid residues is currently being 

evaluated.

One challenge with this approach is to better assess the precision of the phase identification 

stage of the EPD methodology. For example, it is important to establish if the differences 

observed between two protein preparations is greater than the differences observed between 

multiple measurements of the same protein preparation. In addition, as described in Figure 

12 in the previous section, additional higher dimensional information can be added to the 

standard EPD through the use of changes in texture. This approach, although not routinely 

used to date, could eventually provide additional structural information for EPDs being 

generated for the purpose of analytical comparability. Finally, multiple environmental 

stresses could be utilized (temperature, pH, ionic strength, agitation) to build up a more 

comprehensive database to compare the structural integrity and conformational stability of a 

biomolecule prepared from different cell-lines or cell culture/purification/formulation 

processes.

Conclusion

Modern biopharmaceutical drug development time-lines, combined with limited availability 

of sufficient material, can result in a variety of challenges for the formulation scientist 

attempting to rapidly design and develop stable dosage forms for clinical use. Our quest is to 

enable faster and more thorough screening searches of stabilizing agents and solution 

conditions by more fully utilizing the information contained in data sets from experimental 

methods which examine the structural integrity and conformational stability of 

macromolecules and their complexes. We strive to explore as much of the available search 

space as possible, using mathematical techniques to obtain the maximum amount of 

information from the data.

The interpretation of large data sets is made difficult by high dimensionality and the 

existence of conflicting information. Formulation scientists typically determine transitions in 

macromolecular structure by using techniques that look at the data locally. Unfortunately, 

global features on high-dimensional data spaces are not always revealed by such local data 

inspection. Each experimental method provides a picture of one or more different aspects of 

the target macromolecule. As indicated previously, this situation is similar to the tale of the 

blind men and the elephant, where the the elephant represents the macromolecular drug or 

vaccine, and the various blind men touching different parts of the elephant represent the 

different experimental methods. The formulation scientist must assimilate all of the 

conflicting information into a single picture of what an elephant must look like. The lack of 

an accessible global picture of the data can result in an undesirable degree of approximation 

of macromolecular transition points brought on by different environmental stresses.
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A standard way to reduce the dimensionality of data is by use of the singular value 

decomposition (SVD). SVD returns a number of spatial axii, defining spaces on which the 

data can be approximated. The approximation error can be minimized by using a space 

defined by the most important spatial axii. The projection onto that space is the best possible 

approximation to the data that can be made on the number of dimensions retained. To 

provide a convenient visual image, the resulting low-dimensional positions can be converted 

into colors or textures and presented as an image. Such an image is called an empirical phase 

diagram (EPD). The empirical phase diagram method guides the formulation scientist by 

assisting in the visualization of high dimensional information, the determination of 

macromolecule identity and transition points, and a reduction of the size of search spaces. 

This approach is quite different from that of the commonly used “Design of Experiment” 

approach which lacks high density data and produces holes in the picture produced.

The EPD method has found many uses in the optimization of various types of formulations, 

and many case studies have been published concerning their application to various 

macromolecular complexes such as viruses and lipoplexes. The EPD approach has been 

extended over time to include the addition of multiple biophysical measurement techniques 

and different search space variables. The use of empirical phase diagrams is not limited to 

proteins and plasmid DNA molecules, but includes larger macromolecular complexes such 

as viruses and whole cells. One can potentially incorporate almost any kind of information, 

including measurements of structural dynamics, aggregation kinetics, chemical stability or 

biological function as well as other common pharmaceutical variables of stress such as 

agitation and freeze/thaw cycles. Empirical phase diagrams have also been demonstrated to 

contain information concerning the functional and evolutionary relationships of 

proteins.10-12,16,17 Using EPDs, macromolecule identity has been found to be conserved 

over contiguous regions of search space.

The use of EPDs has brought us to a vantage point where we see clear evidence for a 

previously unrealized treasure trove of hidden information concerning the higher order 

structural integrity and conformational stability of biomolecules and larger macromolecular 

complexes such as viruses and lipoplexes. Much work remains, however. Data consists of 

combinations of different types of information. Each type is mixed with other types in 

complex ways, and has its own meaning, prominence in the data, and significance for the 

task at hand. The inter-relationships between these factors is complex, requiring systematic 

study within a mathematical framework. However, the journey will be worth the effort. The 

exhaustion of information in macromolecular data sets suggests a future in which access to 

new information leads to novel formulation and stabilization methods.

Acknowledgments

The work of NM has been supported by NIH grant NIH48811, under project 5T32AI070089, titled “Graduate 
training program in multidimensional vaccinogenesis”. We thank Dr. Weiqiang Cheng for providing the FTIR data 
for Figure 12.

Maddux et al. Page 27

J Pharm Sci. Author manuscript; available in PMC 2014 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Appendix

In this Appendix we state the properties of the singular value decomposition (SVD) and the 

connection between the singular values and the reconstruction error. Many mathematical 

software packages have a command for calculating SVD's.

Standardization and preprocessing of data produces an l×m matrix Dij of data, where indices 

i=1…l, j=1…m. The singular value decomposition of D is

(2)

where d=Min(l, m). The decomposition exists for any matrix, whether real or complex, 

square or rectangular. The matrices Uiα and Vαj are calculated by solving for the 

eigenvectors of the covariance matrices DDT and DTD:

where Uα is a column of the matrix Uiα, and Vα is a row of the matrix Vαj. For complex 

matrices replace the transpose DT by the adjoint D†.

Both DDT and DTD are real symmetric, or complex self-adjoint, and positive definite. The 

numbers Wα, called singular values, are by convention real and positive by a choice of sign 

(or complex phase) of the eigenvectors. Also by convention, the singular values are sorted in 

order of decreasing size, and the eigenvectors are sorted accordingly.

The rows of Vαj are normalized. Since they are eigenvectors, they are orthogonal to one 

another:

Likewise for the columns of Uiα:

The rows of V and the columns of U are called singular vectors. When D is real, U and V 
are also real.
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The decomposition is unique up to a complex factor chosen for each pair of eigenvectors:

Even when D is real, the signs of the singular vectors are not uniquely determined by the 

decomposition. This is an additional reason why similar data sets can produce phase 

diagrams with different colors.

Equation 2 can be read either as a matrix product or as a sum of matrices, each identified by 

the index α. The second interpretation is helpful. These summand matrices exist in the 

vector space of l×m matrices. The natural vector norm in this space is the Frobenius (or 

Hilbert-Schmidt) norm ║M║, which for an l×m matrix M is defined as

The norm of each summand in Equation 2 is Wα :

Since the numbers Wα are sorted in decreasing order, Equation 2 is a series of corrections 

decreasing in size. For many data sets, the most common result is that the data can be 

approximated well by a sum over just the top few summands α, since the largest singular 

values tend to be much larger than the rest. If we use the top n singular values, where 1≤n<d, 

Equation 2 becomes

where D̃ is the approximated data.

In the vector space of l×m matrices, the summands are orthogonal:
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Since the summands are orthogonal and their individual norms are Wα, the norm of the 

partial sum D̃ is the same as the ordinary vector norm of the Wα included in the sum:

The RMS reconstruction error, directly expressed as

can also be expressed as
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Figure 1. 
An empirical phase diagram (EPD) assists in the visualization of a data set resulting from 

the methods listed in Table 1. Figures A-F show measurements of an IgG1 monoclonal 

antibody collected at pH 3 (black), 4 (red), 5 (green), 6 (yellow), 7 (blue), and 8 (magenta). 

(A) CD molar ellipticity at 218 nm, (B) UV intrinsic fluorescence (UV-IF) peak position and 

(C) intensity, (D) tryptophan fluorescence lifetime, (E) static light scattering (SLS), and (F) 

ANS extrinsic fluorescence (ANS-EF) intensity. Error bars in (A-C and E-F) are from three 

independent experiments.4 Figure (G) shows an EPD based on the above data. Figure (H) 

shows an EPD based on protein dynamics measurements (data not shown, see the 

applications section for more information).
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Figure 2. 
Empirical phase diagrams have found many uses in the optimization of various types of 

formulations. Many case studies have been published concerning their application to various 

systems and their extension by the addition of measurement techniques and search space 

variables. The EPDs in this figure are only from papers published in the Journal of 

Pharmaceutical Sciences. Many more EPDs have been published in other journals or 

generated in proprietary studies. Refer to Table 2 for more information concerning each 

EPD. All EPDs in this diagram have temperature (°C) as the vertical axis. Diagrams 1-35 

use pH on the horizontal axis, and diagrams 36-40 have the indicated stress variables on the 

horizontal axis. All EPDs in this article have been reformatted for uniform layout.
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Figure 3. 
An illustration of three types of spaces, using simulated data. In Figure (A), four pH values 

define a one dimensional search grid in search space, and ratios of secondary structure type 

illustrate a protein phase space. Figure (B) shows how two measurement types define a 

measurement phase space. The transition pH values disagree when we plot measurements 

separately, as in Figures (C) and (D). A plot in measurement phase space (B) synthesizes the 

information, but will not work as a visual aid for high dimensional data.
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Figure 4. 
Principal Components Analysis can be used to project two dimensions into one. The 

procedure works the same way for high dimensional data (see Figure 5 and 6). We will use 

the simulated data shown in Figure 3B. (A): First we center the measurements at the origin, 

since we are interested in transitions, not average values. (B): Next we normalize each 

measurement so that they have equal influence on the result. (C): Finally, we use the 

Singular Value Decomposition (SVD) to find the optimal line for projection (shown in 

blue). (D): If we plot the position along the blue line, we see that the difference is greatest 

between pH values 5 and 6.

Maddux et al. Page 38

J Pharm Sci. Author manuscript; available in PMC 2014 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
An example of the Singular Value Decomposition (SVD) using simulated data. (A) is a plot 

of three simulated peak shifts Δλ1, Δλ2, and Δλ3 as a function of temperature. If we could 

perceive two dimensions but not three, the transition between 50°C and 70°C might be 

difficult to see. Therefore, we would want to reduce the data to two dimensions in a way that 

optimally retains the information in the original data set. (B) shows the plane (in pink) 

which gives the optimum 2D projection. This plane is determined by SVD, and is defined by 

the vectors X1 and X2(in blue). The projection error is shown as red lines. (C) is a 2 

dimensional plot of the same data, using the positions within the pink plane. This is a plot of 

matrix A (see text). (D) shows the optimal one dimensional projection, demonstrating that 

the error is larger. This plot uses the first column of matrix A (see text).
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Figure 6. 
Illustration of the steps in the Empirical Phase Diagram method, using simulated data. (A): 

Choose a search space and a search grid. In this case, the search space is 2 dimensional, 

varying temperature and pH. In each dimension, two values have been chosen, forming a 

grid. (B): Collect data at each point of the search grid. The data in this example is 5 

dimensional. (C): Standardize the data and project it into 3 dimensions. (D): Rescale to the 

range (0,1), and express as a color. (E): Transform the colors into an image.
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Figure 7. 
Empirical phase diagrams(EPDs) of the peptide drug pramlintide at low and high 

concentration,7 and concentration dependence at pH 4. Low concentrations (0.088 mg/ml) 

are represented in A-C. The experimental techniques used to construct A-C were as follows: 

(A) second derivative UV absorbance peak shift and OD350, (B) same as (A), adding 

fluorescence intensity and peak shift, (C) same as (B), adding the CD change at 204 nm. The 

peptide at high concentration (8.8 mg/mL) is represented in (D), using the same 

experimental techniques as (B). An EPD at pH 4 as a function of peptide concentration is 

shown in (E), using the same experimental techniques as (B).
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Figure 8. 
An empirical phase diagram for two toxins and toxoids of Clostridium difficile, created 

using OD350, UV-IF, ANS-EF, and CD data.16 Data were normalized simultaneously for the 

corresponding toxin and toxoid. (A) Toxin A; (B) Toxin B; (C) Toxoid A; (D) Toxoid B.
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Figure 9. 
Empirical phase diagram for Norwalk virus-like particles (NV-VLPs) based on UV 

absorbance, intrinsic and extrinsic fluorescence and CD results.23 Four distinct phases (P) of 

the NV-VLP were observed: P1, native, intact form; P2, disassembled; P3, soluble VP1 

oligomers; P4, aggregated. The nature of the protein in the various phases was confirmed by 

transmission electron microscopy studies.

Maddux et al. Page 43

J Pharm Sci. Author manuscript; available in PMC 2014 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10. 
Empirical phase diagram of attenuated Measles virus.24 Data used to generate the EPD were 

measurements of mean effective diameter by DLS, intensity of 562 nm light scattered at 90°, 

CD at 222 nm, intrinsic fluorescence intensity at 322 nm, ANS peak position, ANS 

fluorescence intensity at 469 nm and generalized polarization of laurdan fluorescence.
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Figure 11. 
Ionic strength-pH empirical phase diagrams of various nonviral gene delivery complexes 

formed between plasmid DNA and four cationic carriers.28 Each EPD has pH as the 

horizontal axis and ionic strength (mM) as the vertical axis. The experimental techniques 

used were DLS, CD, and YOYO-1 EF.
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Figure 12. 
When the projection error is large it can be reduced by incorporating more dimensions. In 

(A)-(C), we show the primary color images (red, green and blue) of an empirical phase 

diagram. They are ordered by descending significance from left to right. For axis 

information, see (E) and (F). After solid red, green, and blue, we can use images containing 

structure that is smaller than the individual phase diagram blocks. This will represent high 

dimensional information as changes in texture. Such an image is shown in (D). (E) is a 3 

dimensional empirical phase diagram of IgG, using FTIR spectra which have been 

preprocessed with a Fourier filter to emphasize mid-size spectral features. (F) is a 4 

dimensional empirical phase diagram of the same data as (E), showing fourth dimensional 

information as changes in texture. Notice that the reconstruction error has decreased. The 

diagram has also been automatically segmented into 5 parts (see text).
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Table 2

Biomolecules and larger macromolecular complexes, analytical techniques and environmental stress 

conditions evaluated by empirical phase diagrams. See Table 1 for definitions of the technique abbreviations.

Target Techniques Search Space Figure Ref.

Measles virus CD, DLS, SLS, EF pH, Ta 10 24

Human respiratory syncytial virus CD, UVAS, OD350, UV-IF pH, T 25

Live atten. Ty21a bacterial typhoid vaccine CD, EF pH, T 29

Adenovirus type 5 (Ad5) UVAS, DLS, UV-IF, EF pH, T 2.32, 2.33 26

Recombinant ricin toxin A-Chain vaccine CD, UF-IF, EF pH, T 2.20, 2.31 73

Adenovirus type 2 (Ad2) CD, UVAS, OD350, DLS… pH, T 2.34 27

Hepatitis C virus envelope glycoprotein E1 CD, DLS, UV-IF, EF pH, T, Sa 2.37 - 2.40 21

Clostridium difficile toxins and toxoids CD, OD350, UV-IF, EF pH, T 8 16

Type III secretion system tip proteins CD, UVAS, UV-IF, EF pH, T 14

Type III secretion system needle proteins CD, UVAS, EF pH, T 17

Malaria antigen EBA-175 RII-NG CD, UV-IF, EF pH, T 15

H1N1 influenza virus-like particles CD, DLS, EF pH, T 2.25 22

Norwalk virus-like particles CD, UVAS, UV-IF, EF pH, T 9 23

Nonviral gene delivery complexes CD, DLS, EF pH, Ia 11 28

Human Inteferon-β-1a CD, UVAS, UV-IF, EF pH, T 2.12, 2.19 5

Bovine granulocyte colony stim. factor UVAS pH, T 2.26 6

Immunoglobulin-G (IgG) CD, EF, PPC, HRUS, TRFS… pH, T 1 4

Pramlintide (antihyperglycemic peptide) CD, UVAS, OD350, UV-IF pH, T, Ca 7 7

Monoclonal antibodies CD, UVAS, OD350, UV-IF T, C 2.36 8

Clostridium botulinum type A neurotoxin CD, UV-IF, EF pH, T 9

Molecular chaperones Hsc70 and gp96 CD, UVAS pH, T 10

Human fibroblast growth factor 1 (FGF-1). CD, UVAS, UV-IF, EF pH, T, S 2.6 - 2.11 11

Fibroblast growth factor 20 (FGF-20) CD, UVAS, UV-IF pH, T 12

rPA of B. anthracis CD, UV-IF, EF pH, T 2.31, 2.35 13

Recombinant vault particles CD, UV-IF, EF pH, T 2.30 18

Recombinant human gelatins CD, UV-IF, UVAS pH, T 2.21 - 2.24 19

EC5 domain of E-Cadherin CD, UV-IF, UVAS pH, T, N/Ra 2.27 - 2.29 20

a
T = Temperature, I = Ionic Strength, C = Concentration, S = Stabilizer, N/R = Native/Reduced
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