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L [	 The	 in a previous paper for extending the neutron scattering formalism of Zemach
N ATIU -- and Glauber to an y type of molecular rotator have been employed to derive generalized forms of the 

SPACE IIJ . flØsections for rotator scattering. A mass-ratio expansion for the treatment of the high-energy 
 lirnt is illustrated on the classical cross section and then employed in the treatment of the more general 

quahtux-mechanical expression for the differential cross section. The results apply to an arbitrarily 
asymmetric rotator. The very low energy approximation is carried out for the symmetric rotator, and 
the procedure is compared with the explicit summing of the partial cross sections for individual rotational 
transitions. The inelastic correction to the static approximation for interference scattering is calculated 
to an accuracy of first order in the mass ratios for the case of the symmetric rotator.

00 WvA 

4-
r 

7 ()(P ewl 0 

1. INTRODUCTION 

T
HE formalism of Zemach and Glauber' for 
treating the scattering of low-energy neutrons 

by chemically bound nuclei in a molecule was applied 
by them only to the simplest types of molecules as 
far as the effects of the rotational degrees of freedom 
are concerned. Procedures for generalizing their 
results to any type of molecular rotator have been 
given recently' and were used to calculate the distribu-
tion of scattered neutrons over energy and angle up 
to the accuracy of the first quantum-mechanical 
correction to the classical cross section. The remaining 
generalized differential cross sections for rotator 
scattering corresponding to the other types of approxi-
mations originally examined by them have now been 
derived and will be presented here. 

In the Fermi pseudo-potential approximation the 
differential cross section of the entire rotator for a 
given initial rotational state can be written in the 
notation of reference 2 as 

(ö,e) = (k/2irko)	 f o	 e"(X,,',,)d1,(1.1) 
C'., 'o 

in which the expectation value in the integrand has 
the form 

(X,.,)=	 I a,'o,e" exp(iIc b,')e_'"' exp(—iic b,) 

Into this basic expression derived by Zemach and 
Glauber there has been incorporated by the use of 
operator techniques the summation over all final 
states allowed by the conservation laws. The total 
potential presented to the neutron by the rotator is 
composed additively of the individual nuclear potentials, 
so that Eq. (1. 1), which is based on the first Born approx-
imation, has the form of a sum of terms which are of two 
general types. A direct scattering term is one which is 

'A. C. Zemach and R. J . Glauber, Phys. Rev. 101, 118, 129 
(1956). 

H. C. Volkin, Phys. Rev. 113, 866 (1959). This paper will 
hereinafter be referred to as I and an equation appearing in it 
will be designated by the numeral I preceding the equation 
number.

attributable to a single nucleus of the rotator while an 
interference term involves two scattering nuclei. The dif-
ferential cross section for the direct scattering from a nu-
cleus in the classical or high-energy limit is developed in 
powers of the ratio of the neutron mass to an effective "ro-
tational mass" of the molecule. The calculation is carried 
through up to terms of the fourth order in the mass 
ratio. The expansion of the general expression for the 
cross section in powers of mass ratios is then discussed 
and the calculations up to terms of the second order are 
presented. The very low energy region is considered 
next and an approximate cross section which is suitable 
for this limit is derived for the case of the symmetric 
rotator. When the neutron energy is very low, the 
number of energetically allowed rotational transitions 
may be so limited that a direct summing of the partial 
cross sections for individual transitions is feasible. 
This alternative procedure is compared with the 
preceding calculation where the low-energy approxima-
tion was applied to a direct scattering term of Eq. (1.1), 
which contains implicitly the sum over all possible 
transitions. Finally the portion of the differential cross 
section which arises from the interference effects due 
to the presence of more than one scattering nucleus in 
the rotator and for which no classical approximation 
exists is treated by means of the mass ratio expansion 
and the calculation for the symmetric rotator is 
exhibited up to the first order terms. 

2. RESUME OF BASIC FORMULAS 

The notation to be used here is taken over directly 
from I. We consider the scattering of a neutron with 
initial momentum k0 to final momentum k by a rotator 
with fixed center which is in the initial state I JM) 
having energy E1, angular momentum J, and compo-
nent of angular momentum along an axis fixed in 
space M. The third quantum number required to 
specify a rotator state is omitted for simplicity in the 
case of an asymmetric rotator energy eigenstate, where 
it has no relevant physical significance. Scattering with 
momentum gain c= k—k0 to the neutron corresponds 
to a certain scattering angle and energy gain e= (2m)' 
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X (k2 — k 02). The general expression for the differential 
cross section of the entire rotator is given by Eq. (1.1). 
The direct scattering term due to the Pth nucleus is 
the term with v'= v, while the two terms involving v' 
and ii, with v'/- v, are the interference terms contributed 
by the corresponding pair of nuclei. The states which 
differ only in orientation of the angular momentum 
vector, i.e., states of different M, are of course degen-
erate in energy. The cross sections must therefore be 
averaged over the initial values of M. Also it is sufficient 
to consider the scattering as spin independent, since the 
consequences of spin dependence have been treated 
explicitly by Zemach and Glauber. Then the part of 
the differential cross section which is due to a single 
nucleus having position vector b relative to the center 
and scattering length a is 

7J(t,E) = k(2xko)_1f dl e"(x)j,	 (2.1) 

where the expectation value is given by 

(x)J= a2 (2J+ 1)_i	 (JMj ei+B+C) I JM). (2.2)

M J  

The Hermitian operators A, B, C are defined by 

A =H—E1, 

B= —ic.Q.L+jc.ic 

C=icRg. 

The rotator Hamiltonian may be written as H= L . G 
• L, where L is the angular momentum operator. The 
tensor G is the inverse of the moment of inertia tensor, 
G= i. We further define the tensor quantities B5 

€imjbm, R== BtGB, Q BtG , and the vector Cm = biGim 
- (Trace G)bm. 

In evaluating the matrix elements (2.2) it will be 
necessary to express the vector and tensor quantities in 
terms of components relative to some system of body 
axes fixed in the rotator, but not necessarily the system 
of principal axes. When so taken the components of 
the vector b and of the tensors given above are constants 
and commute with the components of L and Ic as well 
as with each other. The momentum transfer vector ic, 
which is fixed with respect to space axes, becomes a 
dynamical variable when seen from the rotating system. 
The components of ic and L may easily be shown to 
obey the following commutation relations in this 
description. 

[L,L1]= i€ JkLk, [K1,Lf] = iEjjklck,
[K1,KJ]==0. (2.3) 

Let us now designate the set of body axes along which 
components are being taken by xyz and a set of space 
axes by XYZ, one of the latter, say Z, being taken for 
convenience as parallel to ic and as the space direction

for which M specifies the component of angular momen-
tum. Then a complete set of commuting observables 
for the rotator is L2 , the component of L along a body 
axis, say L2, and the component of L along a space 
axis, say Lz. The corresponding set of quantum 
numbers J, K, and M label a complete orthogonal set 
of basic states .1KM) for the system. An energy 
eigenstate I JM) can always be expressed as 

J

	

aKJKM).	 (2.4) 

It is to be understood that in the expansion the compo-
nent K refers to the z axis of the body system chosen 
to resolve components of the vector and tensor quanti-
ties. Then the operation of L in (2.2) is specified by 

L I JKM) =K I JKM),	 (2.5a) 

	

(L = L,) I JKM)= [(FFK) (J±K+ 1)]	 (2.5b)


XI J, K±1, M). 

In terms of the basic set of states we may write the 
expectation value (2.2) in the form 

(x)j=a2 F, aK*aK,(x)JKK,, 

with 

(X)JKK' (2J+ 1)—I Em (JKM J e-it(A+B+C) I JK'M). 
(2.6) 

The Euler angles which specify the orientation of the 
body axes relative to the space axes are defined as 
follows: 0 and cc are the polar and azimuthal angles, 
respectively, of the z axis and l' is the spin angle about 
this axis. The wave function representatives of the 
basic set in these variables may be specified by 

I'JKM(,12,%t') = [(2J+ 1)/87r2]U()KM (cc,0,/i), 

where z cosO and U(J) KM is the KMth matrix element 
of the Jth irreducible unitary representation of the 
rotation group. These matrix elements of the rotation 
operator are given explicitly as 

U(j) k.	 ykj U(cc,0,i/') jjm), 

with

U((p,0,l') 

where the J1 satisfy the usual angular momentum 
commutation relations and I jm) is an eigenstate of J2 

and J3. Because of the different conventions which 
have been used by various authors we mention that the 
rotation operator U given here transforms an arbitrary 
state vector (' I and arbitrary operator 0 in the 
following manner: (' I U(,$j) and U'OU are the 
state vector and operator which look in the reference 
system XYZ produced by the rotation () from the 
original reference system X YZ as (' I and 0 do, respec-
tively, in XYZ. In terms of the spherical harmonics



SLOW—NEUTRON SCATTERING BY 'ROTATORS. II 	 1031 

Vim defined by Condon and Shortley' it may be shown 
that

UOM ((p,O,i,ti) = [4r/ (2J+ 1) J 1 VJM(O, cc), 

U Ko((P,O,'Ji) (_ 1)K[41./ 
(2J+ 1)]1YJK(8,1/.'). 

(2.7) 

For certain purposes it will be advantageous to use the 
principal body axes 2 in which case the tensor I is 
diagonal. We write the expansion (2.4) explicitly in 
this case as

	

JM)= RiIJKM),	 (2.8) 
where 1 is the component of L along the principal 

axis. The form (2.8) is the one generally presented in 
the literature. It was shown in Appendix C of I that 
the expansion coefficients are related by the transforma-
tion law

	

aK=>R ãRU1 RK(a,/9çy),	 (2.9) 

where a, 3, 'y are the Euler angles of the principal axes 
system relative to the system xyz. The principal axes 
have the advantage that for a symmetric rotator the 
states I JKM) are themselves the energy eigenstates if 
the 2 axis is the axis of symmetry, i.e., under these 
conditions the _expansion (2.8) reduces to ag = 1, 

' = 0 for K'^K. 

3. CROSS SECTIONS FOR THE DIRECT

SCATTERING 

For large values of k0b the term C in the exponential 
operator of (2.2) dominates. The terms A and B are 
of order (Kb) 2 and (Kb)' relative to C. If we write 
X= — ii and the exponential operator as exp(XC)f(X) 
with f(X)=exp(—XC) expX(A+B+C), the classical 
approximation corresponds to replacing f(X) by the 
unit operator, while the first quantum-mechanical 
correction consists of retaining terms in the expansion 
of f(X) up to order (Kb) 2. These cross sections are 
derived in I, Sec. 3. The result of the classical approxi-
mation can be written as 

OcI(,€) = 2a2k[ir(rir2)4koicx]1K(p) 

for _r2,c2^e^0, 
= 2a2k[ir (rir2) *ko,c2x] 1qK(q)	 (3.1) 

for _r1,c<e<_r,K2, 

0 otherwise, 

where r, and r2 (ri^!r2 >0) are the two nonvanishing 
eigenvalues of R, K is the complete elliptic integral of 
the first kind, and 

x2 = 1+2(r1c2)', 

p2= q-2 r-'(x-- 1), 

r= r,(ri — r,)'. 

The values of r1 and r2 are given explicitly in terms of 
the principal moments of inertia and the components of 
b relative to the principal axes in I (3.2).

On introducing the dimensionless variables 

L kko7'[1+6(1—k 0k-' cost ) ]1, 

mr, (1— x2), 

we find the differential cross section coi(t)—fq(t,e)de 
becomes 

Oci () = 2a2 (r1r,) 4[ir (ri — r2)]_'[f dp pK(p) 

X 1 (1+rp2) .4+f dq qK(q)L(r+q2)_I1. (3.2) 

With the help of the relation kk07'= (1+o)-'[o cost 
+(1—a2 sin26)I], we may express A in terms of the 
variable ö alone and can then carry out the power 
series expansion

L	 dj" 

The first few expansion coefficients are 

d0 =1, dir_2(1_cost), 

d2=(1—cos6)(5-3 cost), d3=_3(1_cos6)2, 

d4 :=k(1_cosz)2 (27_ 10 cosz-5 cos). 

As a function of p the variable 5 has the form 6=mr1rp2 
X (1+rp2 ' while as a function of q it takes the form 
6=mrir(r+42)_1. 

If we insert the series expansion of i and use the 
appropriate functional form of b in the two integrals of 
Eq. (3.2), we are led to the relation 

o(t)= (2a2/7r)[r(1+r)] 1 ,, dn(2flijr)" 

X [4k . . (2n+ 1)'] (a/(9r)"g(r), 

with g(r)=h(r)+r-1h(r-1) where /z(r)=J7 1 dq qK(q) 
X (r+q2)-1. 

In order to evaluate the integral h(r) one can derive 
from certain differential relations for the complete 
elliptic integrals the indefinite integral' 

rf dq qK(q)(r+q2)_=q2K(q)(rq2)_

—ll(r; q)(r+q), 

where H is the complete elliptic integral of the third 
kind. Substituting the desired limits yields 

h(r) = [r(1 +r)][ ir— tan' (rl)], 

so that

g(r) = 

We obtain finally the expansion of the classical cross 

E. U. Condon and G. H. Shortley, Theory of Atomic Spectra	 4 Integrals similar to this have been calculated in full detail by 
(Cambridge University Press, Cambridge, 1935), p. 52. 	 K. F. Muller, Arch. Electrotech. 17, 336 (1926).
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section in powers of the mass ratio mr1: 

oi	 = 1 + (mn) (1+ 2n) (1+n)'di+ (1/15) (mn)2 

x (3+ 8r+ 8n2) (1 +n)-2d2+ (1/35) (mn)3 

x (5+18r+24r2+16r3)(1+n)3d3 

+ (1/315) (mrj) 4 (35+ 160n+ 288n2 

+256n+ 128r )( 1 +r) d4+" . (3.3) 

The mass ratio expansion for the general expression 
(2.2) will now be considered. Following Zemach and 
Glauber we take the Taylor expansion of the exponential 
operator and obtain thereby a corresponding expansion 
of the expectation value in powers of (it) which we 
write as

(x)J=  

This is substituted into (2.1) and then the integration 
over the variable e is performed. The differential cross 
section takes the form of a series expansion in powers of 
the mass ratios (mb12/I,), 

0j (?) ho	 [(mk1d/dk) "ke]k =k0. 	 (3.4) 

In the expansion of exp[—it(A+B+C)] we see 
immediately that terms having A all the way to the 
left or right give no contribution to the expectation 
values in Eq. (2.2) since A IJM)=0. Terms of odd 
degree in B likewise contribute nothing to the expecta-
tion values. It may be seen from Eq. (2.6) that they 
lead to integrals of the form (A 4) which vanish since 
their integrands are odd. When we retain only contribut-
ing terms the expansion of (2.6) to third order in t has 
the form 

(X)JKK' = ôKK'+(2J+l) 1 Fm (JKMI(—.it)C


-I-(it)2(B2+C2)— (1/6) (it) 
X (BAB+CAC+B2C+CB2+BCB+C3) 

X I JK'M). (3.5) 

One choice of body axes that suggests itself for 
evaluating the matrix elements (3.5) is the system in 
which R is diagonal. The position vector b is an 
eigenvector of R corresponding to the eigenvalue zero, 
and we take the direction of the z axis along this vector. 
The components of Q, G, and c in this system are given 
in terms of r1, n2 and the principal moments of inertia 
in I, Sec. 3. 

The procedure for evaluating the expectation values 
(2.6) is first to commute the angular momentum 
components all the way to the right or left of the terms 
in which they appear. Their operation on the basic 
states is described by Eqs. (2.5). We then go over to 
the Euler angle representation. Since no factors depend-
ent on M have been introduced, the average over M 
can be carried out immediately by using the unitary 
property of the wave functions. This is illustrated in 
the Appendix where the resulting integrals are eval-
uated. Finally the expansion coefficients e are inserted

into Eq. (3.4). We note that the contributions of C 
and C2 in Eq. (3.5) are formally independent of the 
choice of body axes. This can be seen as follows. Since 
C does not contain the angular momentum operator, 
an arbitrary function f(C) does not connect states of 
different K regardless of the axes system in which 
components are taken. More precisely we have that 

(2J+ 1)-' E M (JK'MI J(C) I JKM) 

= (1/87r2)oKK.f f(C)dw, (3.6) 

with the integral on the right-hand side being taken 
over all orientations of the rotator. Since C is a scalar 
invariant, its value for a given orientation of the 
rotator is independent of the choice of body axes, and 
therefore the integral is likewise. Using axes which 
diagonalize R and the evaluation of integrals in the 
Appendix, we easily find that the right-hand side of 
Eq. (3.6) for the case f(C)=C equals *6KK1K2(n1+n2) 
and for f(C)=C2 equals (1/60)6KK'14(3n12+2n1r2+3r22). 
The complete computation to second order in the mass 
ratios yields 

oj(t)/a2 =1— m (n i+n2) (1— cost) + (1130)m2 

X (3n12+ 2n1n2+3n22) (1— cost) (5-3 cost) 

+m2 (k0b)-2 ( (n 12+r22) [J (J+ 1)— (K°)] 

+(ni+r2)2+b4(Gia2+Goa2)L(K)+fl 

+EK [(J_K+1)(J+K)1[b2n2Gi3(2K_1) 
X CR(coK*aK_ 1)+ (n22— r12) (J— K+ 2). 
X (J+K— 1)CR(aK*aK_2) 

+ib2niG23(2K — 1)j(aK*aK_ 1)1), (3.7) 

where (K2)=E K coK*aKK2 and CR and ,J denote the 
real and imaginary parts, respectively. 

In the case of the symmetric rotator the symmetry 
about the principal 2 axis permits placing the nucleus in 
the plane of the principalt and 2 axes. The components 
of b relative to the principal axes are then (b 1,0,b 3). Thus 
the z axis lies in the 22 plane and makes an angle 9o=tan' 
X(b i/b 3) with the symmetry axis. The Euler angles of the 
principal axes relative to xyz are seen to be (0, — j3, 0). 
For the energy eigenstate I JKM), we have in Eq. 
(2.8) that	 -	 - 

=1,	 =O for	 (3.8) 

The coefficients aK are then given by the transformation 
law (2.9) as

aK URK(O,	 0).	 (3.9) 

Formally an average over R and —JZ is required, but 
the cross section for the symmetric rotator is in general 
even in K, since the states IJKM) and 

I  
—K —M) 

have the same value for the matrix element in Eq. (2.2) 
and an average over all values of M is taken. That the 
expression (3.7) for c.r(z) is even in K may be verified 
explicitly by using the relation 

U_RK(O,	 0)= (-1)""UK_K(0, 00, 0).
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In I the expression for the first quantum correction 
to the classical cross section was based upon the use of 
body axes which diagonalize R. It was erroneously 
asserted there (p. 871) that the special case of a sym-
metric rotator corresponded to the condition (3.8) on 
the a. The coefficients given by (3.9) are instead the 
generally valid ones. Only when the scattering nucleus 
lies on the symmetry axis is (3.8) also applicable to the 
UK, for then UK(O, 0, O)=o. The results for the 
examples of symmetric rotators discussed in I remain 
unaffected, since for the spherical and linear rotators 
the axes xyz defined above are also principal axes. 

An alternative form for the mass ratio expansion of 
the cross section may be obtained by using the principal 
body axes tg2 to evaluate the matrix elements (3.5). 
Again the results will be given to second order in the 
mass ratios. When the principal body axes are used, G 
is diagonal and in terms of the principal moments of 
inertia Ij is given by Gii The quantities appearing 
in the operator B then take the form 

	

cm=bm(Gmm—Trace G),	 (3.10)

and

0	 b3!2—' —b213' 

	

Q= —b3I —'	 0	 b1I3 ,	 (3.11) 

	

b2117'	 b 112 1	 0 

where the components bi are, of course, taken with 
respect to the principal axes. The same procedure used 
to obtain (3.7) is employed to evaluate the contribution 
of B2 in Eq. (3.5). 

The alternative expression which is found for the 
differential cross section by the means described is 
perhaps a more useful one than Eq. (3.7). The expansion 
coefficients & are the ones generally evaluated in 
computations of molecular wave functions and they 
possess the more elementary form (3.8) when the 
molecules are symmetric. The differential cross section 
may be written as 

o-j(?)/a2 
=1— m(Trace R) (1— cosO)+ (1/30)m2 

X (3r12+2r1r2+3r22) (1— cost) (5-3 cosz) 
+m°ko 2([Ii 2 (b22+b)+I2-2 (b12+ b32)] 
x [J (J+ 1)— (K2)]+ I-2 (b12+b) (K2) 

+[b 1° (I27-1+I3-1 ) 2+b° (I1_1+13_1)2 
+b32 (I1_1+I2_1)2]+ R [(J—K+ 1) (J+K)] 

X (- (2K— 1)I3_Ib3[Il71blR(aR*aR_l) 

+iI27'b2J (R*äR i)]++[I i_2 (b22+ b32) 
_I2_2(bi2b)][(J_K+2)(J+K_ 1)] 
X R (R*ãR_2) - iIj—U21b1b2 

x [(J—K+ 2) (J+K— l)1J (R* .2))). (3.12) 

In order to specialize (3.12) to the case of a symmetric 
rotator, let us take the 2 axis as the axis of symmetry. 
Then 1= 12 and the symmetry permits taking b2=0. 
Furthermore the condition (3.8) is satisfied, so that the

summation term vanishes and (K2) = K2 . The resulting 
expression is even in K. With 11 =12=1 and b2=b12+b3° 
the differential cross section for the symmetric rotator 
becomes 

= 1— (m/IIa)[b213+b 321+b 3213] (1— coso) 
+ (1130) (m1II3)2[3b4I+ 2b213(b121+b3213) 
+3(b121+b3213) 2](1 —cost) (5-3 cost) 
+ (rn/koIIa)°( +1a2 (b2+ b32)[J(J+ 1) _K2] 

+Pbi2K2+b12 (I+I3)2+b32I32). (3.13) 

Two special cases of symmetric rotators are of 
particular interest. For the spherical rotator we set 
13 =1 and average over all values of K, which has the 
effect of replacing K2 by *J(J+ 1), obtaining 

qj ()/a2 = 1— (mb2/I) (1— cost)+ (4/15) (mb2/I)2 
X (1—cost)(5-3 cos)+(mb/ko1)2 

X[*J(J+1)+1]. (3.13a) 

For the linear rotator we need only set K=o and 
b 1 =0 in (3.13). The differential cross section for a 
linear rotator is thus 

qj (t)/a2 =1— 13L (mb21I) (1— cos) + (4/15) (mb2/I)2 
X (1—cost)(5-3 cost)+(mb/koI)2 

x[J(J+1)+1], (3.13b) 

which agrees with the results stated by Zemach and 
Glauber. 

We consider next the region of very low neutron 
energies where the preceding approximations are 
inadequate. Here the mass-ratio expansion may be 
expected either to converge slowly or, for neutron 
energies less than the rotational level spacing, to 
diverge. The low-energy approximation is based on 
the property of Eq. (2.2) that in this limit the term A 
dominates in the exponential operator. In the approxi-
mation to order (k 0b)2 the operator is expanded and 
terms up to second order in B and first order in C are 
retained. The desired form of the operator can then be 
written as

1 
,A(A+B+C) 1+X(B+C)+ A'

fo
 A" Bê"AB 

o  

±A( . . .)(. . .)A+Q(BC) (3.14) 

As explained above the terms with A all the way to 
the left or right give vanishing contributions in (2.2) 
and the term linear in B does likewise in the matrix 
elements (2.6). The matrix elements of C between states 
I JKM> are known from the previous calculations. In 
order to handle the integral term explicitly, we now 
restrict our considerations to the case of a symmetric 
rotator. The symmetric rotator Hamiltonian and 
consequently the operator A are diagonal in the basic 
set of states for which the body-axis component of
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angular momentum refers to the symmetry axis. 
Moreover the eigenvalues are known exactly. Calling 
the symmetry axis the 2 axis and the common moment 
of inertia about the other two principal axes I, we 
write the well-known result 

HIJKM='E(J,K)IJKM) 
E(J,K) = I-1J(J+ 1)+ (I-1_1-1)g2 (3.15) 

To find the contribution of the integral term in 
(3.14) components will be taken in a system of principal 
axes bearing the notation just given. The symmetry 
about the 2 axis further allows us to select the t 2 plane 
so as to contain the scattering nucleus, and hence we 
may set b2 =0 in Eqs. (3.10) and (3.11). Since the 
body axes thus specified are the only ones entering the 
calculations, we shall for simplicity omit the bar on K 
which has heretofore been' associated with the use of 
(2.8). 

Let us specify the initial state of the rotator by 
I JKM). In order to evaluate the expectation value 
(JKMIB exp (X"A)B I JKM), we determine the opera-
tion of B on the state vector. Once the vector B I JKM) 
is known we need only operate on it with the exponential 
operator using (3.15) and then take the scalar product 
of the result with the adjoint vector since B is Hermi-
tian. The desired evaluation can be effected in the 
explicit representation given by the Euler angles 
w=— (,O,') of the body axes. The components of 
relative to these axes are given by 

K -K sinO cos1 
= - (2)K[U(')1o(w)— U'_io(w)], 

K2 = K sinO sin'	 (3.16) 
= —i(2)''1K[U(1)lo(w)+ U'_io(w)], 

1C3K cosO=KU1oo(w). 

The operation of B on the symmetric top wave function 
NJUKsf(u) is found as follows. Insert (3.16) into one 
of the forms given for B. Then the products of matrix 
elements of U are reduced by means of the tabulated 
Clebsch-Gordan coefficients (JK1k J1jK+ k) and the 
operation of the body-axis components of L is given by 
(2.5). The relevant reduction formula' is 

U'o(w) UKM(w) 

.1+1 

= E (JK1kIJ1jK+k)U0)x+kM(w) 
iIJ—tI

X(JM1OJJ1jM). (3.17) 

After performing the computations outlined and 
averaging over M, we collect the contributions of the 
various terms in (3.14) to the expectation value (2.2) 
and obtain finally for the scattering cross section of a 

See, for example, A. R. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University Press, Princeton, 
1957), p. 60.

symmetric rotator in this approximation 

UJK (, e)/a2 
= kk0—'[ l - ,c2b2+ 1,Kb 32J' (J+ i) 1K2] (e) 

+kko'ib32 (2J+ i) —'{ (J+ 1 K) (J+ 1 +K) 
X (J+iY6[€+iX(J+1, K)] 
+(J—K)(J+K)J 16Le+z(J1, K)]) 
+ (1112)kko-1K2b 12([(J+ 1) (2J+ 1)]—' 
X{(J+1+K)(J+2+K)ô[e+z(J+i, K+i)] 
+(J+1—K)(J+2—K)[e+(J+i, K—i)]) 
+[J(J+1)1-1((J—K)(J+1+K) 
X5[e+i(J, K+i)]+(J+K)(J+1—K) 
Xb[e+zX(J, K-1)1)+[J(2J+1)]—' 
X{(J—K)(J—i—K)3[e+L1(J-1, K+1)] 
+ (J+K)(J — 1+K)2[e+(J— 1, K— 1)])), (3.18) 

where the rotational level spacing is written as z(J1,K1) 
= E(J1,K1) - E (J,K). Writing p = - (2m/ko2) (J1,K1) 
we have for the transition (J,K) -' (J1,K1) 

kk&'K2 2ko2 ( i+p) 4[i+ p— ( l+p) 4 cos]. (3.19) 

The condition pJ<<1 holds when the mass ratios are 
sufficiently small. We can expand the right-hand side 
of Eq. (3.19) in powers of p and obtain thereby a 
mass ratio expansion of the low-energy cross section 
(3.18). Retaining terms to second order in p yields the 
first, second, and fourth of the four terms presented 
in the more general expansion (3.13). This agrees with 
the observation of Zemach and Glauber that the mass 
ratio expansion of the low-energy approximation 
contains the terms which dominate at low energies in 
the more general expansion (3.5). 

It is of interest to consider the explicit summing of 
the partial cross sections for individual rotational 
transitions. The procedures involved will be described 
for the symmetric rotator and the very low energy 
case will then be compared to the preceding calculation. 
We begin with the expression for the differential cross 
section of the scattering process, in which the rotator 
undergoes a transition from the initial state ik i to the 
final state Vf,

a,a(k/ko)M,*M,,,	 (3.20) 

where the sum is taken over all nuclei of the rotator and 


M,= ('iIexp(—ib,.)I'1). 

The complete cross section for a given initial state is 
the sum of the partial cross sections (3.20) over all 
final states allowed by the conservation laws. The 
component M of the rotator's angular momentum L 
along 1K remains unchanged during a collision, since the 
change in the neutron's orbital angular momentum is 
perpendicular to i. Hence, with K again designating 
the component of L along the symmetry axis, we 
require the matrix elements for the transitions (J,K)
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—' (J+n, K+k), which we write as 

Mnk=(J+nK+kMIeYp(—i1b)IJKM). (3.21) 

The same system of principal axes as in the low-energy 
calculation will now be used, and we call 0o the polar 
angle of b with the Z axis or x and 00 the angle which b 
makes with the symmetry 2 axis. Recalling that the 
principal t2 plane may be chosen to contain the 
nucleus, we have 110 = tan'(b i/b 3). Now consider the 
expansion of the exponential in (3.21) in Legendre 
polynomials P (cosOo). The addition theorem enables 
us to express each P1 in terms of the polar and azimuthal 
angles of b and 1K relative to the body axes, namely 
(I3,0) and (-0, —st'), respectively. Combining these 
two developments gives 

exp(—ii<.b)= E [41r(21+1)]4(—i)'jj(Kb) 

X E Y1k(/10,0)U(° k0(w). (3.22) 

The matrix elements (3.21) can be evaluated in the 
Euler angle representation by means of the reduction 
formula (3.17). It is seen that each higher 1 value in 
(3.22) introduces larger values of I J+n I in the resolu-
tion of exp( — iKb)UKM. Of course, only energetically 
allowed transitions can actually occur. 

The nature of the low-energy approximation is 
revealed through the asymptotic behavior of the 
spherical Bessel functions for small arguments: 

jz(x)[1 . 3 . . . (2l+1)]_1x1[1_(2l+3)_1x2]. 

Since the cross section for a direct scattering collision 
(v' v) involves the square of the magnitude of the 
matrix elements (3.21), the approximation to order 
(Kb) 2 is a consequence of retaining terms up to 1=2 
in (3.22). In fact, this approximation gives precisely 
the cross section (3.18). For example, contributions to 
the elastic scattering come from the 1=0,1,2 and k=0 
terms with the result that 

J 

(2J+ 1)	 E I M00 12 = 1— ,c2b2+c2b32J' (J+ 1)-'K2 
M=.—J 

The inelastic terms in (3.18) come from the 1=1 and 
k=-1,0,1 terms. 

4. INTERFERENCE SCATTERING 

The part of the rotator cross section due to inter-
ference scattering involving nuclei 1 and 2 is obtained 
by replacing the single expectation value in Eq. (2.1) 
by the pair (X 12)J+(X 21)J. If b 12 =bi —b 2, the first 
expectation value is given by 

(X 12)j= a1a2(2J+ 1)-' EM (JM 
I 
exp(iE . b12) 

Xexp[—i1(A+B 2+C2)] JM>, (4.1)

that they are taken with reference to nucleus 2. In 
the second expectation value the roles of 1 and 2 are 
interchanged. We shall again employ the technique of 
expanding the expectation values in powers of (it) 
and then applying Eq. (3.4). 

The case of a symmetric rotator in the initial state 
I JKM> will be treated to first order accuracy in the 
mass ratios. For taking components we use the system 
of principal axes in which 2 is the symmetry axis and 
the 22 plane is parallel to b 12. Hereafter the bar on 
K will be omitted. We let 7o be the angle which 
b12 makes with the 2 axis and d=b12. In the ex-
pressions to come the notation will be simplified if we 
write components in this system as follows: d= (d1), 
= (k 2), b 1 = (u1,u2,u3), and b 2 = (v i ,v 2,v 3). In (4.1) the 

quantities c and 0 are obtained from (3.10) and (3.11), 
respectively, by inserting for bi the components of 
b 2 . Similarly the tensor R has components R= vj2Ic' 
+Vk2IJ 1, R15 = —vv,Iir', i5^4-jok. Throughout we set 
11 = 12 = 1. Then from the unitary property of the 
U(J) KM we obtain 

(2J+ 1)-1 EM (JKMexp (ix .d)JKM) 

= (1/81r2)f exp(iic.d)dw, 

(2J+ 1)' EM (.1KM 
I 
exp (iic d)B2 1.1KM)

(4.2) 

= (1/87r2)f exp (ix . d)[— Q13K 1 — Q23Kic2 

+CmKm] 

(2J+ 1)' EM (JKMI exp (ix . d)C2 
I 
.1KM) 

= (1/8ir2)f exp(ic•d)Rmnkmknd. 

In (4.2) the integrals are taken over all orientations of 
the rotator. 

The integrals occurring in (4.2) can be expressed as 
a linear combination of integrals which are evaluated 
in the Appendix by the following transformation of 
variables in the integrands. The transformation 
corresponds to a rotation from the original principal 
axes to the system of body axes in which d is parallel 
to the new z axis, i.e., to a rotation through the angle 
Yo tan'(d1/da) about the g axis. 

K1K1 cos'yo+ ga 511170, 

K2K2,	 (4.3) 

(= K1 51fl70+K3 cosyo. 

For example, the use of the transformation (4.3) in 
the second integral of (4.2) yields in the notation of 
the Appendix 

(2J+ 1)-' EAI (JKM 
I 
exp (iic • d)B2 

I 
JKM) 

= (l/8ir2)[( — Qj3K+ici) sin-yo 

where the subscript 2 on the operators B and C indicates	 +ica cos703I(000.
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After evaluating, the integrals in (4.2) we then have 
(X 12)J to the desired accuracy and it can be expressed in 
terms of Jo and ji alone by means of the relation 
.12(x) = 3x'ji (x) - j0 (x). The corresponding expression 
for (X21)J is obtained by interchanging 1 and 2 in the 
previous result. Adding the two expectation values 
and averaging over +K and —K, we obtain finally 
from Eq. (3.4) 

01int 112 (4)/ala2

m s3 kic2 
=2jo(Kd)-- --I —(bjXb2)2j0(Kd) V &k  Id2 

kKr/1 1'	 3 
+—I (-+--) (bl.b2)__(blxb2)2]il(Kd) 

dI. I Ia	 1d2 

k'1 

1'[	

d12 
+_(___) 2uavaji (cd)+ (u+v)— 

2d1 Ia,	 d 

X(_Ji(Kd)—KJo(Kd))]}	 (4.4)

the form K1''K2' 2Ic3", where the ni are integers. The Kj 

are the components with respect to a set of body axes 
xyz fixed in the rotator of a quantity K directed along 
the Z axis fixed in space. Going over to the representa-
tion in the Euler angles w (ç,O,i/') of the body axes, 
we have 

1	 .1
(JKMI K11K2",c3"3 I JK'M) 

(2J+1) M.-.—J

do, U()KM*(w)U(K,M 
8ir2 M—J f  

X (w)12.3n. (Al) 

where d=wdpd,& sliOdO and the integration extends 
over all orientations of the body. The sum over M 
can be carried out immediately with the help of the 
unitary property of the matrix UM . The right-hand 
side of Eq. (Al) becomes (1/81r2)KK 1J(n1n2n3) with 

J(n1n2n3) = f	 (A2) 

APPENDIX	 Expressing the components in terms of the Euler angles 
as in Eq. (3.16) and letting n=n1+n2+n3, we can write 

After the angular momentum components are the integral J in the product form 
allowed to operate upon the basic states in the expecta-
tion value (3.5), there remains a collection of terms 	 J(n1n2n3)=ic"G(n1n2)F(n1n2n3), 
each containing the expectation value of a product of ,where 

ir[l+ (— 1)'][1 + (— l)n2]r[(nj+ l)]F[ (na-I- 1)] 
G(njna)=2ir(— 1)1j d (CO5') 1 (5in')' 2 	 ,	 (A3) 

T[(nj+n2+2) 
and

fF(ninan,) =
	

dO	 = [1+ (— l )" ]F[ (na+ l)]F[(ni+n2+2)J/2P[(n+3)]. 
0 

Combining these results gives 

J(ninan3)n{ 3 =-	 II [1+(_1)nJr[(n+l)]}/ 
i=1

r[(n-I-3)]. 

The expectation values encountered in Sec. 4 led to 
integrals of the type 

I(nln2na) = f	 (A4) 

which can be expressed in the form 

I(njn2n3) = K'G(flifla)H (fllfl2fl3),	 (A5)

Since G(nin2) vanishes unless n1 and n2 are both even, 
we need only consider the case 12 (ni+na) equal to an 
integer. When in Eq. (A6) we raise (1_2) to an 
integral power, each term contains an even power of 
A. A typical term, say ,52m, yields an expression of the 
type

1.1	 12m+na	 -I 

J

djA 
I	 (21+1)i'jz(Kd)P1(!2)	 (A7) 

—1	 Li-o	 J 

The sum in (A7) is effectively over only even or only 
odd values of 1 depending on whether n3 is an even or 
odd integer, respectively, because Pj(—z) = (— l)1P(jz). 
The integrals in (A7) are all special cases of a general 
integral formula.' The particular integrals (A6) required 
to derive Eq. (4.4) are H(000)=2jo(,cd), H(001) 
= 2iji (Kd), H(200) = H (020) = [jo(,cd)+ 92(Kd)] and 
H(002) = [jo(Kd)— 2j2(Kd)]. 

4 6Bateman Manuscript Project, Higher Transcendental Functions 
H(njn2n3) =
	

du e'(1 — js2) )12jz"3. (A6) (McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1, 
f1	 p. 171, Eq. (23).
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