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Abstract
Astrocytes, the most heterogeneous glial cells in the central nervous system, execute a multitude of homeostatic functions and
contribute to memory formation. Consolidation of synaptic and systemic memory is a prolonged process and hours are required to
form long-term memory. In the past, neurons or their parts have been considered to be the exclusive cellular sites of these
processes, however, it has now become evident that astrocytes provide an important and essential contribution to memory
formation. Astrocytes participate in the morphological remodeling associated with synaptic plasticity, an energy-demanding
process that requires mobilization of glycogen, which, in the central nervous system, is almost exclusively stored in astrocytes.
Synaptic remodeling also involves bidirectional astroglial-neuronal communication supported by astroglial receptors and release of
gliosignaling molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as Ca2+, for phasic, and
cAMP, for tonic signal coordination with neuronal processes. The detection of signals by astrocytes and the release of gliosignaling
molecules, in particular by vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of magnitude longer
than that present in stimulus–secretion coupling in neurons. These particular arrangements position astrocytes as integrators
ideally tuned to support time-dependent memory formation.
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Abstract 20 

Astrocytes, the most heterogeneous glial cells in the central nervous system, execute a 21 

multitude of homeostatic functions and contribute to memory formation. Consolidation of 22 

synaptic and systemic memory is a prolonged process and hours are required to form long-23 

term memory. In the past, neurons or their parts have been considered to be the exclusive 24 

cellular sites of these processes, however, it has now become evident that astrocytes provide 25 

an important and essential contribution to memory formation. Astrocytes participate in the 26 

morphological remodeling associated with synaptic plasticity, an energy-demanding process 27 

that requires mobilization of glycogen, which, in the central nervous system, is almost 28 

exclusively stored in astrocytes. Synaptic remodeling also involves bidirectional astroglial-29 

neuronal communication supported by astroglial receptors and release of gliosignaling 30 

molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as 31 

Ca
2+

, for phasic, and cAMP, for tonic signal coordination with neuronal processes. The 32 

detection of signals by astrocytes and the release of gliosignaling molecules, in particular by 33 

vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of 34 

magnitude longer than that present in stimulus–secretion coupling in neurons. These 35 

particular arrangements position astrocytes as integrators ideally tuned to support time-36 

dependent memory formation. 37 

38 
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Memory formation results in anatomical changes 39 

Memory is the process of retention and reconstruction of learned (acquired) 40 

knowledge. Studies performed in the early 1960s on patients who underwent bilateral medial 41 

temporal lobe surgery, recognized the hippocampus as a fundamental region for memory 42 

formation (Scoville and Milner 1957). Subsequently, two distinct memory systems, 43 

declarative (explicit) memory for facts and events, for people, places, and objects (“knowing 44 

that”) and non-declarative (implicit) memory, the memory for perceptual and motor skills 45 

(“knowing how”), have been defined (Dudai and Morris 2013). Both systems rely on similar, 46 

if not identical, mechanisms associated with reinforcement of synaptic transmission, which 47 

involve morphological changes at the synapse that outlast memory stabilization (Attardo et al. 48 

2015). This morphology-based mechanism was considered by Ramon y Cajal, who linked 49 

“cerebral gymnastics” (Box 1) with morphological alterations of dendrites and terminals of 50 

neurons (Cajal 1894). 51 

Contemporary views assume that memory formation, although it is an outcome of a 52 

myriad of interactive processes, occurs in the form of molecular events at the level of an 53 

individual synaptic connection, which is termed synaptic plasticity. These synaptic changes 54 

integrate through multiple synaptic connections involving larger neuronal networks, and are 55 

finally expressed at the behavioral level (Kandel et al. 2014). 56 

Memory formation and astrocyte morphology 57 

Micro-anatomical changes that are part of memory formation are not exclusively 58 

related to neurons and their parts, but involve non-neuronal cells, which in many areas of the 59 

human brain exceed the number of neurons (Azevedo et al. 2009). These non-neuronal cells 60 

include astrocytes, an abundant and arguably the most heterogeneous glial cell type in the 61 

In review



4 

 

4 

 

central nervous system (CNS). It is generally acknowledged that astroglia actively participate 62 

in information processing via cytosolic calcium signals (Rusakov et al. 2011; Verkhratsky et 63 

al. 1998). 64 

A single astrocyte is intimately associated with many neurons and with their synaptic 65 

contacts. A single rat cortical astrocyte enwraps 4–8 neuronal bodies and 300–600 dendrites 66 

(Halassa et al. 2007), and astrocytes are in contact with synapses. In the rat hippocampus, an 67 

individual astrocyte can cover (by perisynaptic processes) up to 140,000 synapses (Bushong 68 

et al. 2002). Human hippocampal astrocytes are substantially larger and a single human 69 

astrocyte may be associated with ~2 million synapses (Oberheim et al. 2006). Abundant 70 

morphological interactions of astrocytic processes with neurons are not restricted to the 71 

hippocampus, being a widespread property of CNS tissue. 72 

Close morphological apposition allows astrocytes to receive signals from the synaptic 73 

cleft and feedback by releasing their own signaling molecules. Release of many of these 74 

molecules occurs through a secretory pathway that uses cytoplasmic vesicles, which store 75 

chemical messengers. On stimulation, the vesicle membrane fuses with the plasmalemma, a 76 

process termed regulated exocytosis. The role of secretory vesicles in astrocytes was proposed 77 

in 1910 when Jean Nageotte suggested, based on his microscopic observations, that glial cells 78 

(astroglia in particular) act as secretory elements in the CNS (Nageotte 1910). This hypothesis 79 

has been confirmed experimentally in the last two decades by identifying vesicular release of 80 

gliosignaling molecules, which are often termed gliotransmitters (Haydon 2001; Parpura and 81 

Zorec 2010; Vesce et al. 1999; Zorec et al. 2012). Although there is some skepticism that this 82 

mechanism exists in astroglia (Fujita et al. 2014; Sloan and Barres 2014), bidirectional 83 

astrocyte-neuron signaling is well accepted, and it is generally recognized that vesicle-based 84 

mechanisms participate in the heterocellular signaling that occurs at a morphofunctional unit 85 

known as the tripartite synapse (Araque et al. 1999; Perea et al. 2009). This bidirectional 86 
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communication is part of the wider gliocrine system (Vardjan and Zorec 2015), which reflects 87 

the secretory role of astrocytes, which release an extensive number of gliosignaling molecules 88 

(Verkhratksy et al., under revision). These molecules are largely not involved in synaptic 89 

processes but rather regulate various brain functions through "volume" transmission (Vardjan 90 

and Zorec 2015; Zorec et al. 2015). Astroglia-derived signaling molecules are secreted into 91 

the extracellular space and are transported throughout the tissue parenchyma to distant places 92 

in the CNS, likely taking advantage of the glymphatic convective system (Thrane et al. 2014). 93 

During implicit memory consolidation of Pavlovian threat conditioning, astrocytic 94 

processes retract from synapses in the lateral amygdala, allowing these synapses to enlarge, 95 

suggesting that contact with astroglial processes opposes synapse growth during memory 96 

consolidation (Ostroff et al. 2014). In other words, if astrocytic processes enwrap synapses 97 

and the latter need to expand during memory formation, astrocytes may hinder this 98 

remodeling, demonstrating how astrocytic structural plasticity enables morphological 99 

remodeling of synapses associated with memory formation. Under physiological conditions, 100 

including reproduction, sensory stimulation, and learning, astrocytes display a remarkable 101 

structural plasticity. Distal astrocytic processes can undergo morphological changes in a 102 

matter of minutes, thus modifying the geometry and diffusion properties of the extracellular 103 

space and relationships with adjacent neuronal elements, especially with synapses. This type 104 

of astroglial plasticity has important functional consequences because it modifies extracellular 105 

ionic homeostasis and neurotransmission, thus ultimately modulating neuronal function at the 106 

cellular and system levels (Oliet and Piet 2004; Theodosis et al. 2008). The mechanisms 107 

responsible for morphological changes in astrocytes are not known, but these may likely 108 

involve adrenergic receptors and generation of second messenger cAMP (Vardjan et al. 109 

2014), which are discussed in the following section. 110 
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Astrocyte morphology, cAMP, and metabolism 111 

Astrocytes are capable of a remarkable morphological plasticity. Astroglial cells in 112 

vitro have a flattened polygonal appearance, however stimulation of the β-adrenergic cAMP-113 

dependent signaling cascade results in rapid morphological remodeling with astrocytes 114 

assuming a stellate morphology with numerous processes (Bicknell et al. 1989; Gharami and 115 

Das 2004; Hatton et al. 1991; Shain et al. 1987; Shao et al. 1994; Vardjan et al. 2014; Won 116 

and Oh 2000). This remodeling occurs within the time frame of memory consolidation 117 

(minutes to hours) and involves cytoskeletal reorganization, including the restructuring of 118 

actin filaments, microtubules, and intermediate filaments (Goldman and Abramson 1990; 119 

Safavi-Abbasi et al. 2001). An example of this adrenergic receptor/cAMP-mediated 120 

morphological remodeling of astrocytes is shown in Figure 1 (Vardjan et al. 2014). Similar 121 

morphological plasticity may take place in vivo in long-term memory formation because 122 

noradrenaline (NA), derived from projections of neurons located in the locus ceruleus (LC), 123 

operates as a neuromodulator in Hebbian learning (Johansen et al. 2014). Under similar 124 

training conditions, changes in astrocytic shape have indeed been observed (Ostroff et al. 125 

2014). Moreover, the existence of structural-functional changes of the astrocyte-neuron 126 

interactions during memory processes have been detected (Bernardinelli et al. 2014; Lavialle 127 

et al. 2011; Perez-Alvarez et al. 2014).  128 

Tight association between the synaptic membranes and astrocytes is considered 129 

essential for homeostatic control of the synaptic cleft, including rapid removal of the 130 

neurotransmitter glutamate (Bergles and Jahr 1997) and potassium from the extracellular 131 

space (Orkand et al. 1966; Verkhratsky and Nedergaard 2014). Thus, retraction of astrocytic 132 

membrane from the synapse during memory formation (Ostroff et al. 2014) may facilitate the 133 

spillover of neurotransmitter and thus affect synaptic transmission (Rusakov and Kullmann 134 
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1998). At the same time, memory formation is associated with morphological growth of 135 

synaptic elements together with enhanced protein synthesis and rearrangement of receptor 136 

proteins, all of which increase the energy consumption (Harris et al. 2012). 137 

How energy substrates, needed for ATP synthesis, are delivered to synapses where 138 

synaptic plasticity takes place is still an open question. A simple assumption would be that 139 

pyruvate is provided to the mitochondria by glycolysis within the neuron. However, the 140 

morphology of astrocytes, with extensive end feet plastering blood vessels, is well suited to 141 

take up glucose from blood and distribute either glucose itself, or pyruvate or lactate derived 142 

from glucose, to astrocytic processes surrounding synapses, possibly by diffusion through gap 143 

junctions integrating astroglial syncytia (Rouach et al. 2008). In support of this mechanism, 144 

diffusion of glucose within astrocytes is relatively rapid (Kreft et al. 2013) and may well 145 

support glucose delivery via interconnected astrocytes in situ. Although synapses are the main 146 

energy consumers in the brain, glycogen, the only CNS energy storage system, is present 147 

mainly, if not exclusively, in astrocytes. Memory consolidation in young chickens requires 148 

glycogenolysis (Gibbs et al. 2006; Hertz and Gibbs 2009). The successful consolidation of 149 

memory from short-term to long-term memory requires neuronal NA release (Gibbs et al. 150 

2010). Therefore, it appears that NA, released from neurons, such as those from locus 151 

coeruleus, initiates astrocytic morphological changes and activates astroglial energy 152 

metabolism. Thus, NA may be considered as an integrator of the metabolism, morphology 153 

and function of astrocytes. In the adult operational (i.e. awake) brain, NA is the main 154 

signaling molecule that triggers astroglial Ca
2+

 signaling (Ding et al., 2013), which represents 155 

the universal form of glial excitability (Verkhratsky et al., 1998). 156 
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Astrocytes as hubs for the network reset system 157 

The LC is the primary source of NA in the CNS. It is localized in the brainstem and 158 

projects widely, and is thus able to synchronously activate neural networks in several brain 159 

regions. This may be regarded as a functional “reset” for many brain networks (Bouret and 160 

Sara 2005; Sara 2015). Axons of LC neurons project to the spinal cord, the brain stem, the 161 

cerebellum, the hypothalamus, the thalamic relay nuclei, the amygdala, the basal 162 

telencephalon, and the cortex, although some cortical areas receive more abundant innervation 163 

(Chandler et al. 2014). In all these structures, synchronous activation of LC projections 164 

(Bouret and Sara 2005) leads to coherent and synchronized electrical activity, possibly 165 

reflected by gamma waves on an electroencephalogram (Sara 2015). LC innervation mediates 166 

arousal and the sleep–wake cycle, attention and memory, behavioral flexibility, behavioral 167 

inhibition and stress, cognitive control, emotions, neuroplasticity, posture, and balance 168 

(Benarroch 2009). The effects of NA are mediated through - and -adrenergic receptors 169 

(/ARs) which are expressed in neurons, microglia, and astrocytes. The ARs were among 170 

the first receptors to be causally linked to astroglial Ca
2+

 signaling (Kirischuk et al. 1996; 171 

Salm and McCarthy 1989). Increases in astroglial Ca
2+

 were observed in vivo after stimulation 172 

of the LC in anesthetized animals (Bekar et al. 2008). In awake animals, stimulation of LC 173 

neurons triggered (by activation of -ARs) widespread astroglial Ca
2+

 signals, which 174 

appeared in almost all astrocytes in the field of study (Ding et al. 2013). This synchronous 175 

response may represent the means by which neural networks are coordinated. Simultaneously, 176 

through activation of β-ARs, the cAMP-dependent pathways are activated; this in turn 177 

instigates rapid degradation of glycogen, which serves as the main energy reserve in the brain 178 

(Kreft et al. 2012; Prebil et al. 2011) and initiates morphological plasticity of astrocytes 179 

(Vardjan et al. 2014).  180 
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Vesicular release of gliosignaling molecules 181 

By having secretory vesicles clustered close to the plasma membrane, which is a hallmark of 182 

the active zone of the presynaptic terminal, the delay between the incoming stimulus and 183 

secretion is minimized, being as short as 100 µs (Sabatini and Regehr 1999). At the same 184 

time, vesicle-based release of chemical messengers can exhibit much longer delays in 185 

stimulus–secretion coupling. In astrocytes, the mechanism prolonging the time between the 186 

arrival of the stimulus and the release of transmitters has been naturally selected, because the 187 

maximal speed of regulated exocytosis in astroglia appears much slower than that in neurons 188 

(Guček et al. 2012; Neher 2012; Zorec et al. 2015). Regulated exocytosis also plays a role in 189 

many forms of cell-to-cell communication besides release of transmitters, being for example 190 

critical for the delivery of transporters, ion channels and antigen presenting molecules to the 191 

cell surface  (Guček et al. 2012). Vesicular traffikicng and release, which have evolved ~3 192 

billion years millions years ago in arhaea (Spang et al. 2015), is fundamental for signaling and 193 

communication within the relatively large eukaryotic cell volume. Communication within 194 

large cells could no longer be supported by diffusion-based processes, which provide effective 195 

and rapid transport of molecules within the submicron range. Hence the development of 196 

subcellular organelles, such as secretory vesicles, presented a solution for the ‘‘signaling 197 

problem’’ in the relatively large volume of eukaryotic cells, to which astrocytes belong   198 

(Guček et al. 2012). 199 

An ideal approach to monitor the rate-limiting processes of regulated exocytosis in 200 

astrocytes at the cellular level is to measure changes in the plasma membrane area, which 201 

reflects the fusion of vesicles with the plasma membrane. This can be monitored by 202 

measuring membrane capacitance (Cm), which is linearly related to the membrane area (Neher 203 

and Marty 1982). This technique was used in cultured astrocytes (Kreft et al. 2004) to test the 204 

hypothesis that an increase in [Ca
2+

]i, after photolysis of caged Ca
2+

 (Neher and Zucker 1993), 205 
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elicits an increase in the whole-cell Cm. A half-maximal increase in Cm of these astrocytes 206 

was attained at ~27 µM [Ca
2+

]i, which is similar to the Ca
2+

-dependency of regulated 207 

exocytosis in various types of neurons, recorded by a similar technique (Bollmann et al. 2000; 208 

Heidelberger et al. 1994; Kreft et al. 2003a). In contrast to neurons, however, a rather small, 209 

within 100 nM, increase in [Ca
2+

]i from the resting level was sufficient to induce glutamate 210 

release from astrocytes, as detected by glutamatergic effects on nearby neurons, used as 211 

sniffer cells (Parpura and Haydon 2000). A similar high-affinity Ca
2+

 sensing mechanism for 212 

vesicular release was reported in pituitary endocrine cells (Kreft et al. 2003b). At present, 213 

astrocytes appear to be the slowest secretors of all the excitable mammalian cells investigated 214 

thus far. The kinetics of Cm increase is at least two orders of magnitude slower than the 215 

kinetics of regulated exocytosis recorded by a similar technique in neurons (Kreft et al. 2004; 216 

Neher 2012). The Ca
2+

-dependent increases in Cm were sensitive to tetanus toxin (which 217 

cleaves synaptobrevin 2 and cellubrevin), indicating a soluble N-ethyl maleimide-sensitive 218 

fusion protein attachment protein receptor (SNARE)-based vesicular mechanism (Kreft et al. 219 

2004). 220 

Why is regulated exocytosis in astrocytes so slow? One reason is the distinct slow 221 

kinetics of molecular mechanisms regulating the vesicle membrane–plasmalemma merger. 222 

The number of SNARE molecules per vesicle, which is relatively low in astrocytes (Singh et 223 

al. 2014), may also contribute to the slow kinetics of regulated exocytosis. Slow delivery of 224 

vesicles to the plasma membrane fusion sites may also play a significant role. The vesicle 225 

dynamics is an amazingly elaborate system, regulated by increases in [Ca
2+

]i (Potokar et al. 226 

2013; Vardjan et al. 2015). For example, the complexity of vesicle traffic regulation in 227 

astrocytes is characterized by two typical, yet opposing, properties of vesicles that contain 228 

peptides, such as atrial natriuretic peptide, and/or ATP, and those that carry amino acids, such 229 

as glutamate and D-serine, and are labeled by the glutamate transporter VGLUT1 (Potokar et 230 
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al. 2005; Potokar et al. 2013; Vardjan et al. 2012; Vardjan and Zorec 2015). Glutamatergic 231 

vesicles speed up with an increase in [Ca
2+

]i (Stenovec 2007), whereas the same increase in 232 

[Ca
2+

]i  slows down peptidergic vesicles and endolysosomes (Potokar et al. 2010). 233 

Glutamatergic and peptidergic vesicles have the capacity to recycle. The mobility of 234 

recycling peptidergic vesicles was studied in cultured astrocytes (Potokar et al. 2008) and in 235 

intact brain slices (Potokar et al. 2009). At rest, peptidergic vesicles moved faster and more 236 

directionally than after the exposure of astrocytes to ionomycin to increase [Ca
2+

]i (Potokar et 237 

al. 2008). The effect of increased [Ca
2+

]i was dramatic; the movement of vesicles was almost 238 

halted, with only a jitter associated with random diffusional movement remaining. At least 239 

some of the peptidergic vesicles carry ATP and a similar attenuation was observed in their 240 

mobility when astrocytes were stimulated (Pangrsic 2007). 241 

What is the physiologic significance of differential mobility of vesicles carrying 242 

specific cargo, for example, classic chemical transmitter versus neuromodulators or 243 

neuropeptides? An increase or decrease in vesicle mobility may affect the efficiency of 244 

vesicle merger with the plasma membrane and the subsequent cargo discharge. It is possible 245 

that vesicles engaged in the dichotomous regulation of vesicle traffic exhibit different vesicle 246 

sizes, which may determine the nature of vesicle traffic and fusion with the plasmalemma, as 247 

was reported for endocrine cells (Flašker et al. 2013). Increased mobility of glutamatergic 248 

vesicles (which can quickly refill using VGLUTs) may indicate that they could be discharged 249 

at multiple loci at times of increased Ca
2+

 excitability, resulting in more diffuse signaling as 250 

opposed to spatially precise information transfer so characteristic of neuronal synaptic 251 

transmission. This speculation seems to be aligned with the ability of astrocytes to modulate 252 

synaptic transmission at a long temporal domain and via broad extrasynaptic access sites to 253 

neurons. 254 
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Impaired astrocytic vesicle traffic has been tentatively associated with intellectual 255 

deficiency (ID). Symptoms of ID appear early in life and the disease affects about 2% of the 256 

population. Family studies have demonstrated a relatively large number of X chromosome-257 

linked forms of ID (XLID) with an incidence of about 0.9 to 1.4 in 1000 males (Turner 1996). 258 

One of the first genes found to be mutated in patients with XLID is GDI1 (D'Adamo et al. 259 

1998), which encodes for guanine nucleotide dissociation inhibitor (αGDI), a protein 260 

physiologically involved in regulating GDP-bound RAB proteins. The identification of GDI1 261 

association with ID suggested that vesicular traffic in neural cells is an important pathway for 262 

the development of cognitive functions (Bianchi et al. 2009; D'Adamo et al. 2002). Although 263 

the importance of GDI in neuronal function has been demonstrated, it is unclear whether its 264 

role in glia vesicle trafficking contributes to the disease. The GDI protein regulates the 265 

function of RAB GTPases, such as RAB 4 and RAB 5, which have been shown to regulate 266 

vesicle dynamics in astrocytes (Potokar et al. 2012), and it is likely that impaired vesicle 267 

traffic in astrocytes contributes to ID, which is linked to impaired cognitive processes 268 

involving memory formation. 269 

Conclusions 270 

Astroglial cells control homeostasis in the CNS to support many processes including 271 

memory formation. Astrocytes contribute to memory as signaling hubs and as structures that 272 

alter their morphology and recruit energy resources for memory consolidation. Excitation–273 

secretion coupling in astrocytes is loose and this may be of particular importance to support 274 

the slowness of the overall memory-related structural dynamics in the CNS. 275 
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 479 

Figure 1. (A) Morphological changes in astrocytes (stellation) induced by the β-adrenergic 480 

receptor (β-AR) agonist isoprenaline (Iso), which increases cAMP. Green fluorescing 481 

astrocytes transfected with the cAMP nanosensor Epac1-camps (top) and their 482 

corresponding differential interference contrast images (bottom) before (left) and after 483 

1 µM β-AR agonist isoprenaline (Iso). Note the thinning and elongation of processes 484 

indicating astrocyte stellation. Scale bar represents 20 µm. Astrocytes were cultured 485 

from rat cortex. Modified from Vardjan et al. (2014) Glia 62, 566–579; with 486 

permission. (B) Time course of cytosolic levels of cAMP. Noradrenaline (NA) 487 

persistently increases intracellular cAMP levels in astrocytes. Representative time 488 

courses of the Epac1-camps (i.e., a Förster resonance energy transfer (FRET)-based 489 

cAMP nanosensor) from 3 cells after the addition of 1 µM NA. Changes in FRET are 490 

expressed as percentages relative to the initial values. (C) Time course of cytosolic 491 

levels of Ca
2+

. The application of fingolimod (FTY720) evokes prolonged transient 492 

increases (oscillations). Superimposed time-resolved fluorescence intensity obtained in 493 

5 cells treated with FTY720 (white bar). The thin dotted line indicates the zero 494 

fluorescence level (F0). Modified from Potokar et al. (2013) Int. J. Mol. Sci. 14, 495 

11238–11258; with permission. 496 
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 497 

Box 1. Cerebral gymnastics and memory formation 498 
"Cerebral gymnastics are not capable of improving the organization of the brain by increasing 499 

the number of cells, because it is known that the nerve cells after the embryonic period have 500 

lost the property of proliferation; but it can be admitted as very probable that mental exercise 501 

leads to a greater development of the dendritic apparatus and of the system of axonal 502 

collaterals in the most utilized cerebral regions. In this way, associations already established 503 

among certain groups of cells would be notably reinforced by means of the multiplication of 504 

the small terminal branches of the dendritic appendages and axonal collaterals; but, in 505 

addition, completely new intercellular connections could be established thanks to the new 506 

formation of [axonal] collaterals and dendrites." 507 

The Cronian Lecture: La fine structure des centres nerveux. Proceedings of the Royal Society 508 

of London 55: 444-468, 1984. Translated by DeFelipe J, Jones, E. G. (1988). Cajal on the 509 

Cerebral Cortex. New York: Oxford University Press. p. 87. 510 
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