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Abstract. We give a geometric proof of the upper bound of q2n+1 +1 on the

size of partial spreads in the polar space H(4n+1, q2). This bound is tight and

has already been proved in an algebraic way. Our alternative proof also yields
a characterization of the partial spreads of maximum size in H(4n+ 1, q2).

1. Introduction

A classical finite polar space is an incidence structure, consisting of the totally
isotropic subspaces of a projective space with respect to a non-degenerate sesquilin-
ear form or a non-degenerate quadratic form. All dimensions will be assumed to be
projective from now on, and we will also refer to m-dimensional subspaces as simply
m-spaces. In particular, the 0- and 1-dimensional subspaces of such a polar space
are known as its points and lines, respectively. The generators are its subspaces
of maximal dimension. A partial spread of a classical finite polar space is a set of
generators with no two incident with a common point. If a partial spread actually
partitions the point set of the polar space, it is said to be a spread.

The Hermitian variety H(n, q2) is a particular type of classical finite polar space,
consisting of the subspaces in PG(n, q2), the points of which all have homogeneous

coordinates (x0, . . . , xn) satisfying the equation xq+1
0 + . . .+xq+1

n = 0. In this polar
space, the generators are (n−1)/2-dimensional, if n is odd, or (n−2)/2-dimensional,
if n is even, and the number of points is given by |H(n, q2)| = (qn+1 + (−1)n)(qn −
(−1)n)/(q2−1). We refer to [4] for proofs and much more information on Hermitian
varieties and polar spaces in general.

Thas [6] proved that in H(2n + 1, q2) spreads, or thus partial spreads of size
q2n+1 + 1, cannot exist, which has made the question on the size of a partial spread
in such a polar space, an intriguing question. Improved upper bounds on the size
of partial spreads in H(2n+ 1, q2) were proved in [2].

On the other hand, partial spreads of size qn+1 + 1 in H(2n + 1, q2) were con-
structed for all n ≥ 1 in [1], by use of a symplectic polarity of the projective space
PG(2n + 1, q2), commuting with the associated Hermitian polarity. In the Baer
subgeometry of points on which these two polarities coincide, a (regular) spread of
the induced symplectic polar space W (2n + 1, q) can always be found, and these
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qn+1 + 1 generators extend to pairwise disjoint generators of H(2n + 1, q2). Max-
imality of partial spreads of H(2n + 1, q2) constructed in this way was also shown
for n = 1, 2 in [1] and for all even n in [5].

In [3], De Beule and Metsch proved that the maximum size of a partial spread in
H(5, q2) is q3 + 1, and they also obtained additional information on partial spreads
meeting that tight bound. In particular, they found that every generator ofH(5, q2),
not meeting any element of such a partial spread S in a line or more, meets exactly
q2 − q + 1 elements of S in a point.

Using techniques from algebraic graph theory, we recently proved in [7] that the
size of a partial spread in H(4n+ 1, q2) is at most q2n+1 + 1, and this bound is thus
tight as well. It turns out that a geometric property of partial spreads of maximum
size in H(5, q2) can be generalized, and in fact paves the way for a new, completely
geometric proof of the upper bound in H(4n+ 1, q2).

2. Tools

We first state a lemma by Thas [6].

Lemma 2.1. Let π1, π2 and π be three mutually disjoint generators in H(2n+1, q2).
The set of points on π1, that are on a (necessarily unique) line of H(2n + 1, q2)
meeting both π and π2, form a non-singular Hermitian variety in π1.

Corollary 2.2. Let π1, π2 and π be three mutually disjoint generators in H(2n +
1, q2). The number of generators meeting π in an (n − 1)-space, and meeting both

π1 and π2 in a point is |H(n, q2)| = (qn+1+(−1)n)(qn−(−1)n)
q2−1 .

Proof. We let ⊥ denote the Hermitian polarity of PG(2n + 1, q2), associated with
the polar space. It is obvious that every generator meeting π in an (n − 1)-space,
can meet π1 and π2 in at most one point. On the other hand, through any point
p1 ∈ π1, there is a unique generator 〈p1, p⊥1 ∩ π〉 meeting π in an (n − 1)-space.
Hence we have to determine the number of points p1 ∈ π1 such that the generator
〈p1, p⊥1 ∩ π〉 also meets π2 in a point.

First suppose that a point p1 ∈ π1 is such that the generator 〈p1, p⊥1 ∩ π〉 meets
π2 in a point p2. In that case, the line p1p2 is a line of H(2n+ 1, q2), meeting π as
well, as p⊥1 ∩ π is a hyperplane of 〈p1, p⊥1 ∩ π〉. Conversely, suppose a point p1 ∈ π1
is on a line of H(2n+ 1, q2), meeting π in p and π2 in p2. In that case, both p1 and
p are in the generator 〈p1, p⊥1 ∩π〉, and hence so is the entire line p1p, including the
point p2. The desired result thus follows from Lemma 2.1.

3. The proof

Theorem 3.1. The size of a partial spread S in H(4n + 1, q2), n ≥ 1, is at most
q2n+1 +1. If |S| > 1 and π ∈ S, then every generator meeting π in a (2n−1)-space,
will meet the same number of other elements of S in just a point, if and only if
|S| = q2n+1 + 1. In that case, that number must be q2n.

Proof. Let S be a partial spread of size at least 2 in H(4n+ 1, q2). Consider a fixed
element π ∈ S. Let {Ni|i ∈ I} be the set of generators meeting π in a (2n−1)-space.
As the number of (2n − 1)-spaces in a generator equals (q4n+2 − 1)/(q2 − 1), and
the number of generators through any (2n − 1)-space in H(4n + 1, q2) is given by

q + 1, the cardinality of I is q4n+2−1
q2−1 q.
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Note that any generator Ni and any generator in S\{π}, are either disjoint or
meet in a point. For every Ni, i ∈ I, let ti denote the number of generators in
S\{π}, meeting Ni in a point. We now count the number of pairs (Ni, π

′), with π′

an element of S\{π} meeting Ni in a point, in two ways. As through every point p′

on an element π′ of S\{π}, there is a unique generator meeting π in a (2n−1)-space,
we obtain:

(1)
∑
i∈I

ti = (|S| − 1)
q4n+2 − 1

q2 − 1
.

Now we count the number of ordered triples (Ni, π1, π2), with π1 and π2 two distinct
elements of S\{π}, both meeting Ni in a point. We know from Corollary 2.2 that
for every two distinct elements of S\{π}, there will be exactly |H(2n, q2)| generators
Ni, meeting both of them in a point. Hence we obtain:

(2)
∑
i∈I

ti(ti − 1) = (|S| − 1)(|S| − 2)
(q2n+1 + 1)(q2n − 1)

q2 − 1
.

Combining (1) and (2), we find:

(3)
∑
i∈I

t2i = (|S| − 1)
q2n+1 + 1

q2 − 1

(
(q2n+1 − 1) + (|S| − 2)(q2n − 1)

)
.

As (
∑

i∈I ti)
2 ≤ (

∑
i∈I t

2
i )|I|, with equality if and only if all ti are equal, this implies:

(|S|−1)2
(
q4n+2 − 1

q2 − 1

)2

≤ (|S|−1)
q2n+1 + 1

q2 − 1

(
(q2n+1−1)+(|S|−2)(q2n−1)

)
q4n+2 − 1

q2 − 1
q,

with equality if and only if all ti are equal. Since we assumed that |S| > 1, we can
cancel factors on both sides to obtain:

(|S| − 1)(q2n+1 − 1) ≤
(

(q2n+1 − 1) + (|S| − 2)(q2n − 1)

)
q,

implying that |S| ≤ q2n+1 + 1, with equality if and only if all ti are equal. In that
case, their constant value must equal (

∑
i∈I ti)/|I| = q2n.

4. Remark

This technique fails when applied to partial spreads in H(4n + 3, q2), where it
yields a negative lower bound on the size instead.
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