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1. Introduction
Route  planning  applications  rely  heavily  on  shortest  path  algorithms.  However,  in 
some cases a ranking of several possible “short” paths is desired, rather than a single 
shortest path. For example, when trying to optimize multiple parameters, say beautiful 
scenery as well as travel time, a possible solution is to calculate a ranking of the fastest 
routes  and  then  pick  the  most  scenic  one  by  hand.  Also  techniques  for  finding 
dissimilar paths (Akgün and Erkut 2000, Marti et al. 2009) often generate a large set of 
candidate paths, from which a suitable collection is selected. Figure 1 shows different 
feasible routes from Ghent to Antwerp, where it is up to the driver to choose one. 

Figure 1. Different possible routes from Ghent to Antwerp.
(Image source: Google Maps)

Determining a ranking of shortest paths is called the k shortest paths problem, where k 
is the number of paths to be calculated. The road network is modeled as a graph, with 
road segments represented by arcs and intersections by nodes. Arcs have non-negative 
weight, representing distance or travel time. In this paper we focus on calculating the k 
simple (i.e. loopless) shortest paths, since loops are usually not useful for path finding 
in road networks.  Yen's algorithm (Yen 1971) is the basis for many of the currently 
known algorithms (e.g. Herschberger et al. 2007, Gotthilf and Lewenstein 2009). 

Path  finding  algorithms  are  often  used  in  interactive  applications,  which  makes 
them time-critical: a query time of e.g. 12 milliseconds versus 14 seconds can make a 
big difference. This fact motivates looking for a faster method which does not aim at 
finding the exact k shortest paths, but still misses only a few of them. Recently some 
theoretical approximation algorithms were developed (Roddity 2007, Bernstein 2010). 
In this paper we present a new heuristic that works very well in practice, i.e. which 
finds a majority of the paths, with only a slight increase in path length, and which is 
much faster than the exact algorithm.



2. Deviation Path Algorithms
Our  heuristic  is  based  on  Yen's  algorithm,  which  in  its  turn  is  an  example  of  a 
deviation path algorithm. These are based on the idea that the  i-th shortest path will 
always deviate at some node from a path previously found. Considering a path P of n 
nodes, there are only n-1 possible deviation positions: a deviating path D either differs 
from P immediately from the first node, or it coincides with P up to the 2nd, 3rd, … or 
n-1th node and then deviates from there on. Figure 2 sketches all possible situations for 
a path  P  with 5 nodes (note that  D can deviate from a certain node to join  P again 
later). 

Figure 2. All possible deviations (dashed lines) from a 5-node path (solid lines).

Deviation  path  algorithms  maintain  a  priority  queue  Q of  candidate  paths.  In  every 
iteration the next shortest path is fetched from Q and added to the results. This path is 
then used as a basis for calculating new candidate paths which are added to  Q. This 
process is repeated until k shortest paths are found.

Different deviation path algorithms differ in their strategy for calculating new paths. 
Yen's algorithm calculates new paths from start node s to target node t based on a path 
P as follows: 

1:  For every arc u­v on P: 
2:      Remove u­v and all nodes preceding u in P from graph.
3:      P'1   subpath from s to u in P.←
4:      P'2   shortest path from u to t in modified graph.←
5:      P'   append P'← 2 to P'1

6:      Add P' to Q.
7:      Restore graph.
 

The shortest path in line 4 can be calculated using any shortest path algorithm, such as 
the well-known algorithm of Dijkstra. Since this line is executed many times, this can 
be very time-consuming. The heuristic we describe in the next section aims at speeding 
up the algorithm by avoiding these shortest path calculations.

3. Heuristic for Calculating Deviations
At the start  of  the algorithm,  we construct  a  backward shortest  path tree  T,  which 
stores a shortest path from every node in the graph to the target node t, thus allowing 
fast retrieval of these paths.

Instead of actually computing the shortest path from  u to  t (line 4) we obtain an 
approximation for this shortest path by looking at the possible deviations obtained by 
concatenating every outgoing arc  u-x (except  u-v) with the shortest path from x to  t 
fetched from T. However, since such a path may contain nodes and arcs which were in 
the meantime removed from the graph, it is necessary to check if the entire path still 
exists in the graph. Only if such is the case the path is appended to P'1 and added to Q.



Figure 3 illustrates this idea.  On the current path  P from  s to  t  (solid lines),  red 
crosses indicate forbidden nodes and arcs. To find a detour from u to t, we consider the 
other outgoing arcs from u (dashed lines) and look up the paths from these neighbours 
to t (dotted lines) in the shortest path tree T. 

Figure 3. How the heuristic works. 

Complexity

The algorithm of Yen has a time complexity of O(k n (m + n log n)), with n the number 
of nodes and m the number of arcs. However, road networks are sparse so m = ɵ(n), 
resulting  in  a  time  complexity  of  O(k  n²  log  n).  Our  heuristic  reduces  this  time 
complexity to O(k n²). However, since this upper bound is hardly ever reached, the 
speed-up is much better in practice, as the results will show. Details are omitted here 
for space reasons.

4. Results and discussion
We compared  results  of  the  heuristic  with exact  results  for  several  European road 
networks. In this paper we present only results for the Navteq Belgian road network, 
but similar results for other road networks were obtained. 

4.1 Quality of the paths found

Since our heuristic approach does not guarantee an exact set  of  k shortest  paths, a 
comparison of the paths found is necessary. The results can be seen in Figure 4. The 
value e(k) represents the ranking of the path in an exact set of k shortest paths. E.g. if 
e(k) = 103 for a given query with k = 100, then the 100th path found by the heuristic is 
actually the 103rd shortest path, meaning that it “missed” three paths. The value  p(k) 
shows the percentual weight increase of the path. E.g. if p(k) = 0.68% for k = 100, then 
the 100th shortest  path found by the heuristic is 0.68% longer than the “real” 100th 

shortest path.
The heuristic performs surprisingly well in some cases, missing very few or even no 
paths at all. In other cases, more paths are missed, but even then the values for  p(k) 
remain very small, typically less than 1%. Especially for routing applications, this is 
very acceptable since a travel time increase of less than 1% can almost be neglected.



4.2 Time performance
Of course a heuristic approach is only beneficial if it is significantly faster than the 
exact algorithm. Time measurements were performed for both the algorithm of Yen 
and the  heuristic  on an  Intel  dual  core 2.13 GHz machine  with 2 Gigabyte  RAM 
running  Linux.  The  algorithms  were  implemented,  compiled  and executed  in  Java 
version 1.6.0_16. The speed-up of the heuristic compared to the exact algorithm of 
Yen can also be seen in Figure 4.

The speed-up is clearly significant, even though it is very variable. For most queries 
the heuristic is more than 50 times faster than the exact algorithm, often even more 
than 100 or even 1,000 times faster. This shows that the heuristic is fast enough to be 
very useful in practice.

Figure 4. Results for the Navteq Belgium road network (564,477 vertices and 
1,300,765 arcs). For k=100, 1,000 and 10,000 the exact ranking e(k) of the kth path 

found by the heuristic, the percentual weight increase p(k) and the speedup are shown, 
each time for 100 random queries. Dots marked in red indicate a lower bound instead 

of an exact value because of memory limitations.

4.3 Conclusion
The above experiments clearly  show that significant  speed-ups can be achieved by 
compromising only slightly on path quality. The new heuristic thus offers possibilities 
to serve as a basis for other algorithms and heuristics which make use of a large set of 
alternative shortest paths.
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