
Fast Generation of Many Shortest Path Alternatives

Stéphanie Vanhove1, Veerle Fack2

1,2Department of Applied Mathematics and Computer Science
Ghent University

Krijgslaan 281 – S9, 9000 Ghent, Belgium

Email: 1Stephanie.Vanhove@UGent.be, 2Veerle.Fack@UGent.be

1. Introduction
Route planning applications rely heavily on shortest path algorithms. However, in
some cases a ranking of several possible “short” paths is desired, rather than a single
shortest path. For example, when trying to optimize multiple parameters, say beautiful
scenery as well as travel time, a possible solution is to calculate a ranking of the fastest
routes and then pick the most scenic one by hand. Also techniques for finding
dissimilar paths (Akgün and Erkut 2000, Marti et al. 2009) often generate a large set of
candidate paths, from which a suitable collection is selected. Figure 1 shows different
feasible routes from Ghent to Antwerp, where it is up to the driver to choose one.

Figure 1. Different possible routes from Ghent to Antwerp.
(Image source: Google Maps)

Determining a ranking of shortest paths is called the k shortest paths problem, where k
is the number of paths to be calculated. The road network is modeled as a graph, with
road segments represented by arcs and intersections by nodes. Arcs have non-negative
weight, representing distance or travel time. In this paper we focus on calculating the k
simple (i.e. loopless) shortest paths, since loops are usually not useful for path finding
in road networks. Yen's algorithm (Yen 1971) is the basis for many of the currently
known algorithms (e.g. Herschberger et al. 2007, Gotthilf and Lewenstein 2009).

Path finding algorithms are often used in interactive applications, which makes
them time-critical: a query time of e.g. 12 milliseconds versus 14 seconds can make a
big difference. This fact motivates looking for a faster method which does not aim at
finding the exact k shortest paths, but still misses only a few of them. Recently some
theoretical approximation algorithms were developed (Roddity 2007, Bernstein 2010).
In this paper we present a new heuristic that works very well in practice, i.e. which
finds a majority of the paths, with only a slight increase in path length, and which is
much faster than the exact algorithm.

2. Deviation Path Algorithms
Our heuristic is based on Yen's algorithm, which in its turn is an example of a
deviation path algorithm. These are based on the idea that the i-th shortest path will
always deviate at some node from a path previously found. Considering a path P of n
nodes, there are only n-1 possible deviation positions: a deviating path D either differs
from P immediately from the first node, or it coincides with P up to the 2nd, 3rd, … or
n-1th node and then deviates from there on. Figure 2 sketches all possible situations for
a path P with 5 nodes (note that D can deviate from a certain node to join P again
later).

Figure 2. All possible deviations (dashed lines) from a 5-node path (solid lines).

Deviation path algorithms maintain a priority queue Q of candidate paths. In every
iteration the next shortest path is fetched from Q and added to the results. This path is
then used as a basis for calculating new candidate paths which are added to Q. This
process is repeated until k shortest paths are found.

Different deviation path algorithms differ in their strategy for calculating new paths.
Yen's algorithm calculates new paths from start node s to target node t based on a path
P as follows:

1: For every arc u­v on P:
2: Remove u­v and all nodes preceding u in P from graph.
3: P'1 subpath from s to u in P.←
4: P'2 shortest path from u to t in modified graph.←
5: P' append P'← 2 to P'1

6: Add P' to Q.
7: Restore graph.

The shortest path in line 4 can be calculated using any shortest path algorithm, such as
the well-known algorithm of Dijkstra. Since this line is executed many times, this can
be very time-consuming. The heuristic we describe in the next section aims at speeding
up the algorithm by avoiding these shortest path calculations.

3. Heuristic for Calculating Deviations
At the start of the algorithm, we construct a backward shortest path tree T, which
stores a shortest path from every node in the graph to the target node t, thus allowing
fast retrieval of these paths.

Instead of actually computing the shortest path from u to t (line 4) we obtain an
approximation for this shortest path by looking at the possible deviations obtained by
concatenating every outgoing arc u-x (except u-v) with the shortest path from x to t
fetched from T. However, since such a path may contain nodes and arcs which were in
the meantime removed from the graph, it is necessary to check if the entire path still
exists in the graph. Only if such is the case the path is appended to P'1 and added to Q.

Figure 3 illustrates this idea. On the current path P from s to t (solid lines), red
crosses indicate forbidden nodes and arcs. To find a detour from u to t, we consider the
other outgoing arcs from u (dashed lines) and look up the paths from these neighbours
to t (dotted lines) in the shortest path tree T.

Figure 3. How the heuristic works.

Complexity

The algorithm of Yen has a time complexity of O(k n (m + n log n)), with n the number
of nodes and m the number of arcs. However, road networks are sparse so m = ɵ(n),
resulting in a time complexity of O(k n² log n). Our heuristic reduces this time
complexity to O(k n²). However, since this upper bound is hardly ever reached, the
speed-up is much better in practice, as the results will show. Details are omitted here
for space reasons.

4. Results and discussion
We compared results of the heuristic with exact results for several European road
networks. In this paper we present only results for the Navteq Belgian road network,
but similar results for other road networks were obtained.

4.1 Quality of the paths found

Since our heuristic approach does not guarantee an exact set of k shortest paths, a
comparison of the paths found is necessary. The results can be seen in Figure 4. The
value e(k) represents the ranking of the path in an exact set of k shortest paths. E.g. if
e(k) = 103 for a given query with k = 100, then the 100th path found by the heuristic is
actually the 103rd shortest path, meaning that it “missed” three paths. The value p(k)
shows the percentual weight increase of the path. E.g. if p(k) = 0.68% for k = 100, then
the 100th shortest path found by the heuristic is 0.68% longer than the “real” 100th

shortest path.
The heuristic performs surprisingly well in some cases, missing very few or even no
paths at all. In other cases, more paths are missed, but even then the values for p(k)
remain very small, typically less than 1%. Especially for routing applications, this is
very acceptable since a travel time increase of less than 1% can almost be neglected.

4.2 Time performance
Of course a heuristic approach is only beneficial if it is significantly faster than the
exact algorithm. Time measurements were performed for both the algorithm of Yen
and the heuristic on an Intel dual core 2.13 GHz machine with 2 Gigabyte RAM
running Linux. The algorithms were implemented, compiled and executed in Java
version 1.6.0_16. The speed-up of the heuristic compared to the exact algorithm of
Yen can also be seen in Figure 4.

The speed-up is clearly significant, even though it is very variable. For most queries
the heuristic is more than 50 times faster than the exact algorithm, often even more
than 100 or even 1,000 times faster. This shows that the heuristic is fast enough to be
very useful in practice.

Figure 4. Results for the Navteq Belgium road network (564,477 vertices and
1,300,765 arcs). For k=100, 1,000 and 10,000 the exact ranking e(k) of the kth path

found by the heuristic, the percentual weight increase p(k) and the speedup are shown,
each time for 100 random queries. Dots marked in red indicate a lower bound instead

of an exact value because of memory limitations.

4.3 Conclusion
The above experiments clearly show that significant speed-ups can be achieved by
compromising only slightly on path quality. The new heuristic thus offers possibilities
to serve as a basis for other algorithms and heuristics which make use of a large set of
alternative shortest paths.

0
2
4
6
8

10
12

Speedup (k=1,000)
NAVTEQ BELGIUM

query

sp
ee

du
p

1

4

16

64

256

1,024

4,096

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

Weight increase (k=100)
NAVTEQ BELGIUM

query

w
ei

gh
t

in
cr

ea
se

0.00%

0.20%

0.40%

0.60%

0.80%

Weight increase (k=1,000)
NAVTEQ BELGIUM

query

w
ei

gh
t

in
cr

ea
se

0.00%

0.50%

1.00%

1.50%

2.00%

Weight increase (k=10,000)
NAVTEQ BELGIUM

query

w
ei

gh
t

in
cr

ea
se

9.97

10.97

11.97

Exact ranking (k=1,000)
NAVTEQ BELGIUM

query

ex
ac

t
ra

nk
in

g

4,000

2,000

1,000

6.64

7.64

8.64

9.64

10.64

Exact ranking (k=100)
NAVTEQ BELGIUM

query

ex
ac

t
ra

nk
in

g

100

200

400

800

1,600

13.29

14.29

15.29

16.29

Exact ranking (k=10,000)
NAVTEQ BELGIUM

query

ex
ac

t
ra

nk
in

g

10,000

20,000

40,000

80,000

0

2

4

6

8

10

Speedup (k=100)
NAVTEQ BELGIUM

query

sp
ee

du
p

1

4

16

64

256

1,024

0

3

6

9

12

Speedup (k=10,000)
NAVTEQ BELGIUM

query

sp
ee

du
p

1

4

16

64

256

1,024

4,096

16,384

Acknowledgement
Stéphanie Vanhove is supported by a research grant of the Research Foundation -
Flanders.

References
Akgün V and Erkut E, 2000, On finding dissimilar paths. European Journal of

Operational Research, 121(2):232–246.
Bernstein A, 2010, A nearly optimal algorithm for approximating replacement paths

and k shortest simple paths in general graphs. Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms, 742–755.

Gotthilf Z and Lewenstein M, 2009, Improved algorithms for the k shortest paths and
the replacement paths problems. Information Processing Letters, 109:352–355.

Hershberger J, Maxel M, and Suri S, 2007, Finding the k shortest simple paths: a new
algorithm and its implementation. ACM Transactions on Algorithms, 3(4):45.

Marti R, Velarde JLG and Duarte A, 2009, Heuristics for the biobjective path
dissimilarity problem. Computers and Operations Research, 36:2905–2912.

Roddity L, 2007, On the k-simple shortest paths problem in weighted directed graphs.
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
920–928.

Yen JY, 1971, Finding the k shortest loopless paths in a network. Management
Science, 17(11):712–716.

