196 research outputs found

    Leaching of some sulphide minerals of nickel under acidic oxidising conditions

    Get PDF
    Imperial Users onl

    The complex sine-Gordon model on a half line

    Get PDF
    In this thesis, we study the complex sine-Gordon model on a half line. The model in the bulk is an integrable (l+1) dimensional field theory which is U(1) gauge invariant and comprises a generalisation of the sine-Gordon theory. It accepts soliton and breather solutions. By introducing suitably selected boundary conditions we may consider the model on a half line. Through such conditions the model can be shown to remain integrable and various aspects of the boundary theory can be examined. The first chapter serves as a brief introduction to some basic concepts of integrability and soliton solutions. As an example of an integrable system with soliton solutions, the sine-Gordon model is presented both in the bulk and on a half line. These results will serve as a useful guide for the model at hand. The introduction finishes with a brief overview of the two methods that will be used on the fourth chapter in order to obtain the quantum spectrum of the boundary complex sine-Gordon model. In the second chapter the model is properly introduced along with a brief literature review. Different realisations of the model and their connexions are discussed. The vacuum of the theory is investigated. Soliton solutions are given and a discussion on the existence of breathers follows. Finally the collapse of breather solutions to single solitons is demonstrated and the chapter concludes with a different approach to the breather problem. In the third chapter, we construct the lowest conserved currents and through them we find suitable boundary conditions that allow for their conservation in the presence of a boundary. The boundary term is added to the Lagrangian and the vacuum is reexamined in the half line case. The reflection process of solitons from the boundary is studied and the time-delay is calculated. Finally we address the existence of boundary-bound states. In the fourth chapter we study the quantum complex sine-Gordon model. We begin with a brief overview of the theory in the bulk where the semi-classical spectrum and an exact S'-matrix are presented. Following that we use the stationary phase method to derive the semi-classical spectrum of boundary bound states. The bootstrap method is used as an alternative approach to obtain the same spectrum. The results are discussed and compared. The final chapter consists of a general discussion on open questions and problems of the model, and some proposals for further research

    Modeling Of District Metered Areas With Relatively High Leakage Rate. The Case Study Of Kalipoli’s DMA

    Full text link
    The article reviews the modelling of District Metered Areas (DMAs) with relatively high leakage rate. As a generally recognised approach in modelling of leakage does not exist, modelling of leakage by enginners and other researchers usually takes place by dividing the whole leakage rate evenly to all available nodes of the model. In this article, a new methodology is proposed to determine the nodal leakage by using a hydraulic model. The proposed methodology takes into consideration the IWA water balance methodology, the Minimum Night Flow (MNF) analysis, the number of connections related to each node and the marerial of pipes. In addition, the model is illustrated by a real case study, as it was applied in Kalipoli’s DMA. Results show that the proposed model gives reliable results

    Fabrication of metal matrix composites under intensive shearing

    Get PDF
    Current processing methods for metal matrix composites (MMC) often produces agglomerated reinforced particles in the ductile matrix and also form unwanted brittle secondary phases due to chemical reaction between matrix and the reinforcement. As a result they exhibit extremely low ductility. In addition to the low ductility, the current processing methods are not economical for producing engineering components. In this paper we demonstrate that these problems can be solved to a certain extent by a novel rheo-process. The key step in this process is application of sufficient shear stress on particulate clusters embedded in liquid metal to overcome the average cohesive force of the clusters. Very high shear stress can be achieved by using the specially designed twin-screw machine, developed at Brunel University, in which the liquid undergoes high shear stress and high intensity of turbulence. Experiments with Al alloys and SiC reinforcement reveal that, under high shear stress and turbulence conditions Al liquid penetrates into the clusters and disperse the individual particle within the cluster, thus leading to a uniform microstructure

    Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: An in-vitro study.

    Get PDF
    PURPOSE: Transcatheter aortic valve implantation (TAVI) has been associated with large incidence of ischemic events, whose sources are still unclear. In fact, sub-acute complications cannot be directly related to the severity of the calcification in the host tissues, nor with catheter manipulation during the implant. A potential cause could be local flow perturbations introduced by the implantation approach, resulting in thrombo-embolic consequences. In particular, contrary to the surgical approach, TAVI preserves the presence of the native leaflets, which are expanded in the paravalvular space inside the Valsalva sinuses. The purpose of this study is to verify if this configuration can determine hemodynamic variations which may promote blood cell aggregation and thrombus formation. METHODS: The study was performed in vitro, on idealized models of the patient anatomy before and after TAVI, reproducing a range of physiological operating conditions on a pulse duplicator. The fluid dynamics in the Valsalva sinuses was analyzed and characterized using phase resolved Particle Image Velocimetry. RESULTS: Comparison of the flow downstream the valve clearly indicated major alterations in the fluid mechanics after TAVI, characterized by unphysiological conditions associated with extended stagnation zones at the base of the sinuses. CONCLUSION: The prolonged stasis observed in the Valsalva sinuses for the configuration modelling the presence of transcatheter aortic valves provides a fluid dynamic environment favourable for red blood cell aggregation and thrombus formation, which may justify some of the recently reported thromboembolic and ischemic events. This suggests the adoption of anticoagulation therapies following TAVI, and some caution in the patients׳ selection

    Solidification behaviour and mechanical properties of cast Mg-alloys and Al-based particulate metal matrix composites under intensive shearing

    Get PDF
    Magnesium alloys, as the lightest of all structural metallic materials, and aluminium-based particulate metal matrix composites (PMMCs), offering unified combination of metallic and ceramic properties, have attracted increased interest from the automotive, aerospace, electronic and recreation industries. Current processing technologies for PMMCs do not achieve a uniform distribution of fine-sized reinforcements and produce agglomerated particles in the ductile matrix, which are detrimental to the ductility. At the same time, molten magnesium alloys contain impurities and oxides and when cast conventionally, the final components usually exhibit a coarse and non-uniform microstructure with various casting defects. The key idea in this thesis has been to adopt a novel intensive melt conditioning process, allowing the application of sufficient shear stress that would disperse solid particles present in the melt and offer unique solidification behaviour, improved fluidity and die-filling during casting. The Melt Conditioned High Pressure Die Casting (MC-HPDC) process, where intensive shearing is directly imposed on the alloy melt, which is then cast by the conventional HPDC process, has been used to produce PMMC and magnesium alloy castings. The MC-HPDC process for PMMCs leads to a uniform dispersion of the reinforcement in the matrix, confirmed by quantitative statistical analysis, and increased mechanical performance as indicated by an increase in the hardness and the tensile properties of the composites. We describe a solidification path for aluminium containing magnesium alloys, where intensive shearing prior to casting leads to effective dispersion of solid oxide particles, which then effectively act as nucleation sites for magnesium grains, resulting in significant grain refinement. The MC-HPDC processed magnesium castings have a significantly refined microstructure, with reduced porosity levels and casting defects. Evaluation of the mechanical properties of the castings reveals the beneficial effect of intensive shearing. After careful optimization, the MC-HPDC process shows promising potential for the direct recycling of high purity magnesium die casting scrap, producing casting with mechanical properties comparable to those of primary magnesium alloys.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE)

    Get PDF
    This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation

    Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties

    Get PDF
    An analytical model is developed to predict fatigue crack propagation rate under mode I loading in 2024 aluminum alloy with FSW HAZ material characteristics. Simulation of the HAZ local properties in parent 2024 AA was performed with overaging using specific heat treatment conditions. The model considers local cyclic hardening behavior in the HAZ to analyze crack growth. For the evaluation of the model, the analytical results have been compared with experimental fatigue crack growth on overaged 2024 alloy simulating material behavior at different positions within the HAZ. The analytical results showed that cyclic hardening at the crack tip can be used successfully with the model to predict FCG in a material at overaged condition associated with a location in the FSW HA
    corecore