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Abstract 

In this thesis, we study the complex sine-Gordon model on a half line. The 

model in the bulk is an integrable (1+1) dimensional field theory which is U(1) 

gauge invariant and comprises a generalisation of the sine-Gordon theory. It accepts 

soliton and breather solutions. By introducing suitably selected boundary conditions 

we may consider the model on a half line. Through such conditions the model can 

be shown to remain integrable and various aspects of the boundary theory can be 

examined. 

The first chapter serves as a brief introduction to some basic concepts of inte­

grability and soliton solutions. As an example of an integrable system with soliton 

solutions, the sine-Gordon model is presented both in the bulk and on a half line. 

These results will serve as a useful guide for the model at hand. The introduc­

tion finishes with a brief overview of the two methods that will be used on the 

fourth chapter in order to obtain the quantum spectrum of the boundary complex 

sine-Gordon model. 

In the second chapter the model is properly introduced along with a brief litera­

ture review. Different realisations of the model and their connexions are discussed. 

The vacuum of the theory is investigated. Soliton solutions are given and a discussion 

on the existence of breathers follows. Finally the collapse of breather solutions to 

single solitons is demonstrated and the chapter concludes with a different approach 

to the breather problem. 

In the third chapter, we construct the lowest conserved currents and through 

them we find suitable boundary conditions that allow for their conservation in the 

presence of a boundary. The boundary term is added to the Lagrangian and the 

vacuum is reexamined in the half line case. The reflection process of solitons from 

the boundary is studied and the time-delay is calculated. Finally we address the 

existence of boundary-bound states. 

In the fourth chapter we study the quantum complex sine-Gordon model. We 



IV 

begin with a brief overview of the theory in the bulk where the semi-classical spec­

trum and an exact S-matrix are presented. Following that we use the stationary 

phase method to derive the semi-classical spectrum of boundary bound states. The 

bootstrap method is used as an alternative approach to obtain the same spectrum. 

The results are discussed and compared. 

The final chapter consists of a general discussion on open questions and problems 

of the model, and some proposals for further research. 
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Introduction 



Chapter 1. Introduction 2 

1.1 Introduction and Outline 

Modeling the physical world is one of the most challenging and rewarding aspects 

of human intellect. It has become an inseparable part of scientific progress and has 

laid the foundations for the development of new technologies. From simple everyday 

mechanics to the unification of fundamental forces, the underlying idea remains the 

same; to find a compact, coherent and consistent mathematical description, within 

which we can explain physical observations. 

This has never been an easy task. The physical world is incredibly rich in struc­

ture and there are a vast number of physical phenomena that have to be accounted 

for within the framework of a mathematical model. Even with a 'simple' grand uni­

fying theory of fundamental forces behind it, the universe exhibits an overwhelming 

variety of phenomena that have to naturally arise from the proposed model. More­

over, as the uncertainty principle and the constancy of the speed of light have demon­

strated, basic ideas which are essential in the modeling process may be counterintu­

itive. Quantum mechanics and relativity are prime examples of how fundamentally 

different new models may be from their predecessors. 

It is clear from the above that it is especially difficult to construct a consistent 

mathematical description of a physical system. Also correctly analysing and solving 

the proposed model itself proves an equally rigorous task. It is therefore wise to start 

with models that can be easily solved but nevertheless exhibit a rich and compli­

cated behaviour. Once these models have been studied thoroughly and understood 

completely, they can provide useful insight to more complicated theories. It is in 

this spirit that many researchers choose to study simple models. This effort has not 

only led to incredibly interesting results, but in the process they have managed to 

develop new techniques to tackle several difficulties that have arisen. Today, new 

objects like solitons, vortices and instantons are parts of field theory, while the in­

verse scattering transform, the Hirota method and the Backlund transformation are 

widely used techniques for generating solutions. 

The majority of such studies are focused on field theory models described by 
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non-linear partial differential equations in one space and one time (1+1) dimension. 

The choice of dimensions is made in order to simplify an already difficult problem 

but also because through symmetries, realistic higher dimensional problems may be 

reduced to 1 + 1 dimensions. Generalisation to higher dimensions can also be made, 

although this is rarely a straightforward task. 

The non-linearity provides the model with a complex interacting behaviour which 

is not only interesting from a mathematical viewpoint but also reflects the interacting 

nature of most physical systems. Nature seems to favour subtle non-linear behaviour 

to that of easily solvable but trivial linear systems. However, non-linearity ensures 

that finding explicit solutions to these equations is extremely awkward. A perturba­

tive approach is probably the only way to go, but even this is not always applicable 

for instance if the coupling constant is strong as is the case in QCD. Nevertheless it 

is possible to find in nature complex non-linear behaviour which can be approached 

through models which are (or nearly are) completely solvable. This means that for 

these models exact analytic solutions can be written down. These models are known 

as integrable models and enjoy a special status due to their remarkable features. 

This thesis examines one such integrable model, the complex sine-Gordon model. 

It is a (1+1) dimensions field theory which appeared in the literature almost 30 years 

ago and belongs to a family of generalisations of the also integrable sine-Gordon 

model. The model enjoys all the nice features of complete integrability, while at the 

same time introduces an internal U(1) degree of freedom. It admits both topological 

and non-topological soliton solutions as well as breather solutions which collapse to 

the corresponding solutions of the sine-Gordon model in the chargeless limit. 

The outline of the thesis is as follows. In this introduction some key-point ele­

ments of integrability are presented. A small discussion about soliton solutions and 

their basic features follows and the introduction concludes with a brief description 

of the sine-Gordon model and some important results which will be needed for a 

qualitative comparison with the model at hand. The final part of this chapter in­

troduces the two different methods that will be used in the fourth chapter when we 

address the quantisation of the model. 

In the second chapter, we present the model and continue with a brief litera­

ture review on the complex sine-Gordon model. Different aspects of the model are 

presented and a suitable vacuum is chosen in terms of the Wess-Zumino-·witten 
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interpretation of the model. vVe examine classical solutions in detail, beginning 

with the single soliton and continuing with the two-soliton solution derived from 

the Backlund transformation for the complex sine-Gordon model. We discuss the 

existence of breather solutions and introduce a consistent way to create them in 

the absence of direct confirmation through the equations of motion. The relation of 

these solutions to the other multi-soliton solutions is also briefly discussed. 

In the third chapter, we introduce a boundary term to the Lagrangian and con­

sider the model on a half line. We use the zero curvature representation to find the 

infinitely many conserved quantities and through them, boundary conditions that 

preserve the integrability of the model. Once such conditions have been found, a 

reexamination over the vacuum structure is made to establish whether the intro­

duction of the boundary demands a new non-trivial vacuum state. We study the 

scattering of solitons off the boundary through the method of images and calculate 

the time delay induced by this process. Finally we explore the spectrum of boundary 

bound states beginning with the static single soliton solution which is shown to sat­

isfy the boundary conditions. The chapter concludes with the necessary conditions 

for the existence of boundary bound breathers. 

In the fourth chapter we examine the quantum case of the complex sine-Gordon 

equation on a half line. At first we review the results in the literature about the 

quantum theory in the bulk and we continue with the quantisation of the boundary 

problem. We use the semi-classical methods introduced by Dashen, Hasslacher and 

Neveu [3, 4] and refined by Corrigan and Delius in [5] to obtain the spectrum of 

states up to the second order corrections in the expansion of the coupling constant. 

Alternatively, we use the bootstrap method of Ghoshal and Zamolodchikov [6] to 

derive the quantum spectrum. Finally a direct comparison of the results is made 

in order to establish exact relations between the introduced parameters of the two 

methods. 

In the final chapter we present a brief overview of the most important results 

and discuss further research possibilities. 

In the appendix the theory of optical pulse propagation is briefly presented. We 

begin with a small discussion about the field theory description of the Maxwell­

Bloch theory in terms of the sine-Gordon model. The reformulation of the theory in 

terms of the complex sine-Gordon model and the benefits of this generalised version 
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of the sine-Gordon theory are discussed. Once again we use the matrix potential 

formalism to demonstrate integrability and in contrast with the second chapter, a 

different gauge is chosen for a more realistic physical description. 'We demonstrate 

that the infinite number of conserved charges may again be constructed with a 

suitable choice of boundary conditions. 

1.2 Integrable models 

It is a rather difficult task to determine whether a model is integrable. The main 

reason is that there is no clear definition of what integrability is. To approach and 

define integrability, one can choose many a path ranging from algebraic geometry to 

conservation laws. Since most integrable systems possess a Hamiltonian structure, 

we choose to examine integrability based on elements of this formalism. In contrast 

with a strict mathematical approach, through the Hamiltonian formalism we can 

identify elements of integrability with properties of the physical system. We begin 

with a finite-dimensional Hamiltonian model before we proceed to a field theory. 

A Hamiltonian model of 2n independent variables is completely integrable if 

there exist n functions Qi ( q, p) which are independent that satisfy the following 

relations 

{1-l, Qi(q,p)} = 0 and {Qi(q,p), Qj(q,p)} = 0 i = l..n 

where 1-l is the Hamiltonian of the system. The Qi functions are called commuting 

integrals of motion, or conserved quantities. The Hamiltonian 1-l depends on the 

generalised variables (q,p) only through the conserved quantities, i.e. 1-l = 1-l(Qi)· 

A field theory model is completely integrable when it is realised as an infinite­

dimensional extension of a finite Hamiltonian system. As now n goes to infinity so 

does the number of integrals of motion. This infinite number of conservation laws 

implies an infinite number of underlying symmetries which are associated with an 

infinite-dimensional algebra. 

Although difficult, it is possible to make the following change of variables 

(q,p) -t (¢,!) , 
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so that the following relations are true 

The new variables I and ¢i are called action-angle variables. Through this transfor­

mation the Hamiltonian structure is maintained and the system becomes completely 

separable as the equation of motion reduce to the infinite set of equations 

:/ = {1-l,I} 0' 

d 
dt ¢ = {1-l, ¢} w(I) 

which can be easily solved. The canonical transformation used to change the system 

into the action-angle variables is known as the inverse scattering transform. It is 

a non-linear version of the Fourier transform in linear systems and may be used to 

generate solutions when time independent solution are already known. This method 

was originally devised and applied to the Kortweg de-Vries equation by Gardner, 

Green, Kruskal and Miura in a series of papers [7]. Later the method was also 

used successfully in a number of different models thus establishing it as a consis­

tent procedure for solving non-linear problems. The idea behind this is through 

the scattering data of an already known solution to reconstruct the time-dependent 

solution. Schematically one has 

g(x, 0) Scattering Transform 

g (X, t) .._, -----=I=nv.;..;e=r.::..:se::....::..Sc=a=t.:...:te:..:..n=· n=g'-'T=r=a=n.=s£=or:..:.m:..:_ __ 

So 

Time 
Evolution 

One begins with a time independent solution g(x, 0) and performs a scattering trans­

form to get the scattering data S0 . The linear character of the latter makes their 

time evolution an easy task. Finally one performs the inverse scattering transform 

on the time evolved data St to recover a time-dependent solution to the non-linear 

equation. It is an exact copy of the method used in linear systems for finding, solu­

tions, with the scattering transformation being replaced by the Fourier transform. 

A significant factor in the development of the inverse scattering method was the 

computational power that became available at that period. However, the numerical 
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calculations only helped establish a firm basis for turning the inverse scattering 

transform into a consistent and generally applicable method. 

The modern formulation of the inverse scattering method, is the Lax pair ap­

proach. It was developed by Lax in [8] in a treatment of the integrable Kortweg 

de-Vries (KdV) equation. Using the results of Gardner, Green, Kruskal and Miura, 

Lax managed to rewrite the theory as a linear spectral problem, expressing the equa­

tion of motion as an equation between two suitably chosen linear operators called 

the Lax pair. The Lax method can be applied also to other integrable systems. As 

it turns out, all integrable systems possess a Lax pair. Conversely, if one can find a 

Lax pair of any system, the system is integrable. 

In general, one deals with an equation of the form 

Ut = F(u) with u = u(x, t) (1.1) 

The general function F has no time dependence but may depend on the field u and 

its space derivatives. The Lax pair approach consists of finding suitable operators 

L and .NI such that the equation of motion may be written in the form 

Lt- [L, M] = 0 , (1.2) 

where the subscript characters denote differentiation. The linear operator L acts on 

the Hilbert space of states spanned by ¢ and obeys the eigenvalue equation 

L¢ = >..¢ ' (1.3) 

where ¢ is an eigenfunction of L that may depend on the u field. We assume that 

the time evolution of the state ¢ satisfies the linear equation 

c/Jt = M¢ , (1.4) 

and take the eigenvalue).. to be real and time-independent 1 . The eigenvalue equation 

may now be differentiated with respect to t to produce 

(L- >..)</>t + Lt</> 

LM¢- >..M¢ + Lt¢ 

(LM- M L)¢ + Lt</> 
1This may be easily demonstrated if we take the operator L to be self-adjoint 

(1.5) 



Chapter 1. Introduction 8 

By suitable choice of operators this equation becomes the equation of motion for 

the linear system. The difficulty in this method lies in the arbitrary choice of the L 

operator. In the original paper by Lax, the operator had already been identified in 

the Kruskal et al treatment of the Kortweg de-Vries model. After L has been found, 

it is a trivial task to find an 1\1 operator so as to reproduce the equation of motion 

in the form of (1.2). It has to be pointed out that the choice of 1\1 is not unique 

since it is defined up to a function that commutes with L. 

The Lax pair equation implies that the time evolution doesn't change the spec­

trum of L thus making it possible to identify the eigenvalues of the operator L with 

the integrals of motion. 

The Lax pair will be greatly used within this thesis. It provides an elegant 

demonstration of integrability and avoids cumbersome expressions. It will be used 

to express the complex sine-Gordon equation of motion in a compact form and to 

construct the infinite series of conserved charges. 

Excellent reviews on the subject of integrability, the inverse scattering transform 

and the Lax pair formulation can be found in [9, 10, 11]. 

1.3 Solitons 

Out of all stable solutions to non-linear evolution equations, soliton solutions 

are by far the most interesting. They describe well-defined, localised (solitary) 

waves exhibiting remarkable stability. This is a brief overview on a vast subject. 

More detailed treatments and introductory material can be found in the literature 

[12, 13, 14]. 

The first observation of a soliton is dated back to the beginning of the 19th 

century on a shallow water canal by John Scott Russell [15]. After a gap of almost 

150 years, this wave which had in the meantime emerged as a solution of the in­

tegrable Kortweg de-Vries equation, appeared again in a study for the finite heat 

conductivity of solids. In a series of papers Kruskal and Zabusky [16, 17], studied 

the properties of this peculiar wave which they named soliton and showed that it 

was the Kortweg de-Vries equation again which was responsible for this solution. 
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Soliton solutions however are not a unique feature of the Kortweg de-Vries model. 

They appear in a huge range of different models all of which are integrable. This is 

a key point since most of their fascinating features are in fact associated with the 

infinite conserved quantities of integrable models. 

The first remarkable feature of solitons is their stability. Although one would 

expect the wave to disperse with time, the soliton is created in such a way so that 

the wave stays focused and localised. This is the result of two opposing forces, a 

non-linear one which acts against the dispersion process which is in turn dictated 

by a linear force. 

The second surprising feature of solitonic solutions is their scattering process. 

During scattering, the solitons, after a brief period of reconfiguration, emerge un­

altered maintaining all physical characteristics such as speed, shape and volume. 

After the collision, no trace remains of the event but for a phase shift. No radia­

tion or other mode is produced by the scattering process thus keeping the energy 

distribution localised. 

The above properties make solitons ideal candidates for particle modeling. These 

localised energy lumps maintain their identity even after collision, pointing to the 

existence of conservation laws. In fact the stability of solitons can be attributed to 

the infinite number of conserved quantities associated with the symmetries of the 

integrable model. In addition, soliton stability may also be explained by topology 

as in the case of the sine-Gordon model where solitons solutions interpolate between 

different vacua thus demanding an infinite amount of energy to collapse. 

Apart from mathematical modeling, solitons have also fascinating applications 

in technology. Their incredible stability makes them a favorite choice in communi­

cations as they minimise or even eliminate the need for signal boosting and do not 

suffer from pulse overlapping problems due to minimal broadening effects. 

Solitons in the past few decades have become an integral part of field theory and 

led to the introduction of more complicated topological objects like vortices and 

instantons. Along with integrability, they have shown how non-linearity can give 

rise to well-behaved and completely-solvable systems that may be used to explain 

a variety of phenomena. One such model that has found plenty of applications and 

combines all the nice features of integrability whilst possessing soliton solutions is 

the sine-Gordon model. 
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1.4 An example of a completely integrable 

system: The sine=Gordon model 

10 

Second perhaps only to the Kortweg de-Vries equation, the sine-Gordon model 

is one of the most famous and well studied non-linear models in the literature. The 

theory is Lorentz-invariant and has found many an application throughout physics. 

The name comes from the similarity with the linear Klein-Gordon model, which 

arises as the linear approximation. It is a completely integrable field theory in 

(1+1) dimensions, describing a real scalar field with a sine-type interaction. The 

corresponding Lagrangian density is 

(1.6) 

where ¢> is the scalar field and {3 a real coupling constant. The sine-Gordon equation 

emerges as the Euler-Lagrange equation of the above Lagrangian 

(1. 7) 

and accepts soliton solutions of the form 

¢> = 4 arctan ( exp ( ±*(cosh(O)x- sinh(O)t))) , (1.8) 

where 8 is the rapidity of the soliton. This indeed describes a localised wave traveling 

with velocity V =tanh( B) without any change in form (Fig. 1.1). The stability of the 

solution is due to the infinite number of conservation laws. The model is completely 

integrable and the sine-Gordon equation appears as the zero curvature condition 

[L,M] =0, 

of a connexion 

L = 81 + i ( ~80¢>a3 +sinh( B) cos(f3
2
¢)a1 +cosh( B) sin(f3

2
¢)a2) , 

M = 8o + i ( ~81¢>a3 +cosh( B) cos(f3
2
¢)ai +sinh( B) sin(f3

2
¢)a2) , 

(1.9) 

(1.10) 

(1.11) 

where ai are the standard Pauli matrices. One of the most fascinating things of this 

model is that the solutions are also stable for topological reasons. The degenerate 
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v 
_/0 

Figure 1.1 : The sine-Gordon soliton 

11 

vacuum structure of the theory can be easily spotted. An infinite number of constant 

solutions satisfy the equation of motion minimizing the potential term 

27T 
¢ = (:in , n integer . (1.12) 

Through this degeneracy, topological aspects of the model arise. Solutions (kinks) 

that interpolate between different vacua are stable because an infinite amount of 

energy would be needed for their collapse. This is more elegantly expressed through 

the topological charge N, an integer, that corresponds to exactly this interpolation 

of the solution between vacuum values at infinity 

, N t: Z. (1.13) 

The conservation law of the topological charge is not derived by a symmetry trans­

formation, i.e. it is not a Noether current. It exists independently and is associated 

with the vacuum structure. The topological charge as expressed for solitons also 

implies the existence of anti-solitons. For each soliton, there exists a topologically 

distinct solution that carries the opposite topological charge (antikink) having the 

exact same properties. An excellent study of the sine-Gordon equation and its 

properties can be found in [18]. 

Multi-soliton solutions also exist and have been studied extensively. Their scat­

tering process demonstrates clearly the remarkable "transparency" feature where 



Chapter 1. Introduction 12 

the solitons pass through each other without changing their original shape (Fig. 1.2 

and Fig. 1.3). 

Figure 1.2: Kink-Kink collision 

Multi-solitons solutions can be derived by the use of the Backlund transforma­

tion. It is a powerful method of obtaining more complicated solutions from already 

existing ones. The same technique will also be used in the following chapter to 

generate solutions for the complex sine-Gordon model and that is why a short de­

scription here is useful. We begin with the equation of motion of (1. 7), which in 

lightcone coordinates is 

aa¢ +sin(¢)= 0 . (1.14) 

The coupling constant is set to f3 = 1 for simplicity. Consider the following set of 

equations 

(1.15) 

(1.16) 

where ¢ 1 and ¢2 are both solutions of (1.14). It is easy to see that by differentiating 

with respect to z and z respectively and by using the equations again to discard 

the derivative terms, the sine-Gordon equation is recovered. This set of equations 

are the Backlund transformation for the sine-Gordon model. They imply that if one 
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X 

Figure 1.3: Kink-Antikink collision 

solution is already known then by means of simple integration a second one may 

be obtained. The parameter 6 is known as the Backlund parameter and appears in 

the new solution. To demonstrate this one may begin with the simplest solution to 

(1.14), namely (h = 0. Through the Backlund transformation, one can solve for <h 
to discover the one-soliton solution of (1.8) 

¢2 = 4 arctan ( exp(6z- ~z +C)) (1.17) 

This method may be used recursively to construct higher solutions. However the 

integration becomes more difficult in the process. Instead it is better to use the 

"theory of permutability", a non-linear superposition technique is used to eliminate 

derivatives and simplify expressions (Fig 1.4) 

One begins with a solution S(o) and uses the Backlund transformation twice 

with parameters 61 and 62 respectively to generate solutions sP) and 5~1 ). Now 

with starting point the latter two solutions the Backlund transformation is used 

again for each but this time the parameters are used in reverse order i.e. 62 and 

61 respectively. The two solutions emerging coincide and may be written only in 

terms of sF), 5~1 ) and S(o), since derivative terms can be substituted by the original 

Backlund equations. If we begin with the solution S(o) = 0 then in the first step we 
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(0) s 

Figure 1.4: The non-linear superposition 

(2) s 
1,2 

produce two one-soliton solutions and in the next step a two-soliton solution 

S(2) = s(o) 4 arctan 1 2 tanh 1 - 2 . 
(

5 + 5 (s(ll s(ll)) 
51- 52 4 

14 

(1.18) 

This is a general two-soliton solution with the arbitrary parameters 51 and 52 are 

related to the velocity of the two solitons. This formula can be generalised to n-th 

order providing a solid way of increasing the number of solitons in a solution. 

There are two interesting choices for the parameters appearing in the two soliton 

solution of (1.18) that will be used to clarify some issues for the complex sine-Gordon 

model. The first one is 

(1.19) 

This choice corresponds to a soliton-soliton solution in the centre of mass frame. 

The collision process may be seen in (Fig. 1.2). The second choice is 

(1.20) 

which corresponds to a soliton-antisoliton solution moving with equal and opposite 

velocities (Fig. 1.3). 

The soliton-antisoliton solution is extremely interesting. It may be used to give 

rise to another set of solutions which correspond to bound states between a soliton 
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and an antisoliton known as breathers (Fig. 1.5). These solutions are stable lo­

calised waves periodic in time that carry no topological charge. They appear from 

Figure 1.5: Breather solution 

a soliton-antisoliton solution when the velocity parameter is analytically continued 

V ----+ iV. The absence of topology in such solutions has another effect. The breather 

corresponds to the particle of the theory. A small amplitude breather with specifi­

cally chosen parameters may be shown to correspond to small perturbation around 

the vacuum of the theory. 

Soliton, antisoliton and breather solutions all belong to distinct topological 

classes. As we shall see in the next chapter this is not true for the complex sine­

Gordon theory, where through transformations in the parameters we can switch 

between solutions. 

1.5 The sine~Gordon model on a half line 

In this section the sine-Gordon model is considered in the presence of a boundary. 

A boundary term is introduced to the sine-Gordon Lagrangian corresponding to 

an infinite energy barrier at x = 0. This modification raises the question under 
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which circumstances does the model preserve integrability. Here we simply present 

the results. A more detailed review of the subject may be found in the papers of 

Saleur, Skorik and Warner [19] and of Ghoshal and Zamolodchikov [6]. Most of the 

results presented here come from the above mentioned papers. The full sine-Gordon 

Lagrangian containing the boundary term is 

Lsc = [~ dx (~o~'¢8~'1>- * (1- cos(f31>))) + [ M0 cos (~(¢-<Po))] x=o (1.21) 

The boundary term is evaluated at x = 0 and contains the real constants Jvf0 and 

¢0 . In their paper Ghoshal and Zamolodchikov showed that the model preserves 

integrability if one considers the boundary condition 

(1.22) 

where the whole expression is evaluated at x = 0 and the field has been rescaled 

q> ---t ~¢. This is the most general condition consistent with integrability. It allows 

for the preservation of at least half of the conserved currents which are enough to 

render the model completely solvable. Inevitably the introduction of the bound­

ary term destroys translation invariance and therefore momentum and higher-spin 

momentum-like quantities are not conserved. Neumann boundary conditions are 

obtained by setting M0 = 0 which cause the sine-Gordon solitons to be reflected 

from the boundary as antisolitons. Another interesting limit is M 0 = oo which 

corresponds to Dirichlet boundary conditions making a soliton reflect as a soliton. 

Using a technique similar to the method of images Saleur, Skorik and Warner 

calculated the phase delay induced by the scattering of solitons off the boundary. 

For this they used a three-soliton solution, fixing one of the solitons at the origin 

thus using it as a static background. The general formula for the phase delay that 

they derived is 

a= ln -E tanh - tanh () [ 
2(()) 2( ) (tanh(~(()+ i77)) tanh(~(()- i77)) )±I] 

2 tanh(~(()+()) tanh(~(()-()) 
(1.23) 

The parameter E = ±1 is chosen in such a way so that the argument of the logarithm 

remains positive. The parameters ( and 7J are directly related to the boundary 

parameters 

1>o) Mcos(2 
M sin(~0 ) 

2cosh(() cos(77) , (1.24) 

2 sinh(() sin( 7J) , (1.25) 
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and through the method of images to the Backlund transformation. Specifically, the 

Backlund parameter is related to ( 

(1.26) 

whilst the parameter 'T/ appears as the limit of the known solution of (1.15) at the 

boundary 

(1.27) 

Finally we present the boundary bound breather solutions for the sine-Gordon 

model. Just like the case in the bulk, boundary breathers are constructed through 

the analytic continuation of the velocity parameter, or in this case the rapidity 

0 -t iO. Once again a static soliton background is needed. This three-soliton con­

figuration has all the nice properties required for such a solution, i.e. finite energy 

levels and proper asymptotic behaviour. The solution of a boundary breather is 

[
2 cot( B) cot(~ )VK cot( to_ )e(l+cos(O})x cos(t sin(B) )+e2 cos(O)x /( cot 2 ( ~ )+ 1] 

-4 arctan 2 4 2 
2 cot( B) cot(~ )VK ecos(O}x cos(t sin( B) )+e"' cot( to_)( e2 cos(O)x /( +cot2 ( ~)) 

2 ' 4 2 

(1.28) 

with 

¢o e ¢o e 
K =cot(- - -)cot(-+-) . 

4 2 4 2 
(1.29) 

The above solution for the breather is real as long as K is positive. The spec­

trum of boundary bound breathers is continuous and only becomes discrete upon 

quantisation. 

The boundary breather solution concludes the presentation of classical states for 

the sine-Gordon model. The results both in the bulk and on a half line will be useful 

when we come to analyse the complex sine-Gordon model in the following chapters. 

These will act as a guide in the chargeless limit where the complex sine-Gordon 

model collapses to the sine-Gordon equation. Topological aspects will not be sub­

ject to direct comparison since the topology of the chargeless complex sine-Gordon 

model is lost within a mapping. Nevertheless, the chargeless limit should reproduce 

all of the other familiar results from the sine-Gordon case. 
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1.6 Q1Lllantisation Methods 

Considering classical theories which are completely solvable raises the question of 

how such theories behave when quantised. Quantum theories provide a much differ­

ent picture than the corresponding classical models they originate from. Especially 

in the case of field theories the classical and quantum versions differ not only on the 

structure of physical states but in the treatment of the field variables themselves. 

Fields are no longer dynamic variables but operators acting on a Hilbert space of 

states and obeying commutation relations. 

In the fourth chapter we shall examine the quantum case of the complex sine­

Gordon model. Our objective will be to construct the quantum spectrum of boundary­

bound states using the results of the theory in the bulk. In order to do that we shall 

use two methods which have different starting points but should in the end produce 

the same results. We end this introductory chapter with a brief presentation of these 

two methods. 

1.6.1 The stationary-phase method 

A number of different techniques have been developed in order to achieve the 

transition to the quantum level once the classical theory is well understood. The 

quantisation of such theories rarely leads to exact results and in general focuses 

on constructing quantum states out of the classical solutions with the addition of 

extra terms as "quantum" corrections. A number of such semi-classical methods 

exist. For example when quantising the anharmonic oscillator, one can use the 

Weak-Coupling method for time-independent solutions which is based on expanding 

the potential around the static classical solutions. The leading order is that of a 

harmonic oscillator, while the following anharmonic terms are small enough to be 

ignored. This method however is limited by the weak-coupling demand which is 

vital in order to ignore the anharmonic terms. 

The method that will be used in the fourth chapter to obtain the energy spectrum 

of bound states is the stationary-phase approximation (SPA) . This is the natural 

extension of the vVKB method of quantum mechanics for a field theory. It is based on 
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the work of Dash en, Hasslacher and Neveu [3, 4] for the semi-classical quantisation 

of the sine-Gordon model. This method is not restricted by the weak-coupling 

demand and involves time-dependent periodic solutions. It is non-perturbative and 

may also be regarded as a generalisation of the Bohr-Sommerfeld quantisation rule. 

We choose to present briefly some key points of the SPA method as they will later 

be used in the half-line case. A pedagogical review on the subject may be found in 

the fifth chapter of [20] as well as in [21]. 

Consider the propagator associated with the transition of a system between two 

field configurations 

(1.30) 

The energy eigenvalues that appear as poles in 9 are exactly the energy levels of the 

bound states that we would like to find. Since this is a field theory an extra set of 

conditions have to be imposed at infinity 

¢( +oo, t) = ¢( -oo, t) = 0 . 

The propagator 9 (E) can also be expressed as a functional integral 

where 

9(E) = *Tr 1= dT exp (*(E- H)T) 

* 1oo dT exp (*ET) G(T) . 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

In general this is impossible to find exactly. The basic idea behind the SPA method is 

that the dominant contribution to the path integral in (1.34) comes from the periodic 

classical solution <Pel· We shall call the period associated to such a solution T. 

Corrections to this approximation can be found by expanding the action functional 

S[¢] around the classical solution <Pel 

(1.35) 

assuming that fluctuations (<Pi - <Pel) are small. The linear term in the expansion is 

zero as the solution <Pel minimises the action functional whilst the quadratic term 
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corresponds to quantum corrections. By substitution the propagator kernel now 

becomes 

G(T) ~ e( *S[c/>cd) J 'D[¢] exp (i_ ~ [ ()2 S[¢]] 'lj;a'lj;b) . 
n 2 81>a81>b c/>=c/>ci 

(1.36) 

with 'lj;i = (1>i -1>ct). The integral in the above expression comprises a generalisation 

of the familiar gaussian integral 
1 

L+oo e-%x2 dx = (2:) 2 ' (1.37) 

and can be solved to finally yield 
1 

G(T),....., e(*s[¢cd) det [~ [ fJ
2
S[¢]] l- 2 

2 fJ¢afJ1>b c/>=c/>ci 
(1.38) 

Solving for the determinant is not an easy task. It is an eigenvalue problem which 

is known as the stability equation 

[~ :;s~:l J x(x, t) = o . 
a b c/>=c/>ci 

(1.39) 

The field x(x, t) represents a small fluctuation around the classical field solution 1>ct 

and therefore 1>ct + x(x, t) satisfies the same equations of motion. The periodicity 

of the solution 1>ct dictates that 

(1.40) 

where vi is a phase factor known as the stability angle. There is an infinite number of 

Xi solutions and therefore an infinite number of corresponding stability angles. They 

describe quantum fluctuations around the classical energy and appear as harmonic 

oscillator modes. Their contribution to the energy states can be seen if one examines 

the poles in Q. This involves some tedious calculations [4]. First the stability 

equation of (1.39) is solved. The form of G is then determined and substituted in 

(1.32). After some manipulation of the expression one finds the poles appearing 

when 

F (E) = n1rn , n = 1, 2, ... (1.41) 

with 

F(E) 
00 1 

S[1>ct] + Sct[1>cd +TE-L 2 n Vi. (1.42) 
0 

E (1.43) 
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The sums appearing in the above expressions contain the stability angles and can be 

determined from solving the stability equation. It is because of these infinite sums 

which might be divergent that counter terms have to used. The terms Set and Ect 

appear exactly for this purpose. For a renormalisable theory, such divergencies are 

expected to be cancelled by the introduction of such terms. 

The quantisation condition (1.41) can be re-written in a more recognisable form. 

Let us define the quantity 

(1.44) 

Now :F(E) may be written as 

(1.45) 

where in this instance we have used Ec1 = -
85Ji,c~l. By defining 

(1.46) 

we can finally write the quantisation condition in a more familiar form 

oSqu 
Squ- T dT = 21rn . (1.47) 

This is the generalised version of the Bohr-Sommerfeld quantisation condition 

:F(E) = S + ET = J pdq = 21rn . (1.48) 

From equation (1.45) it is easy to see that (1.47) in fact comprises of the quantisation 

rule for the classical action and a first order correction term described by 

(1.49) 

We shall use this generalised quantisation condition when we come to calculate the 

boundary bound states spectrum on a later chapter. Although the Bohr-Sommerfeld 

rule for the classical action is quite straight forward, the calculation of the correction 

term is more subtle. The quantity ~ is not easy to calculate and shall prove to be 

divergent. 
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1.6.2 The Bootstrap approach 

In a much different approach, exact results about the quantum states can be 

found through the bootstrap approach. The method is based on the work of A.B. 

Zamolodchikov and ALB. Zamolodchikov [22] and involves the calculation of the ex­

act form of the scattering matrix (S-matrix) through a set of constraints. Although 

in general the S-matrix is a complicated object, its form is quite restricted in the 

case of integrable theories in (1 + 1) dimensions. In such theories we can find the 

following useful properties 

CD Non-production. 

The number of incoming and outgoing particles remains the same. No new 

particles are produced through the scattering process. 

e Elasticity. 

The initial and final sets of mass and momenta are the same. All scattering 

processes are completely elastic. 

e Factorisation. 

The multi-particle scattering matrix can be written as a product of the two­

particle S-matrices . 

The last property implies that through this factorisation we only need to determine 

the form of the two-particle S-matrix . Let us define particle creation operators 

Aa(B), where a denotes the type of particle and B is the rapidity of the particle. The 

S-matrix can then be defined through 

(1.50) 

The S-matrix is subject to a set of constraints that will eventually determine its 

form. The first set of constraints originate from the charge conjugation, parity, and 

time-reversal symmetries 

(1.51) 

Another set of constraints involves the use of the principles of analyticity, unitarity 
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and crossing symmetry which can be expressed as follows 

si~1 (e) E lR ' fore E II 

Srnn(e)Sk1 (-e) = oko1. 
lJ rnn t J 

st1(e) = s;:"(ix- e) 

Real analyticity 

Unitarity condition 

Crossing condition 

23 

(1.52) 

Another condition imposing further restrictions on the form of the S-matrix is the 

Yang-Baxter equation. It follows from the ability to move around particle trajecto­

ries without changing the scattering amplitude of the process (Fig. 1.6). In terms 

b c a b c a 

a c b a c b 

Figure 1.6: The Yang-Baxter equation 

of S-matrices the Yang-Baxter equation is written as 

(1.53) 

where 

(1.54) 

This is a powerful relation. In conjecture with symmetry aspects of the model at 

hand which give rise to particle multiplets, it can determine the two particle S­

matrix . However if the particles of the theory are distinguishable by their mass 

and quantum numbers then the S-matrix is diagonal and therefore satisfies the 

Yang-Baxter equation identically. 
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One final constraint that is equally strong is the bootstrap equation. As men­

tioned above poles in the S-matrix may correspond to bound states. Although 

there are poles that can be interpreted differently (i.e. in terms of the Coleman­

Thun mechanism [23]), we shall not investigate such cases. Bound states are formed 

when particles come together on a certain angle (}~b known as the fusing angle (Fig. 

1.7). Having analytically continued the S-matrix in terms of(} in order to consider 

c 

a b 

Figure 1. 7: The fusing process 

processes in the cross channel, the "physical strip", the region for all physical pro­

cesses is introduced. The region is defined as SS(B) E [0, n]. Bound states occur only 

if the poles lie within the physical strip and more precisely on the ~(B) = 0 axis. On 

this ground the contradiction with the non-production rule in the beginning of the 

section is avoided since (} is not real. The bound state appears now as a simple pole 

at i(}~b for the forward and at 1r - i(}~b for the crossed channel. The whole spectrum 

may be constructed once the basic particle is known. The bound state which is 

formed is again a different particle of the spectrum. It is on-shell and therefore can 

be made to fuse with the original particles to create new bound states. The process 

can be repeated until all states are accounted for. 

As in the Yang-Baxter equation, we can again shift particle trajectories around 

a fusing process (Fig. 1.8). The result is the bootstrap equation 
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Figure 1.8: The bootstrap equation 

(1.55) 

where et is the fusing angle of the process ij -t k, satisfying 

(J k ej e·i 2 "+ k' + 'k = 7r t] t J . (1.56) 

The bootstrap equation completes the set of constraints for the two-particle S­

matrix. These are powerful enough to determine the exact form up to a total factor 

known as the CDD-ambiguity factor. More detailed reviews can be found in [24, 25] 

A similar approach can be adopted when considering a theory on a half line. The 

introduction of a boundary also introduces the concept of the reflection matrix K 

in order to describe the particle-boundary interaction. The incoming and outgoing 

states are related through K (Fig. 1.9) 

(1.57) 

As in the case of the S-matrix, poles found in the reflection matrix may correspond 

to boundary-bound states [6, 26, 27]. Other explanations for the existence of poles 

are possible as in the bulk case, but a number of them should indicate the existence 

of new states. 

In contrast however with the bulk case not all restrictions on the form of K 

apply. The presence of a boundary destroys translation invariance and therefore the 

parity condition of (1.51) does not hold. Moreover charge conjugation symmetry 

depends on the form of the boundary term and is not always true. Time reversal 
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b 

a 

Figure 1.9: The reflection process 

symmetry is however valid and presents us with the first restriction on ]( 

(1.58) 

Unitarity and crossing symmetry conditions for the reflection matrix appear in the 

same way as for the S-matrix 

K~(O)K~( -0) = 6~ 

K~(O)Kf(e C- in) = s~g(20) 

Unitarity condition 

Crossing condition 
(1.59) 

In the above expressions Ka denotes the reflection matrix of particle a and a is the 

antiparticle of a. The remaining restrictions persist although in a slightly altered 

form. The boundary Yang-Baxter equation is again associated with shifting tra­

jectories in the two-particle scattering diagram in the vicinity of the boundary. As 

with the bulk case, for distinguishable particles ]( is diagonal and the boundary 

Yang-Baxter equation (Fig. 1.10) 

is satisfied identically. Henceforth we shall take ]( to be diagonal since this is the 

case for the model at hand. Finally in the boundary case one has two bootstrap 

equations. Both are related with shifting trajectories around the fusion process close 

to the boundary The first is the boundl'lry rf'flf'rtion bootstrl'lp describing the fusion 

of two particles before and after reflecting off the boundary wall (Fig. 1.11) 
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b 

b 

b 

b 

Figure 1.10: The boundary Yang-Baxter equation 

(1.60) 

with 

(1.61) 

and (J = 1r - e. This is the basic relation that is used in order to build the whole 

spectrum of states. It can be used recursively to obtain the reflection factor of new 

particles and through their poles find new states. In order for this to work, the 

two-particle S-matrix of the bulk theory should be known. Crucially the reflection 

factor of the basic particle has to be obtained through some other means. This in 

fact is the most difficult step of the process, to propose a reflection matrix for the 

basic particle of the theory which is consistent with all the restrictions presented, 

has the correct classical limit and which contains a pole corresponding to a bound 

state in the spectrum. 

The second bootstrap equation comes from the fact that the boundary may be 

in an excited state. Consider the creation of a boundary bound state (Fig. 1.12). A 

particle comes in at a specific angle ()~fJ which corresponds to a pole in Ka and fuses 

with the boundary thus changing its state a --+ {3. This is reflected on the upper 

indices of the fusing angle. The boundary-bound bootstrap equation comes from 

shifting the trajectory of a particle reflecting from two differently excited boundary 
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c 

c 

a 

b 

Figure 1.11: The reflection bootstrap equation 

states (Fig. 1.13). 

(1.62) 

This concludes the set of restrictions that the reflection matrices should satisfy. 

More complex diagrams than those presented here may be written down but most 

can be interpreted in terms of the basic set. 

Once again it has to be pointed out that not all poles in the reflection matrix 

correspond to bound states. For instance poles may be explained in terms of the 

Coleman-Thun mechanism for the boundary case (see for example [28]). Eliminating 

such poles and disregarding poles that do not belong in the physical strip, should 

lead to poles corresponding to bound states. 

Introductory material and detailed discussions about the boundary bootstrap 

method may be found in a number of papers [29, 30, 31], along with applications to 

different systems [6, 32, 33, 34]. 
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Figure 1.12: The boundary bound state 

b 

b 

b 

b 

Figure 1.13: The boundary bootstrap 
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The complex sine-Gordon model 
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2.1 Overview of the model 

The complex sine-Gordon mocleP made its appearance in 1976 in two indepen­

dent and unrelated papers. It was derived by Lund and Regge as a model describ­

ing relativistic string and vortices in a superfluicl [35], and it was also obtained by 

Polmeyer in a reduction procedure of the 0(4) ~ SU(2) x SU(2) invariant chiral 

model which is identified with the one-dimensional a-model [36]. 

The complex sine-Gordon equation admits soliton solutions that are both topo­

logical and non-topological. The non-topological solutions were written clown by 

Lund and Regge [35], and by Getmanov in [37], each corresponding to a different 

sign of the coupling constant. These solutions carry a Noether charge Q associated 

with the global U (1) in variance of the evolution equation. In a later treatment by 

Shin and Park, the two sets of solutions were found to be related through a duality 

transform in the matrix potential framework [38]. 

The model's integrability was demonstrated by Lund using the inverse scattering 

method in [39]. On a later paper using Riemannian manifolds he also managed to 

express the non-linear complex sine-Gordon equation as an integrability condition 

[40]. 

In 1993 Bakas demonstrated that the model could be realised as a gauged WZW 

model, corresponding to the SU(2)/U(1) coset model perturbed by the first thermal 

operator [41]. In this framework the theory at level n describes Zn parafermions. 

The Krammers-Wannier duality between spin variables in the parafermion theory 

may be identified with the duality transform of the coupling constant and the theory 

may be expressed in an SU(2) matrix form. 

The complex sine-Gordon model is just the simplest case in a series of integrable 

generalisations of the sine-Gordon equation which belong to the group of non-abelian 

affine Toda equations. Out of all possible equations, only two series have a well 

defined action, i.e. have a positive kinetic term,a real potential and an S-matrix 
1 Getmanov has also studied a similar model which he referred to as complex sine-Gordon type 

II which includes an extra term in the Lagrangian. The model that is studied here is Getmanov's 

complex sine-Gordon type I. 
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description. The first are known as Homogeneous sine-Gordon theories (HSG) and 

are associated with a compact simple Lie group, while the second are known as 

the symmetric space sine-Gordon theories (SSSG) and are associated as their name 

implies with symmetric spaces. These theories have been studied extensively in 

[42, 43, 44, 45]. 

The complex sine-Gordon theory is quite fascinating from a mathematical point 

of view since it has a richer structure than the sine-Gordon equation which is recov­

ered at the chargeless limit. It is also the only theory with a U(l) gauge invariance 

which in the quantum limit has a completely factorisable S-matrix at tree level [46]. 

As the simplest case of a HSG theory, it may be used as a guide for more com­

plicated generalisations. The introduction of the U(l) charge distinguishes it from 

other extensively studied field theories, while its reduction to the sine-Gordon model 

in the chargeless limit places it close to them. 

Additionally, the model has plenty of applications in different areas of physics 

apart from its original description of vortices in a superfluid and as a theory of 

parafermions. As was originally pointed out by Lund [40] the model provides useful 

insight on gravity on both classical and quantum level as it describes a massless field 

moving in the background geometry of a second field which has a sine-Gordon self­

interaction. Indeed, the model in the massless limit was later shown to correspond 

to a stringy black hole through analytic continuation [47]. On a more applied level, 

the theory generalises the already successful theory by McCall and Hahn for optical 

pulses in a non-linear medium. McCall and Hahn successfully modeled the propaga­

tion of optical pulses in a non-linear medium by using the sine-Gordon model [48]. 

A few decades later Shin and Park [49] argued that a more suitable choice would be 

the complex sine-Gordon model in which more physical effects like inhomogeneous 

broadening and frequency detuning, which were previously ignored, would now be 

included within the framework of the field theory. Throughout this paper a close 

connexion with the theory of the optical pulses has been maintained. Key elements 

of the model are expressed in terms of physical quantities related to optical pulses. 

For completeness, we briefly present in an appendix the Maxwell-Bloch theory of 

optical pulses as well as demonstrate integrability of the model in the presence of 

a boundary with a more realistic choice of gauge. Through the introduction of a 

boundary term, an even more realistic modeling of optical pulses is achieved. The 



Chapter 2. The complex sine-Gordon model 33 

field theory description is not anymore restricted in an unbound non-linear medium, 

but now involves how pulses behave at the end of the wave guide. 

2.2 Conventions 

Before introducing the model, it is useful to present the notation that will be 

used throughout this thesis. This is a two dimensional model with one space x 1 (or 

simply x) and one time x0 (or simply t) coordinate in Minkowski space with a the 

metric g = diag(l,-1) forming the basic measure 

(2.1) 

In some cases instead of the normal space-time coordinates x 0 and x1 , lightcone 

coordinates z, z will be used. The reason for this change is to present equations 

in the form in which they have originally appeared in related papers so that direct 

comparison may be possible. Lightcone coordinates will be related to the normal 

space-time ones through the following definition 

1 1 z= 2(t-x) , z= 2(t+x). (2.2) 

In addition to simplify expressions and save space, derivatives are expressed in com­

pact form 

(2.3) 

Analogous expressions are adopted for the derivatives in lightcone coordinates 

~= ~ - a 
u az ' a= az ' (2.4) 

leading to the relations 

(2.5) 

that will be used extensively in the following chapters. Finally, we use the following 

conventions for the Pauli matrices 

( 
0 1 ) ( 0 -i ) ( 1 0 ) 

(}
1 = 1 0 ' (}2 = i 0 ' (}3 = 0 -1 (2.6) 
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2.3 The complex sine-Gordon Lagrangian 

The model has appeared in many different forms. In its original appearance the 

model was described by the Lagrangian 

.C = 8¢8¢ + 4 cot2 ¢877877- 2{3 cos 2¢ , (2.7) 

where ¢ and 7] are real fields and j3 a real coupling constant. The Lagrangian is 

singular at ¢ = mr which creates difficulties in the interpretation and full under­

standing of the model. In the following we will refer to this formulation as the 

trigonometric picture. The appearance of trigonometric functions, indicate a close 

connexion with the sine-Gordon theory. Indeed, when the field 7] is taken to be 

constant in (2.7), the sine-Gordon Lagrangian is recovered 

.Csc = 8¢8¢ - 2/3 cos 2¢ . (2.8) 

This form differs from the ordinary form of the sine-Gordon Lagrangian as it appears 

in the literature (1.6) through the double angle of the cosine as well as the undefined 

sign of the coupling constant j3 in the potential term. It is however a trivial difference 

involving the rescaling of both field and coupling constant. The Euler-Lagrange 

equations for this Lagrangian lead to the following equations of motion for the two 

fields 

- cos¢ -
88¢ + 4-. - 3-877817 - 2/3 sin 2¢ 0 , 

sm ¢ 
(2.9) 

887] - 0 

2
2"' ( 8¢877 + 8¢87]) = 0 ° 

sm '+' 
(2.10) 

These are two real second-order coupled differential equations both maintaining the 

singular behaviour at ¢ = mr. 

The complex sine-Gordon model may also be expressed in a more compact form 

in terms of a single complex field. This constitutes an equivalent picture of the 

theory and will be referred to as the complex field picture. The complex sine-Gordon 

Lagrangian in this picture is 

.C _ ~ 8u8u* + 8u8u* _ 413 * (2.ll) 
CSG - 2 1 - euu* UU ' 

with u now a complex field. The real parameter ~' plays the role of the coupling 

constant, but is significant only on the quantum level. In the classical regime it cor­

responds to a general multiplicative scaling of the action as can be seen by rescalling 
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the fields 

u 
u---+-

~ ' 
u* 

u* ---+ -
~ 
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(2.12) 

Since for the moment we are studying the model classically we shall set ~ = 1. The 

parameter will be restored later when we come to consider the quantum case. The 

remaining parameter f3 is a mass parameter that can be both positive and negative. 

This corresponds to dividing the theory into two distinct sectors, each with its own 

solutions, as will be explained in a later section. Through the variation of the action 

we obtain the equation of motion 

- u*ouau aau + + 4f3u(1 - uu*) = 0 . 
1 - uu* 

(2.13) 

In this formulation the singular behaviour is now at lui = 1. Solutions which start 

inside the disc lui = 1 at early times cannot evolve into solutions outside the elise. 

Through the Lagrangian, one can easily calculate the classical energy of the solutions 

in the bulk 

'11 _ I d ( looul
2 
+ lo1 ul

2 

413 *) TLbulk - X + UU . 
1 - uu* 

(2.14) 

One of the key features that makes this model so interesting is that the complex 

sine-Gordon Lagrangian is invariant under U(1) global transformations 

(2.15) 

and a a real constant. This invariance gives rise to conserved U(1) charges 

Q = i I dx u*oou- uoou* ' (2.16) 
1 - uu* 

that are carried by the solutions. The two Lagrangians of equations (2.7) and (2.11) 

are equivalent and are related through the transformation 

u =sin ¢e2i 71 , u* =sin ¢e-2i 71 • (2.17) 

The latter picture is the one that will be used throughout this thesis. The main 

reason for this choice is to avoid cumbersome expressions involving trigonometric 

functions. In the complex field formulation, there is a single equation of motion 

(2.13) in contrast with the set of coupled ones (2.9), making its analysis easier. The 

only drawback of this is perhaps the not so straightforward interpretation of the sin­

gular behaviour at lui = 1, demanding extra caution when examining this specific 

limit. 
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2.4 The WZW interpretation 

A different approach to the complex sine-Gordon model was offered by Bakas who 

demonstrated that the model may also be viewed as a gauged Wess-Zumino-Witten 

(WZW) model [41]. This is a more general picture for the complex sine-Gordon 

theory which encompasses the complex field picture. This is to be expected since 

the complex sine-Gordon model belongs to a series of generalisations of the sine­

Gordon theory, the homogeneous sine-Gordon theories described by a gauged WZW 

action with an added potential term. The corresponding action principle is written 

as follows 

S = S9wzw +Spot · 

The action term S 9wzw is the well known gauged WZW action 

Swzw = _2_ f dzdz Tr(g- 18gg-1Bg) 
47r j'E 

--1- f Tr(g-1dg 1\ _q- 1dg 1\ g- 1dg) 
127r} B 

+2_ j Tr(-WBgg- 1 + Wg- 1EJg + vVgWg- 1
- WW). 

27r 

(2.18) 

(2.19) 

(2.20) 

This action is defined in a three-dimensional manifold B whose boundary is our 

compactified normal two-dimensional space :E. The field g is an SU(2) group ele­

ment and g is the extension of g to the three dimensional manifold. The last term 

introduces gauge fields W and W which act as Lagrange multipliers. In addition, 

an extra deforming term Spot is added 

(2.21) 

The potential term breaks conformal invariance and thus gives rise to massive states. 

Varying the action yields the CSG equations of motion which can be expressed in a 

zero curvature form 

(2.22) 

as shown by Park [50]. From the variation of the gauge fields W and W, two 
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constraint equations arise 

(2.23) 

which are important for making the identification with the CSG theory. The con­

nexion between the SU(2) matrix g and the complex field u of (2.13) is given by 

9 = ( .u -iv* ) , 
-zv u* 

(2.24) 

where 

v = -v'1 - uu*e-iiJ , (2.25) 

is a field dual to u which is also a solution to complex sine-Gordon equation but 

with an opposite sign of (3. The field variable {) should not be considered as an 

independent field but rather as an auxiliary field that is properly defined up to a 

constant through the constraint equations (2.23). Since g is an SU(2) matrix, it 

follows that the relation 

uu* + vv* = 1 , (2.26) 

is always true. We choose to examine the model in the gauge 

(2.27) 

which simplifies the constraint equations to the form 

u*8u- u8u* - u8u*- u*8u 
8{) = -i 8{) = -i ' 

2(1 - uu*) ' 2(1 - uu*) 
(2.28) 

whilst the equation of motion now becomes 

[8- A, [J- A]= 0, (2.29) 

with 

(2.30) 
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This compact zero-curvature form of the equations of motion demonstrates the in­

tegrability of the model and will prove useful when we come to consider Backlund 

transformations and conserved quantities in later chapters. Not only does this formu­

lation allow for generalisations to other related models (for instance by considering 

Lie algebras other than SU(2)), but also because it incorporates the fields u,v into 

the theory deals with different signs of the parameter f3 simultaneously. Different 

signs lead to different vacuum and soliton solutions indicating that the theory splits 

into two distinct sectors that must be treated independently. Let us consider the 

vacuum of the theory in order to address the problem. From the expression for the 

energy in the bulk (2.14) it follows that the most suitable candidate for a vacuum, 

would be a constant value for the field u that would force the kinetic term involving 

derivatives to vanish and at the same time minimize the potential term. It is clear 

to see from (2. 7) and (2.17) that for f3 > 0 the vacuum is u = 0, while for f3 < 0 the 

vacuum should have lui= 1 demonstrating that the U(l) symmetry is spontaneously 

broken for such values of {3. Soliton solutions also look very different depending on 

the sign of f3 as we shall see in the next section. In the WZVV formalism however, 

both sectors are treated simultaneously as the diagonal and off-diagonal parts of the 

field variable g. In this context the fields u and v are both solutions to the CSG 

equation with opposite signs of {3, and each corresponding to a different vacuum . 

Moreover, the two sectors are connected by a duality transform which interchanges 

the sign of the coupling constant f3 [38] and simultaneously interchanges the role of 

u and v. Thus the theory is invariant under the change 

, . ( _v iu* ) g ---+ g = 'talg = 
2u v* 

' !3---+-/3, (2.31) 

the latter representing a transform akin to the Krammers-Wannier duality of the 

Zn parafermion theory [51 J. Taking into account the in variance of the theory under 

this duality transform, we shall only consider the f3 > 0 sector which corresponds 

to the diagonal part of the matrix formalism. Returning to the vacuum, a suitable 

choice would be 

( 

0 ie-m ) 
9vac = iein 0 . (2.32) 

This selection is consistent with the choices mentioned above. The diagonal f3 > 0 

sector corresponds to the u = 0 vacuum , while the off-diagonal f3 < 0 to lvl = 1. 



Chapter 2. The complex sine-Gordon model 39 

It may be noted that the apparent singular behaviour of the Lagrangian at lui = 1 

does not appear as a problem embedded in the theory but is a direct consequence 

of the fact that the gauge fields W, vV are ill defined at the specific point. 

2.5 SoHton solutions 

As an integrable field theory, the complex sine-Gordon model admits soliton 

solutions. Because u and v appear in the definition of g (2.24) it is natural to 

find solutions for both simultaneously. As explained above, solutions for u will 

correspond to solitons of the CSG equation with f3 > 0, whilst solutions for v will 

correspond to solitons of the CSG with f3 < 0. Different techniques have been used 

to construct soliton solutions like the inverse scattering method [46] and the Hirota 

method [52]. However both methods yield results that are both cumbersome and 

difficult to manipulate. The Backlund transformation for the CSG model provides 

a more elegant way to obtain soliton solutions. The Backlund transformation is 

. used to generate new solutions from ones we know already. The basic idea is to 

express the second order differential equations of motion as a set of first order 

differential equations which are easier to solve and which contain a known solution. 

The Backlund transformation for the complex sine-Gordon model can be written in 

terms of two SU(2) matrix variables g and f [38] and the Backlund parameter o 

= 0) (2.33) 

= 0. (2.34) 

It is easy to show that both f and g satisfy the CSG equation as well as the con­

straint equation in the specific gauge choice. Taking f to be a known solution, one 

can generate a new solution through the equations presented above. One-soliton 

solutions can be derived by applying the Backlund transformation on the vacuum 

solutions 9vac of (2.32). Each sector of the theory provides us with two sets of two 

first order differential equations that can be integrated, in order to provide the one­

soliton solutions. The off-diagonal elements that correspond to the f3 < 0 sector 
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giVe 

80v- /f,B1 em (o-}) (1- vv*) 0 

that finally produce a different solution 

v = -em (cos( a) tanh (2/f,B1 cos( a) x- Vt ) + i sin( a)) , 
)1- V2 
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(2.35) 

(2.36) 

with D a real parameter associated with the vacuum of the theory, as in (2.32). This 

is the solution that was derived by Lund and Regge [35] when considering the {3 < 0 

case. 

Respectively for the diagonal elements of g which correspond to the {3 > 0 sector 

the set of equations is 

(2.37) 

The one-soliton solution that emerges is 

u = cos(a) exp 2iy {3sin(a) sech 2y {3cos(a) , ( 
/Q t- Vx ) ( /Q x- Vt ) 

)1 - V2 )1 - V2 
(2.38) 

where V and a are real parameters associated with the velocity and charge of the 

soliton respectively. This solution was originally derived by Getmanov [52] for the 

{3 > 0 case. In addition an expression for the phase {) which appears in its dual field 

v, is also obtained 

{) = -D- arctan (tan( a) coth (2V!J cos( a) x- Vt ) ) 
)1- V 2 

(2.39) 

Both sectors are nevertheless interconnected through the duality transform of (2.31) 

so we shall choose to examine the {3 > 0 case. Moreover, since the mass parameter 

{3 is now considered positive, we shall make the following identification 

m = 2VfJ, (2.40) 
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for reasons of simplicity. vVe return to examine further the one-soliton solution of 

(2.38). Without loss of generality we take the velocity parameter V = 0 to obtain a 

static single soliton solution 

Ustatic = 
cos(a) exp (imsin(a)t) 

cosh (mcos(a)x) 
(2.41) 

This solution represents a sech-wave which oscillates in the internal U(1) space with 

angular velocity w = m sin a. The solution may be characterised as static but only 

in a sense that the centre of mass does not translate in space. From equations (2.14) 

and (2.16) we can calculate the mass and charge of this static solution 

M = 4mcosa , Q = 4 (sign[a]~- a) . (2.42) 

The parameter a is directly associated with the charge and as expected the mass 

M depends on the charge through it. In the theory a appears only in trigonometric 

forms, and therefore should be considered as an angle variable. This indicates that 

the formula for Q which has previously appeared in the literature is only true for 

a certain region, namely -~ ::; a ::; ~· If one plots Q as a function of a the result 

is a periodic pattern (fig. 2.1). To avoid confusion we shall consider a to lie in the 

region 0 ::; a ::; ~, unless stated otherwise. 

Q n!2 

-1t -tt/2 0 a 

tt/2 1t 

-n!2 

Figure 2.1: Soliton charge Q(a) 
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2.6 Multi-soliton solutions 

A two-soliton solution can be obtained through a non-linear superposition tech­

nique based on the Backlund transformation ("theorem of permutability"). Starting 

from the vacuum of the theory and by the application of the Backlund transforma­

tion twice, a set of parameters { 61 , 62 } is used respectively in each step. The same 

procedure is followed again where the two parameters are used in the opposite order. 

By demanding that the two results are equal, one ends up with an equation for the 

two-soliton solution in terms of single soliton and vacuum solutions (Fig. 1.4). For 

the complex sine-Gordon case this equation is in matrix form 

The matrix field variables 9k are of the general form of (2.24), with elements 

Nk cos (ak) exp(imsin (ak)8k) 
Uk = 

cosh (m cos (ak)L:k) ' 

The identification one must make is: 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

where Nk is a total phase . As expected g28 has the same general form of equation 

(2.24) 

(2.48) 

The two-soliton solution and its complex conjugate are given by the diagonal ele­

ments of 92s 

(2.50) 
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while the off diagonal elements represent the dual field and its conjugate 

eifl (62u;- 61u;) (61u1- 62u2)- e-ifl (61v2- 62vl) (61v1- 62v2) 
V2s = 2 * * * * 2 ' 61 - ( u1 u2 + u2 u1 + v1 v2 + v2 v1) 6261 + 62 
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(2.51) 

(2.52) 

The expressions above represent two-soliton solutions (Fig. 2.2) to the equation of 

motion and are related through the duality transformation of (2.31). 

Figure 2.2: A two-soliton solution 

Multi-soliton solutions can also be obtained by following the same technique. 

Instead of the vacuum solution, one can start from any given n-soliton solution 

Sn and add solitons through the method described above, ending up with a Sn+2 

solution. Nevertheless, expressions for multi-soliton solutions for this model are 

painfully large. Even the two soliton solution is so complicated (for disbelievers see 

Appendix B) that it is not possible to show that it satisfies the equations of motion 

directly. Although it is a trivial procedure to obtain a formula for multi-soliton 

solutions in terms of single soliton ones, its size and complexity makes it practically 

unusable apart from numerical calculations. 
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2.6.1 Soliton - Antisoliton duality 

Thus far no mention of antisoliton solutions has been made. This is because 

antisolitons are not distinct classes of solution in the complex sine-Gordon model. 

Charged solitons are non-topological solutions, therefore a distinction between a 

soliton and an antisoliton is impossible. On the other hand chargeless solutions may 

be realised as topological solitons and identified with the sine-Gordon solitons. 

The sine-Gordon theory appears as the limit of the CSG model when the charge 

parameter a is set to zero. We can substitute in the equation of motion of (2.13) 

u = sin ¢e2i7J , (2.53) 

where TJ is now a constant to recover the sine-Gordon model in the usual form 

(2.54) 

The sine-Gordon theory has topological solitons (both kinks and antikinks) inter­

polating between its degenerate vacua. In contrast the CSG theory has a single 

vacuum for (3 > 0, and therefore its solitons are not topological in nature, but are 

stable because of integrability alone. The topological nature is hidden within the 

mapping of (2.53) and one has to be careful when trying to recover the sine-Gordon 

soliton as a limit of the CSG theory. Nonetheless a subtle remnant of the topology 

survives the mapping to the complex sine-Gordon theory. To see this consider how 

a SG soliton is mapped to CSG soliton. This is shown in Fig.2.3. 

Consider now how the potential term behaves as x increases for the single soliton 

solution. As a function of u we can express the potential as 

sin2¢ = 2sin¢cos¢ = ±2uvfl- uu*, (2.55) 

where TJ has been ignored as a total phase. Note that we should take the branch cut 

with opposite signs on each side of the point ¢ = i, u = 1. We shall see that the 

changing sign of the branch cut for a chargeless soliton will be important when we 

come to consider the theory with a boundary. 

In some sense the topology of the chargeless u-soliton is embedded in the branch 

cut that appears at the singular point u =-= 1. The choice of branch corresponds to 

a different vacuum for ¢ and therefore to a different topological charge. 
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7t 

Figure 2.3: The ¢ and u solitons 

However, when the charge parameter a is not zero, then the u-soliton does not 

reach the sick point u = 1 and remains non-topological. In this case no real distinc­

tion can be made between a soliton and an antisoliton. In the sine-Gordon case, the 

antikink solution is derived from the kink by changing the sign of the parameter 6 of 

the Backlund transformation. This effectively corresponds to a parity and time re­

versal transformation which finally produces an antikink solution. Examining (2.44) 

we see that in the CSG case this change actually leads to the complex conjugate 

solution, by changing the sign of the complex phase. The change of sign in both t 

and x, can be cancelled by taking the charge parameter a -+ -a. It is thus clear 

that instead of changing the sign of 6, one could effectively change the sign of a 

to derive an antisoliton. Since the soliton solution is a smooth function in a, the 

antisoliton is not a distinct object but can be identified with the soliton itself. 

This also has an effect on the two-soliton solution. In previous treatments of the 

model, a soliton-soliton and a soliton-antisoliton solution were presented and treated 

as distinct solutions. Nevertheless this is not true. If we follow the same steps as in 

the sine-Gordon two-soliton solution then the solution u 25 of (2.49) corresponds to 

both a soliton-soliton and a soliton-antisoliton solution depending on the choice of 

sign for the Backlund parameter 62 . The parameter 62 can be chosen in such a way 
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as to describe one of the following 

-_ J11-+VV 61 = -(62)-1 

-- J11 +- vv 61 = (62)- 1 

soliton-soliton scattering 

soliton-antisoliton scattering 
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(2.56) 

(2.57) 

Here we have taken the two solitons to have equal and opposite velocity (In general 

this is not the centre of mass since differently charged solitons have different masses, 

but it will be convenient for our discussion when we introduce a boundary later on). 

Also for reasons of simplicity we will refer to the soliton-soliton solution as Uss 

62 = -1/61 ) and to the soliton-antisoliton as Usa (62 = 1/61)· 
However since no topological distinction exists between the soliton and antisoli­

ton sector, it is possible to find a transformation of the parameters of the solution 

which effectively acts as a change of sign for the parameter 62 . In fact, a set of 

transformations exists that maps Uss to Usa but we restrict ourselves to the simplest 

cases. 

Before introducing the transformation, we need to introduce arbitrary shifts in x, 

which are crucial not only for this mapping but also later when we consider breathers 

and soliton reflections. The shifts appear in exponentials, so it is more helpful to 

consider the shifts in the following forms 

Ki exp (2..j73 cos ai Xi ) v1- v 2 

Ji = exp (2i ..j73 sin ai V Yi + iRi) ; i = 1, 2 . v1- v 2 
(2.58) 

The parameters Ki, Ji are directly related with both V and a and correspond to 

the arbitrary initial positions in x, in the real (I:i) and imaginary phases (8i) re­

spectively, that appear in the one-soliton solution. Specifically the parameter K 

represents a translation in x, while the J parameter represents a phase shift in the 

internal U(1) space. For reasons of simplicity, we include in the definition of J the 

total phase Nk = exp(iRk) which appears in (2.44). Henceforth these parameters 

will be referred as phase shifts, since they are directly related to the time-delay effect 

of the scattering process. 

Now that we have defined the arbitrary phase shifts we start with the soliton­

soliton solution Uss which comes from the two-soliton solution u 28 when we choose 

62 = -1/61 . We consider the following transformation 

(2.59) 
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Although this is enough to change a single soliton to an antisoliton, this is not the 

case for the two-soliton solution. The phase shifts have also to be fixed in a specific 

way to complete the mapping between Uss and Usa 

(2.60) 

(2.61) 

This effectively changes the sign of 62 in the expression Uss converting one of the 

solitons to an antisoliton. In contrast with the single soliton where the antisoliton 

can not be properly defined, in the two-soliton case there is a point of reference. A 

distinction between a soliton and an antisoliton can only be realised as a specific 

choice of the relative sign between the parameters a1 , a2 and V which does not in 

any case lead to topologically distinct solutions. 

The same mapping between tlss and Usa can also be achieved by making the 

following transformation 

(2.62) 

which effectively changes the sign of all trigonometric functions involving the param­

eter a2 sending the solution Uss ---t -Usa . This transformation will be used again on 

a later section when we come to consider soliton reflections, to demonstrate exactly 

the equivalence of the two sets of solutions. 

Before continuing with the spectrum of the theory, a few things about the nature 

of the dual field v have to be mentioned. Unlike u which represents non-topological 

solutions but for the chargeless case, v is a topological object. The vacuum of the 

theory in the b < 0 case is !vi = 1 which implies that at infinity v does not neces­

sarily go to the same vacuum. This may be seen directly by taking the limit of the 

expression (2.25) at x = ±oo. Since at infinity u ---t 0, as expected v goes to a pure 

phase i.e. exp(i'!9). From the expression for '!9 (2.39), one can see that the limit is 

directly related to the charge parameter a. In the chargeless limit, any dependence 

on a vanishes and the field interpolates between vacua that differ by multiples of 

1r. In this limit the theory is identified with the sine-Gordon theory and both the u 

and v solutions correspond to the sine-Gordon solitons. 
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2.6.2 Breather solutions. 

There are conflicting views in the literature concerning the existence of breathers. 

In an early treatment of the model Getmanov presented breather solutions which 

were obtained through the usual method of analytically continuing in the velocity 

parameter V [52]. However Dorey and Hollowood dismissed the existence of such 

solutions and argued that breathers do not appear in the quantum spectrum of 

the model [53]. The problem arises because the transformation V ---1 iV which is 

usually used to generate breathers from a two-soliton solution traveling with equal 

and opposite velocities, does not necessarily lead to a solution of the equations of 

motion. While the technique has been widely used before on other models, the fact 

that the esc equation involves both u and u*' implies that naively analytically 

continued solutions do not necessarily satisfy the equation of motion. 

So it is not clear, for instance, that all the breather-like "solutions" of [38] do 

satisfy the esc equations of motion. However, since the sine-Gordon is embedded 

in esc model by taking u to be chargeless, the sine-Gordon breather solutions do 

satisfy the esc equations of motion. In fact a family of charged, complex breather 

solutions does exist in esc model. Although it is quite hard to actually check if 

a general breather solution satisfies the equation of motion, a trick can be used 

instead. We consider the two-soliton solution of (2.49) and we demand that this 

solution is even in V ·so that is effectively a function of V2 . Now the transformation 

V ---1 iV, doesn't change the reality properties of the solution but simply introduces 

an overall minus sign into the arbitrary parameter V2 , which is irrelevant. Making 

the solution even in V, means that a few restrictions have to be imposed. Firstly, 

the charge parameters have to be taken equal or opposite according whether o1 o2 is 

plus or minus one respectively. Secondly, some of the arbitrary position parameters, 

have now to be fixed. However, up until now all the arbitrary phase shifts that 

appeared were either complex ( Ji) or real (Ki) and there was no distinction between 

the shifts that originated from the space or time part of the phase. However, when 

constructing a breather solution, by analytical continuation of the V parameter a 

separation between the space and time shifts is induced. All shifts that associated 

with space end up as real parameters, while time shifts become imaginary. We can 

restrict ourselves to shifts only in the x direction. One could also consider more 
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general phases which are complex and also depend on time and the parameter V. 

These however correspond to either U(l) rotations or time translations which make 

their use obsolete. The arbitrary shift parameters are now both real 

Ks = exp (mcosas Xs ) 
J1 + v 2 

J ( 
. Vys ) s = exp m sm a5 ----r=======:=;:;: 

J1 + v2 
s = 1, 2. (2.63) 

and should be compared with the general form of (2.58). In order to make a breather 

solution from the soliton-soliton case the following relations are required 

(2.64) 

where the signs in these equation are correlated. It should be noted that more 

lu.l 

Figure 2.4: A breather solution 

breather solutions may exist. It is possible that through certain restrictions a more 

general breather solution can be obtained, but a direct confirmation through the 

equations of motion is rather difficult. 
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2.6.3 Collapse of a Breather. 

An analysis of the quantum CSG model [53] suggests that the soliton can be 

identified with the elementary particle since the vacuum of the theory and the one­

soliton are not topologically distinct solutions. Evidence for this conjecture exists 

even in the classical picture. From our experience with the sine-Gordon model, we 

would expect to identify the particle with the lowest energy breather solution. It 

would seem to follow that the breather whose energy and charge correspond to that 

of a single particle should be equivalent to a single soliton. This remarkable fact can 

be shown as follows. 

We consider the static single-soliton solution 

cos(a) exp(imsin(a)t) 
Ust = ----------~--~-

cosh(mcos(a)(x + x 0 ) ' 
(2.65) 

The mass and charge of the static soliton are given by (2.42) 

(2.66) 

The breather is constructed from a two-soliton solution which has been analytically 

continued in V. Taking the solitons of the two-soliton solution far apart as t -----t ±oo 

we may consider them completely separated. Analytical continuation of V -----t iV 

yields a breather solution. The mass of such breather is twice the mass of a single 

soliton solution at velocity iV 

(2.67) 

Following the same reasoning, the breather solution is effectively constructed from 

two one-soliton solutions, each with charge 

(2.68) 

In order to have a chance of identifying the breather with the soliton, we demand 

that the mass of a breather is equal to the mass of a static single soliton and that 

their charges also coincide 

(2.69) 
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From the above relations, one can solve for the parameter V8 

(2.70) 

If this value is substituted into the breather, then the solution collapses to a static 

single-soliton carrying double the charge Q8 . In other words, the single-soliton 

can always be considered as a bound state of two single-solitons carrying half the 

charge. The argument can be used recursively so that a soliton can be regarded as an 

infinite collection of solitons carrying fractions of the original charge. At each level a 

soliton is identified with a breather emerging out of a soliton pair of half the original 

charge. In the classical picture this process can be carried out indefinitely, but in 

the quantum case the finite character of the mass states restricts this procedure. 

This is not surprising since the static single-soliton of (2.65) can be viewed as 

a bound state due to the oscillation effect which creates a breather-like behaviour. 

This is consistent with the fact that any breather can collapse to this solution when 

the parameter V is properly fixed. It can therefore be realised as a breather solution 

after the collapse, exhibiting all of its former properties. 

One point that has to be emphasized is that breathers constructed with the 

method described in the previous section are not chargeless. This is clue to the 

fact that the choice of the charge parameters ai is such that both solitons that are 

combined to create a breather have the same charge. This is confirmed by the above 

demonstration in which a breather collapses to a single soliton solution which car­

ries double the charge of the breather's solitons. Neutral breathers do exist but 

only at the chargeless limit and can be identified with the breathers of the simple 

sine-Gordon theory. 

2. 7 Two soliton solution with unequal charges 

In the previous section we saw that for a specific binding energy a breather 

collapses to a single soliton of twice the charge of the constituent solitons of the 

breather. In this section we argue that this is a special case and that in general a 

breather solution at any binding energy is identical to a static two-soliton solution 
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of unequal charges. To demonstrate this we shall use the rapidity variable {) instead 

of V by changing 

V =tanh(}. (2.71) 

and then analytical continuing in{) ---+ i{). This is crucial as now the speed parameter 

{) is an angle variable much like the charge, thus allowing for both to combine and 

act in a similar way. This may be seen in the expression of the mass of the breather 

Ms = 8m cos as cos(} (2. 72) 

which may be rewritten as 

Ms = 4m cos(as - (}) + 4m cos( as+(}) , (2.73) 

if we assume that as > (} and that as+(} < ~ so that both terms remain positive. 

(The collapse of a breather to a single soliton in the previous section corresponds to 

the choice (}s =~-as.) Similar formulae may be written down for all values of as 

and e. Compared with the mass of a static soliton of charge a (2.65) this relation 

seems to imply that the mass of a breather is equal to the sum of two well separated 

static solitons of charge as - (} and as + (} respectively. This assumption turns 

out to be true as can be verified by comparing the explicit formulae for breather 

solutions and static two-soliton solutions. One can show that the breather solution 

with characteristic parameters ab and (}b is the same as the static two-soliton solution 

with charges ab + (}b and ab- (}b as long as the phase parameter of each solution are 

fixed in a specific way. First the phase shifts of the breather are fixed, so this is a 

solution 

K (br) _ K(br) J(br) _ J(br) 
2-1 '2 -1. (2.74) 

A similar choice is needed for the two-soliton phase parameters 

K
(2s) _ K(2s) J(2s) _ J(2s) 
2-1 '2 -1. (2.75) 

Finally the identification of the two solutions is achieved by choosing 

}((2s) _ K(br) J(2s) _ J(br) _ l 
1-1 '1 -1-. (2. 76) 

Once again the non-topological nature of solutions allows for this identification. 
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This raises once again the question whether breathers do exist in this model. The 

answer depends much on the point of view. Breathers are not a distinct class of so­

lutions since they can be viewed as static two-soliton solutions with unequal charges. 

The quantum case seems to agree with this picture as all bound states related to 

poles in the S-matrix are accounted for without the introduction of breathers [53]. 

On the other hand the process of constructing breathers is not trivial. A two-soliton 

solution that is analytically continued in V and is shown to satisfy the equations 

of motion through some constraints in the parameters is a completely different ap­

proach in obtaining solutions. The absence of topology allows for solutions that 

in other models would appear in distinct classes (like the sine-Gordon model), to 

merge into a single group within which they may interchange their roles. Through 

the soliton-antisoliton duality no distinction between them may be established, while 

the basic particle is the soliton itself which is also identified with the breather. A 

distinction relies only on definitions which are not absolute and which are borrowed 

from similar theories. 

2.8 Discussion 

The CSG model, although it appears as the simplest case of the homogeneous 

generalisations of the sine-Gordon theory, has a rich mathematical structure and 

therefore possesses some fascinating features. 

In the first part of the chapter we have examined the spectrum of the theory in 

the bulk and written down explicit two-soliton solutions within the framework of 

the matrix potential. We also demonstrated how to construct breather solutions in 

an elegant way avoiding the problems that arise by the analytical continuation of 

the parameter V. 

An interesting aspect of the model is the soliton-antisoliton duality which ap­

pears since the model does not have a degenerate stable vacuum. The CSG soliton 

solutions are not topologically distinct and can therefore be interchanged by a con­

tinuous variation of the charge parameter a. Nevertheless, the topological nature 

of the sine-Gordon theory can be recovered in the chargeless limit as was demon­

strated in section 2.6.1. A direct consequence of the non-topological nature of the 
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CSG soliton is that the breather solution can collapse to a single soliton when the 

parameter V is properly fixed. 



Chapter 3 

The complex sine-Gordon model 

on a half line 
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3.1 Reflections. 

Integrable models, as a rule, are studied on the whole line. This is a simple 

scenario, since the natural constraint that the fields tend to the vacuum values 

at infinity is consistent with the conservation of charges. This however raises an 

interesting question; how should an integrable theory be modified so that when con­

sidered on a confined or a semi-confined region, it preserves its integrable character. 

The introduction of boundaries in field theories has become an object of extensive 

study in recent years and this has led to considerable progress in boundary quantum 

field theories. Not only does it explore new aspects of the model at hand but it also 

provides a more realistic approach to physical problems [54, 55]. 

The introduction of a boundary is realised by integrating the action over a re­

stricted spatial geometry and the addition of an extra potential term to the La­

grangian of the model at the boundary. Of course we are allowed to add any po­

tential term to the Lagrangian. Nevertheless our choices are limited considerably if 

we demand that the model remains completely integrable. The problem of finding 

suitable boundary terms that preserve integrability translates to a problem of find­

ing suitable boundary conditions that lead to conserved charges. Not all conserved 

currents are expected to be preserved. This reflects the nature of the boundary: an 

infinite-energy barrier that breaks the symmetry in the bulk, e.g. translation invari­

ance. Thus momentum and momentum-like currents will not be preserved. Since 

however the model is integrable, losing half of the initial infinite set of conservation 

laws, leaves the model completely solvable. The preserved currents are associated 

with time translation and are energy-like. 

Once a set of suitable boundary conditions has been found, one can calculate the 

respective boundary terms by forcing the variation of the boundary term to van­

ish. The variation of a generic boundary term will involve the integrable boundary 

conditions, leaving a fairly simple form that has to cancel. 

In this chapter, we derive boundary conditions consistent with integrability. By 

using the method of abelianisation of the Lax pair, we shall calculate the lowest 
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spin-charges. Boundary conditions will arise by demanding the conservation of the 

charges in the presence of a boundary. 

Following that, we shall calculate the corresponding boundary term and examine 

its energy contribution and effect on the theory's vacuum. Aspects of scattering in 

the model will also be explored, effectively calculating the reflection factor for parti­

cles and the time delay for solitons. Last but not least, the necessary conditions for 

the existence of boundary bound states will be established. The results presented 

here will be greatly used in the following chapter where the quantum case with a 

boundary will be presented. 

3.1.1 Abelianisation of the Lax pair and conserved currents. 

We shall consider a boundary condition to have preserved the integrability of 

the CSG model, if we can still construct an infinite number of commuting conserved 

charges. As mentioned above in contrast with the theory in the bulk, the introduc­

tion of a boundary destroys the translation invariance of the model but preserves 

the time translation invariance. It is thus expected that the momentum will not be 

conserved, whilst the energy will. This situation also holds for the higher-spin con­

served quantities. All energy-like, parity-even quantities can be conserved, unlike 

their momentum-like, parity-odd partners. Nevertheless, since there is an infinite 

number of conservation laws, the main goal would be to concentrate on the conser­

vation of the parity-even quantities. 

The calculation of the lower spin charges was originally performed by Bakas [41] 

and later again by Fernandez-Pousa and Miramontes [43] in the general context 

of homogeneous models. The same calculation but in a different gauge has also 

appeared in the literature [49]. In this section we perform the same calculation in 

order to demonstrate how the boundary condition naturally arises by the demand 

that the lower spin charges are conserved at the boundary. We shall later use the 

same technique in a different gauge for the theory of optical pulses. 

The presence of the spectral parameter ,\ in the Lax pair of (2.29) implies the 

existence of infinitely many conserved currents in the bulk that can be determined 

through the method used by Turok and Olive [56]. This is achieved by performing 
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a gauge transformation U 

A= uAu- 1 + auu-1 
, (3.1) 

in such a way that the commutator of the transformed gauge fields A and A of the 

Lax pair is zero. The equation of motion becomes 

(3.2) 

where the normal time and space derivatives are used. In the theory in the bulk 

we integrate over x. The conserved charges are expressed in the following form as a 

function of the spectral parameter A 

r+oo 
Q(A) = }

00 

(A- A)dx . (3.3) 

In order to verify that Q(A) is indeed a conserved quantity we shall consider the 

time derivative of this expression 

!!_Q(A) = 1oo oo(A- A) dx = 1oo 81(A +A) dx = [(A+ A)]~oo (3.4) 
dt -oo -oo 

Since at infinity the fields are taken to vanish so that A and A approach a fixed 

value, it follows that the right-hand side vanishes. As A and A can be expanded as 

an infinite Laurent series in A, the coefficients of each power of A, provides us with 

an infinite number of conserved charges. 

When a boundary is introduced the left-hand side involving the spatial derivative 

does not vanish since now the integration takes place over the semi-infinite interval. 

Instead one is left with an equation of the form 

(3.5) 

where the left-hand side is evaluated at the boundary. Instead of demanding that 

the right-hand side vanishes, we instead ask that it can be expressed as a total time 

derivative with the help of suitable conditions, thus leading to a conserved quantity. 

We begin by finding explicit expressions for "low-spin" conserved charges of the 

CSG model in the bulk by solving for the abelianising gauge transformation U order 

by order in the spectral parameter. 
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Let U be a general real SU(2) matrix, with det(U) = 1. The diagonal elements 

of U can be taken equal due to residual gauge freedom which leave A and A in an 

abelian form. Thus U takes the form 

U= 1 (x= 
1
x) v1- XX 

(3.6) 

where x is a function of the fields and should not be associated with the space 

variable. We demand that U diagonalises both A and A at the same time. The 

transformed fields lie both in the a3 direction and the non-zero diagonal elements 

can be identified with the conserved currents. Taking A to be 

A= 
( 

iA E ) 
-E* -iA ' 

(3.7) 

with A= (3).. and E = i(u*ov*- v*ou*), we demand that the non-diagonal part of 

A vanishes 

The conserved quantities can also be written in terms of x and x 
J = -iA 1- XX_ xE* + xE + xox- xox . 

1 - XX 1 - XX 2(1 - xx) 
The same matrix U, should also diagonalise A, which is given by (2.30) 

(3.8) 

(3.9) 

(3.10) 

where D = uu* -vv* and P = -2iu*v*. The choice of E, P and Dis not accidental. 

They actually represent the electric field, the polarization and the population inver­

sion field variables respectively, when this theory is used to describe the propagation 

of optical pulses in a non-linear medium [57]. When U acts on A, we again demand 

the off diagonal parts to vanish. Examining the matrix explicitly yields 

(3.11) 
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It is easy to see that these equations are equivalent to equations (3.8). 

The diagonal part yields the other component of the conserved current 

1 = _!____ ( 2 1 + xx D + 21P*x- xP) + (x8x- x8x). 
2.>. 1 - XX 1 - XX 2(1 - xx) 

(3.12) 

In order to solve the two sets of equations (3.8) or equivalently (3.11), we consider 

an expansion of x and x in powers of A 

(3.13) 

The coefficients Xi and Xi can be determined by direct substitution into (3.8) and 

(3.11), and by demanding that the coefficients in all powers of A vanish. Up to order 

O(A - 2 ) one finds 

X = ( 2~) E + ( 2~) 
2 

8 E + ( 2~) 
3 

( E 2 E* + 82 E) + . . . , 
X= ( 2~) E* + ( 2~)

2 
8E* + ( 2~)

3 
(EE* 2 + 82 E*) + ... , 

(3.14) 

Now that x and x have been defined, we can also express the conserved quantities 

as a series in .>.. Each order of.>., provides a conserved quantity and since the series 

of .>. in x and x does not terminate, we thus have an infinite number of conserved 

quantities as expected from the integrability of the CSG model. The two components 

of the conserved current up to 0(.>. - 2 ) can be read off as coefficients in the following 

expansion of J and J 

J 

J 

-.>.~- 2~EE* (l) - 8~2 (E8E*- E*8E) (;2 ) + ... 

iD (l) + 4~(E* P-EP*) (;2 ) + ... , 

(3.15) 

(3.16) 

and it can be checked that this current is conserved explicitly from the equation of 

motion. 

In the above we have constructed conserved currents that lead to conserved 

charges in the bulk. However, as we have previously argued, conserved charges on 

the half line are expected to take the form of an integral over a parity-even conserved 

current. The conserved currents above are neither parity even or odd. To rectify 

this we note that our system of equatiom; and constraints possess a Z2 invariance 

involving parity transformations which can be used to construct a "reflected" set 
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of conserved currents. The "reflected" set of conserved currents is easily obtained 

through the substitution a-t[) in the expressions (3.15) including those derivatives 

involved in the definition of E. The new set of currents J, J, can now be combined 

with the former set to produce pure parity odd and even currents. 

In the presence of a boundary only parity even quantities are conserved. The 

desired form of the equations to emerge is 

80 (parity even) = 81 (parity odd). (3.17) 

By combining the two sets of currents one can separate the odd and even quantities 

for all powers of A 

Oo [ ( J + ]) - ( J + ]) J = 81 [ ( J - ]) + ( J - ]) J (3.18) 

We examine the A - 1 term in the expansion which gives 

80 ( EE* + EE5* + 2f3(D +D)) = 81 ( EE*- EE* + 2f3(D- D)) , (3.19) 

where E = E(o -t 8), etc. After integration over the semi-infinite interval, the right 

hand side representing the parity odd part is 

BoW(u, u*) = ( 
201

u* ) Oou + ( 201
u ) 80u* 

1- uu* 1- uu* 

This is a total derivative provided that 

281u* 

1- uu* 
aw 281u aw 
au ' 1 - uu* ou* 

The conserved quantity at hand, in terms of u and u*, is then 

(3.20) 

(3.21) 

(3.22) 

Since this quantity actually represents the energy of the system, W can be identified 

with the energy contribution of the boundary term. 

When constructing the odd and even quantities of the A - 2 term, one ends up 

with 

80 ( ~(E*oE- EoE* + E8E* - E*8E) - f3(E* P-EP*+ E* P- EF*)) 

a1 ( ~ (-E* oE + EoE* + E8E* - E* 8E) - f3(E* P- EP* - E* P + EP*) )3.23) 
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Once more the parity-odd right hand side which after integration yields 

2 
( o1 u * ) ( o5 'U + of zt) ( oo u * ) o1 oo u 

2 
( o1 u) ( o5 u * + Of u * ) 

4 
( oo u) o1 oo u * 

- -4 + + 
1- uu* 1- uu* 1 - uu* 1- uu* 

u* (o1u) 2 o1u* u(o1u*) 2 o1u 
4

u(oou*) (olu*)oou 
2 

u* (oou) 2 o1u* 
+2 2 - 2 2 - 2 + 2 

(1 - uu*) (1- uu*) (1 - uu*) (1- uu*) 

2 u ( o0 u * ) 
2 o1 u 

4 
u * ( oo u) ( 01 u) oo u * 

4 
( !:} * * !:} ) (3 

- 2 + 2 + Uu1 U - U u1 U , 
(1 - uu*) (1 - uu*) 

should be written as a total time derivative in order to force the currents to be 

conserved at the boundary. We can eliminate any second order spatial derivatives 

of the fields by using the equations of motion of (2.13) 

oouooo1u* oou*ooo1u 
4

(o1uo1u* + oouoou*)(uo1u*- u*o1u) 
4 -4 -

1- uu* 1 - uu* (1- uu*)2 

(3( !:} * *!:l ) 4o1uo6u* 
4

o1u*86u 
-4 Uu1 U - U UI U + - , 

1- uu* 1- uu* 
(3.24) 

We take advantage of the fact that we are free to add total time derivatives on 

this expression, since this represents a conserved quantity. The expression simplifies 

significantly by adding the following term 

(3.25) 

which yields 

(o1 u*) o5u (o1 u) o5u* 4 (oou) o1oou* 4 (oou*) 01 OoU 
-4 + 4 + -

1 - uu* 1- uu* 1- uu* 1 - uu* 
( -uo1 u* + u* o1 u) ((o1 u*) o1 u + (oou) oou*) 

+4 2 
(1 - uu*) 
+4 ( -uo1 u* + u* o1 u) (3 . (3.26) 

This expression is evaluated at x = 0, so in order to rewrite this as a total derivative 

we search for boundary conditions that are of the form 

o1 u = F ( u, u *) o1 u* = G( u, u*) , (3.27) 

where F and G are functions of the fields not involving derivatives. By direct 

substitution of the above into (3.26) we get 

4 
(2 ~(1- uu*) + Gu*) (o0u) 2 

_ 
4 

(o0 u*) 2 
(2 ~(1- uu*) + Fu) 

(1- uu*) 2 (1 - uu*) 2 

(oou*) (-~~ + g;)oou (-uG+u* F)GF 
8 +4---------,----

1 - uu* (1 - uu*) 2 

+4 ( -uG + u* F) (3 . (3.28) 
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The expression above does represent a total derivative when all terms are forced 

to vanish by selecting suitable functions F and G. The two separate differential 

equations that appear involving the undefined functions 

aF 
2(1- uu*)-

8 
+ uF 0 

u* 

2(1- uu*) ~~ + u*G 0 

can easily be solved to yield 

F(u, u*) = S1(u)J1- uu* , G(u, u*) = S2(u*)J1- uu* 

In addition, the last two terms in (3.28) imply that 

F=3!_G 
u* ' 

(3.29) 

(3.30) 

Using the above relation and solutions of (3.29) into the remaining terms of (3.28), 

we can determine the remaining undefined functions S1 and S2 . The final form of 

the boundary conditions is 

(3.31) 

81u* = -Cu*J1- uu* . 

The real boundary constant C is defined by the theory and is responsible for the 

way fields react to the boundary. Consistency of the two equations in (3.31) implies 

that C should be considered a real parameter. When one makes the transformation 

described in (2.17), the new boundary conditions for the fields¢ and ry are 

81¢J = -Csin(¢) (3.32) 

which clearly shows that C has to be real. 

It has to be pointed out that (3.31) is not the only set of boundary conditions 

that can be derived. Although we restrict ourselves only to cases where the space 

derivatives of the fields appear, a number of isolated "Dirichlet" -like conditions also 

exist. A more detailed treatment of such boundary conditions will appear in the 

revised version of [1]. If we take the field u to be real, the system is reduced to 

the sine-Gordon equation with a boundary condition 81¢ = -C sin¢ . This is the 

subset of integrable boundary conditions of the sine-Gordon model presenting the 

z2 symmetry ¢ ---+ -¢. 
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3.2 Soliton scattering and boundary bound states 

Since the necessary conditions for the integrability of the model have been estab­

lished, we study the scattering of particles and solitons off the boundary. We begin 

this section with the effects of introducing a boundary potential to the vacuum of 

the theory. We continue with the scattering of particles and solitons and derive the 

phase shifts induced by the process. Finally, we investigate the necessary conditions 

for the existence of boundary bound states. 

3.2.1 Vacuum 

When a boundary term is introduced, the vacuum of the theory that we dis­

cussed in section (2.2), does not necessarily remain unchanged. It is exactly this 

contribution that needs to be carefully examined before any statements are made 

about the minimum energy configuration. Although the vacuum solution of the 

theory in the bulk is a strong candidate, soliton solutions could also be considered 

in the attempt to both minimize the energy functional and satisfy the boundary 

conditions of (3.31). 

We begin by first determining the energy contribution of the boundary term. 

The full Lagrangian of the model is now 

(3.33) 

The boundary term £ 8 , can be determined by the variation principle of the total 

action. The variation of the £ term yields 

(3.34) 

When the Euler-Lagrange equations are used, two terms survive since the model is 

considered in the semi-infinite interval where the fields do not vanish at the boundary 

6£ = {)Jl ( 8(~~u) bu) + {)Jl ( a(!~u*) bu*) (3.35) 

From the variation of the boundary term one has 

{)£B {)£B * 
6£B = ---;:;-bu + ~bu . 

uu uu* 
(3.36) 
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The variation of the action vanishes when the remaining terms evaluated at the 

boundary are forced to cancel. The two interrelated equations that emerge are 

8£ -81u 8£l3 
(3.37) ---

8(81 u*) 1- uu* 8u* 
8£ -81u* 8£l3 

(3.38) ---
8(81 u*) 1- uu* 8u* 

By substituting the boundary conditions of (3.31), these can easily be solved for 

the boundary term 

LB = 2Cvh- uu* . (3.39) 

We now consider the total energy of the system , now comprising of two parts 

(3.40) 

where the term 1-lbulk, represents the energy in the bulk and the second term 1-lB 

represents the energy contribution from the boundary 

1-lB = -2Cv'1 - uu* , (3.41) 

which is evaluated at x = 0. This energy contribution makes the determination of 

the vacuum difficult. The sign of the boundary constant C is not set, which could 

provide either a positive or negative contribution to the total energy of the system. 

This clearly shows that although the original choice for a vacuum should not be 

discarded, one should also consider other static solutions which in conjunction with 

the sign of C could provide a lower energy vacuum than before. 

Apart from the original choice for a vacuum, one can consider static multi-soliton 

solutions. We restrict ourselves to one-soliton solutions since experience with similar 

models usually makes multi-soliton solutions unsuitable candidates. 

When considering one-soliton solutions, one has the equations of the Backlund 

transformation (2.37) which are always true to simplify expressions. In particular 

we first consider the 1-lbulk term representing the energy in the bulk 

1-l J d ( 
l8oul

2 + l81 ul
2 

2 *) 
bulk= X +m uu 

1- uu* 
(3.42) 

with m = 2v7J. By direct substitution of the Backlund equations a simplified 

expression of the bulk energy is acquired 

1-lbulk = J dx(2m2uu*) . (3.43) 
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When the above expression is integrated throughout space, the result can be iden­

tified with the mass of the soliton solution u. However, now the integration is over 

the half line and specifically over the [ -oo, 0] region. 

The same equations can be used to express the 1-l8 term of (3.41) . Specifi­

cally, the boundary constant C is determined by direct comparison of the Backlund 

equations of (2.37) and the boundary condition which appears in (3.31) 

C = ; ( c5 ei(IJ+!l) + } e-i(IJ+!l)) . (3.44) 

with () given by (2.39). At x = 0 and assuming that V = 0, the above expression 

simplifies to 

C = ±------r====m====== 
J1 + tan2 (a) coth2 (mcos(a)x0 ) 

(3.45) 

This implies that ICI ~ I mi. This is the basic formula which relates the position of a 

static soliton x0 with the charge parameter a and the boundary constant C. It is the 

necessary constraint for the static soliton to satisfy the boundary condition. Since 

both m and C are defined by the theory, the above relation is true only for specific 

choices of the soliton's position. Alternatively, one can think of this restriction 

emerging from the fact that for ICI > lml, no choice of x 0 satisfies the boundary 

condition. 

In the case where we choose u = 0 as a possible vacuum, the only remaining 

term in the total energy is 

1-ltot = - 2C · (3.46) 

Alternatively, one can consider a one-soliton solution where V is set to zero which 

appears in (2.65). In this case, both terms of (3.40) depend on the initial position 

of the soliton. However, after some calculations, the x 0 dependence drops out and 

the total energy is given by the expression 

1-ltot = 2m cos( a) . (3.47) 

It is far from obvious, which vacuum choice provides the minimum energy configura­

tion. To determine this, one has to look at the expression of the boundary constant 

C in (3.45). This can be rewritten in the following form 

2 y2- y4 2 
y + 2 F 2 = cos (a) , 

y + (3.48) 
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where 

0 c 
F 2 = smh2 (mcos(a)x0 ) , y =- . 

m 

67 

(3.49) 

In the above relation m and C should be treated as fixed parameters, while F can 

be varied through x0 . The left hand side of (3.48) is monotonically decreasing as F 

increases since 0 < y2 < 1. We observe the following 

cos2 (a) = 1 when F -t 0 

(3.50) 

This shows that moving the soliton away from the boundary decreases the energy 

of the system. On the extreme case where the soliton is placed at infinity, the 

model behaves as if no soliton exists, and the only contribution is the boundary 

term which coincides with the vacuum solution of u = 0. On the contrary as the 

soliton is placed closer to the boundary the energy increases. The maximum energy 

occurs when F = 0 at which point cos2 (a) = 1 so that Htot =2m which is greater 

than the energy Htot = - 2C of the u = 0 vacuum. 

Although the choice of vacuum in the bulk seems to be the most suitable choice 

in the boundary case too, one cannot rule out multi-soliton solutions that might pro­

vide lower energy configurations. This demands tedious calculations and remains as 

one of the open questions for this model. 

3.2.2 Soliton reflections 

In this section we investigate the reflection of solitons from the boundary. Math­

ematically this can be represented by a two-soliton solution satisfying the boundary 

condition. One of the solitons represents the incoming soliton whilst the other rep­

resents the reflected one. The point where the two solitons actually meet along 

the whole line as well as the phase shift due to their collision create an overall 

time-delay effect which can be calculated directly through the parameters of the 

scattering. This time-delay can be attributed to the interaction of the soliton with 

the boundary. 
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However, the most difficult step is to determine the restrictions that have to be 

imposed so that the two-soliton solution satisfies the boundary condition 

(3.51) 

Energy and charge conservation laws demand that both the mass and the charge 

of the soliton are conserved by the boundary. This restricts the choice of the charge 

parameters a1 , a2 to be either equal or opposite. 

Due to the large expressions involved in the calculation, one is forced to expand 

both sides of the equation (3.51) to a Taylor series in exponentials oft, and match 

each term of the same order. Each term provides us with an equation involving 

the boundary parameter C. As mentioned in the previous section, the boundary 

constant has to be a real parameter. The real and imaginary parts of the equation 

yield two constraints on the parameters. 

Let us consider this in more detail. We begin with a two-soliton solution, where 

the parameters are chosen in such a way so as to describe a soliton-soliton scattering. 

In this case, the charge parameters are taken to be opposite a 1 = -a2 and the 

Backlund parameters to be 61 = -1/62 . 

Furthermore, we adopt the following parametrisation which is more natural 

~: = ei( , V = tanh(fJ) , (3.52) 

where Ki and Ji are the shift parameters of (2.58). After both sides of the boundary 

equation are expanded as a Taylor series in time, we can discard the imaginary parts 

from all terms by using the following relation 

sin(()=- tanh(rJ) tan( a) sinh(£J). (3.53) 

When the above equation is used the infinite set of equations collapse to a single 

constraint 

C = ( ) h(·o) (cos(()+ cosh(t?)) m cos a cos ·u . h( ) 
sm {? 

(3.54) 

When the shift parameters are fixed according to the above relations, the two-soliton 

solution satisfies the boundary condition and this process describes a soliton being 

reflected by the boundary. 

The fact that only relative shifts in hoth normal anrl internal U(1) space are 

import ant should be expected from time translational and U ( 1) in variance of the 
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model. The non-topological solitons in the CSG theory are reflected as solitons 

carrying the same charge Q. This is because the boundary potential does not breach 

the U(1) symmetry since it depends only on lui. 

c 

- Soliton-Soliton sector 
------- Soliton-Antisolilon sector 

Figure 3.1: C in terms of (2 

We shall consider a and f) as fixed parameters and use equations (3.53) and 

(3.54) to determine the parameter (! in terms of C. By eliminating the parameter 

(, one ends up with the following quadratic equation for C 

C 2 _ 2 Cmcos(a) cosh(fJ) cosh(g) (. h(·0 ) 2 ( )2) 2 = 0 . h( ) + sm -u + cos a m sm (! 
(3.55) 

The solutions of the above equation can be plotted to present the dependence 

on (2. The plot involves two branches (Fig. 3.1) due to the sign ambiguity, which 

are mutually exclusive. The plot shows that a soliton can always be reflected by the 

boundary. The branches meet at the points 

. 1 Jsinh2(fJ) + cos2(a) 
C =±my cos2(a) + sinh

2
(fJ) , coth(g) = cos( a) cosh(fJ) (3.56) 

In the limit a ---+ 0 the two branches of the plot can be identified with the 

soliton-soliton and soliton-antisoliton sector of the reflection process at the sine­

Gordon limit (Fig. 3.2). For fixed values of fJ and a = 0, it is the value of the 

boundary constant C which determines whether a soliton is reflected as a soliton 

or an antisoliton. For C small, a soliton is reflected as an antisoliton (Neumann 
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boundary conditions for C = 0), while for C large a soliton is reflected as a soliton 

(Dirichlet boundary conditions for C = oo). For C = m cosh ( '19) the branches do 

not meet as in the CSG case. This specific value of C corresponds to a logarithmic 

divergence that appears in the classic time delay for the sine-Gordon case. These 

results coincide with the results derived by previous treatments of the boundary 

sine-Gordon model [19]. 

c 

-Soliton-Soliton secto!' 
· · · ·--- Soliton-Antisoliton s~ctor 

Figure 3.2: C in terms of f2 for chargeless case 

3.2.3 The classical time delay 

The time delay which appears at the scattering of a soliton off the boundary, can 

be calculated directly from the asymptotic values of the solution at t = ±oo. We 

begin with the two-soliton solution and change to a frame of reference which moves 

with the incoming soliton (i.e. x = Vt. In the limit t = -oo the solution becomes 

where 

. cos(a) ei(AI+BI) 
S_ = hm U2s = ' 

H-oo cosh(P( -x +xi)+ r) 

P sin(a) 2 A1 = ( ) [(1- V )t- Vx- y!] 
cos a 

(B ) 
V sin( a) 

, tan 1 = ----'----'­
cos a 

(3.57) 

(3.58) 
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and 

p = mcos(a) 
J1- V 2 ' 

1 y2 
r = -In --------,o---

2 cos2 (a) + V2 sin2 (a) 
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(3.59) 

(3.60) 

The parameters Xi and Yi represent regular shifts that were introduced in (2.58). 

The solution, as expected, describes a single incoming soliton at early time far away 

from the boundary. 

We repeat the same calculation, but now we change to the frame of reference 

of the outgoing soliton (i.e. x = - Vt) and calculate the limit of the two-soliton 

solution at t = +oo which yields 

(3.61) 

where 

A _ Psin(a) [( V2 ) V J 
2- 1- t + X- Y2 

cos( a) 
. (B ) _ V sin (a) 

, tan 2 - ( ) , cos a 
(3.62) 

and 

1 V 2 

q = -In --------,o---
2 cos2 (a) + V2 sin2 (a.) 

(3.63) 

Once again this is a single soliton solution representing the reflected soliton far away 

from the boundary wall. 

The asymptotic solutions S+, S_ contain all the information needed to calculate 

the time-delay. The latter is a combination of two separate events. Firstly, a phase 

shift is induced during the scattering of the two solitons. Before the two solitons 

re-emerge as two separate entities, the reconfiguration of the solution creates a phase 

shift which is equivalent to a time delay. Secondly, the centre of mass of the two­

soliton solution does not necessarily lie at the boundary. This implies that the two 

solitons actually meet at a different point than x = 0. This creates again a time 

delay which may be either positive or negative corresponding to an attractive or 

repulsive boundary potential respectively. 

Ignoring any interaction between the two solitons, one can project the trajectories 

of s+ and s_ on X- t diagram and find the point where these cross (Fig. 3.3). The 

distance of this point from the boundary is proportional to the time delay !:l.T which 
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B 

.. ~··· .. ······· 
X 

t 

Figure 3.3: Scattering diagram 

in the diagram is given by the distance ( AC). The time delay corresponds to the 

time interval in which the soliton appears to be absorbed by the boundary before it 

reemerges as a well defined entity . The two solitons move across the following lines 

s_: 1 
t =v(P(-x+xi)+r), 

1 
t = V (P(x + x2) - q) , 

as dictated by (3.61) and (3.57). The lines cross at 

xo = ~ ( x1 - x2 + r ; q) (3.64) 

since r = q. The time delay is finally 

A _ 2xo _ (x1 - x2) ,/1 - V2 l ( V 2 ) 
uTcsa - - - + n 

V V mV cos( a) cos2 (a) + V 2 sin2 (a) 
(3.65) 

In the expression above, the first term of the right-hand side represents the time delay 

caused by the non-symmetric character of the solution with respect to the boundary. 

In the special case where x 1 = x2 , the centre of mass lies on the boundary and the 

term vanishes. The second term is independent of the initial position of the two 

solitons or the boundary potential and is caused by the phase shift of the scattering 

process. 

The relative position of the two solitons is however fixed according to the con­

straint equations (3.53) and (3.54) which ensure that solution satisfies the boundary 
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condition. Specifically the parameter (! corresponds exactly to the x1 - x2 difference 

up to the overall factor P. It is thus possible to express the time delay in terms of the 

boundary constant, by solving the constraint equations and substituting the relative 

position of the solitons. We choose to express the velocity parameter V in terms 

of the rapidity '13 for simplicity reasons. After a few straightforward calculations we 

recover the following expression for the time delay 

where 

lnQ 
!::.Tcsc = -------

2m cos( a) sinh( '13) 
(3.66) 

sinh 4 '13 ( ( cos2 (a) + sinh2 
( '13) )m2 + 2Cm cos( a) cosh ( '13) + C 2

) 
Q = (3.67) 

(cos(a)2 + sinh2 ('13))2 ((cos2 (a) + sinh2 ('13))m2 - 2Cmcos(a) cosh('13) + C 2 ) 

In the special limit of a = 0, the time delay for the sine-Gordon model is recovered 

1 ( 2 mcosh('13) +c) 
!::.Tsc = m sinh( '13) ln tanh ( '13) m cosh( '13) - C (3.68) 

This is exactly the time delay calculated for the sine-Gordon theory in the presence 

of a boundary [19], but for the restricted class of boundary conditions which admit 

¢ = 0 as a vacuum. 

3.2.4 Boundary bound states. 

In this section we examine the spectrum of bound states. Once again, for the 

the boundary condition to be satisfied we need to introduce restriction to some of 

the parameters as in the soliton reflections. 

The simplest bound state that we can have is the static single soliton that was 

introduced in (2.65). The solution is not really static, as the imaginary phase sur­

vives the setting of the speed parameter V to zero. The solution is static only in 

the sense that the centre of mass doesn't translate in the x direction, although the 

wave oscillates with fixed angular velocity w = msin(a). 

When a boundary is introduced, the static soliton, can satisfy the boundary 

condition for ICI ::::; lml, when its position is fixed according to equation (3.45). At 
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the chargeless limit any time dependence vanishes and the solution collapses to a 

static single soliton of the sine-Gordon theory, fixed at the boundary. 

Breathers that have been constructed by the method described in section (2.6.2), 

can also be shown to satisfy the boundary condition. The demand that Cis real still 

holds. However, all the arbitrary phase shifts are now real numbers and constrained. 

We examine breather solutions that emerge from the soliton-soliton case. Just as 

before, the solution does satisfy the boundary condition with some restrictions in­

volving the arbitrary parameters. Once more a Taylor expansion of the boundary 

equation is needed. The parametrisation used in this case is 

(3.69) 

while the parameters K 2 and J2 have been been properly fixed so that this is a 

breather solution. The first restriction needed for the solution to satisfy the bound­

ary condition is 

sinh(2() =-tan( a) tan(19) sinh(2Q) . (3.70) 

The parameter 19 plays the role of the rapidity, which has now been analytically 

continued. The second restriction which completes the necessary requirements for a 

boundary bound state is 

C _ ( ) (·a) (cosh(2() - cosh(2Q)) 
- m cos a cos u . h ( ) 

sm 2Q 
(3.71) 

Both relations can be recovered by analytical continuation of the corresponding 

relations of (3.53) and (3.54) after the necessary restrictions for a breather solution 

have been already taken into account. It is instructive to examine the relation 

between the parameters C and Q (Fig. 3.4) since it provides valuable insight to the 

structure of bound states. It is straightforward that there are two distinct regions 

of values of C that do not correspond to any bound state. This regions are defined 

by the limit values 

C = ±m (cos( a) cosh( B)± sin( a) sinh( B)) (3. 72) 

At the chargeless limit, the regions collapse to the single values 

C = ±mcoshO , (3. 73) 

which coincided with the logarithmic divergence appearing in the time delay for the 

soliton refle(tion. 
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Figure 3.4: C in terms of f2 for Breather case 

3.2.5 Particle Reflections. 

In this section we consider the spectrum of particles and their reflection factors 

in the presence of a boundary. When small perturbations around the vacuum are 

considered 

u = 0 + E(x, t) , (3.74) 

the theory becomes linear when higher order terms in E are ignored 

(3.75) 

where m 2 = 4/3. The solution to the above equation is the familiar plane waves 

solution 

(3. 76) 

where k and w are related through 

(3. 77) 

For small fluctuations around the vacuum u = 0, the boundary condition (3.31) 

becomes 

81 E(x, t) = -CE(x, t). (3. 78) 
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In order to calculate the reflection factor when particles bounce of the boundary wall, 

we substitute in the last relation the particle solutions (3.76). The constant A of the 

right propagating waves is taken to be one, since it has to do with the characteristics 

of the particle beam. The reflection factor is identified with the constant B, which 

corresponds to a phase change as the particles encounter the boundary 

B = ik +C. 
ik- c (3.79) 

The reflection factor, as expected, depends on C which as stated before, appears 

as a free, real parameter in the boundary condition. For C = 0, the reflection 

factor is equal to B = 1 and no phase appears between the two waves upon their 

scattering off the boundary. This is consistent with the fact that the boundary term 

is proportional to the boundary constant, so when C is set to zero, the boundary 

term vanishes. 

Particle solutions can be related to bound states through the pole appearing in 

B. Indeed one may choose k = -iC and apply this to a solution of the form J3c(x, t). 

The remaining terms depend explicitly on the boundary constant 

c(x, t) = e-i(vm2_C2 t+-iCx) . (3.80) 

This solution is square integrable only for a specific range of values for the boundary 

constant. Specifically if C is positive then the solution is not square integrable since 

it is exponentially increasing as x --+ oo. 

When -m < C < 0 , then c(x, t) represents a square integrable exponentially 

decreasing solution as x --+ oo. It oscillates with constant angular velocity w = 

v'm2 - C 2 and is therefore a stable bound state. It can also be viewed as the tail of 

a static one-soliton solution satisfying the boundary condition, with the parameters 

adjusted in such a way its centre of mass goes to positive infinity. Examining the 

condition for the static soliton to obey the boundary condition, this limit can be 

achieved as x0 --+ oo, i.e. we must take the charge is such a way that C = -m cos a. 

Finally in the region C < -m, the solution can increase exponentially in time. 

This shows that the vacuum solution u = 0 is no longer stable. In fact the particle 

behaviour which corresponds to a small perturbation around the vacuum seems to 

be ever increasing. This instability can be understood through a rather impressive 

mechanism in which a chargeless soliton is emitted from the boundary, effectively 

changing the value of C so that u = 0 is now stable. 
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Recall from section (2.6.1) that for a chargeless soliton we should take the op­

posite sign for v'1 - 1m* on each side of the centre of the soliton where lui = 1. 

The instability can be viewed as a left moving chargeless soliton which approaches 

the boundary from x = oo. In the beginning while the soliton is far away from the 

boundary u = 0 so that the boundary potential of (3.41) is H 8 = -2C. As the 

centre of the soliton passes through x = 0, the sign of the square root in the bound­

ary potential changes. As the soliton moves to x = -oo, u returns to 0 near the 

boundary but now we take the boundary energy with the opposite sign H 8 = 2C. 

Effectively the sign of C has been flipped to a positive value. The energy released 

from the boundary is 4C > 4m, which is greater than the rest mass of a single 

chargeless soliton. At C = -m, the soliton is emitted with infinitesimal velocity. 

As C decreases, more energy is given up by the boundary and the soliton can be 

emitted with larger V. 

This process agrees with the infinite time-delay effect which was encountered 

in the soliton reflections section. The soliton emission represents the time reversal 

picture of that effect in the chargeless soliton case (Fig. 3.2). 

3.3 Discussion 

In this chapter we introduced a boundary term in the complex sine-Gordon La­

grangian and demanded that the system remains integrable. First we constructed 

some of the infinity of conserved quantities of the theory and derived suitable bound­

ary conditions which preserve integrability. In the presence of a boundary, we ex­

amined the vacuum structure and showed that the lowest energy configuration in 

the bulk remained still the most suitable candidate for a vacuum. 

Soliton reflections off the boundary were also studied and the necessary con­

straint equations were written clown in terms of the phase shift parameters. The set 

of equations was derived by demanding that the two-soliton solution satisfies the 

boundary condition. Moreover the time delay induced by the scattering process was 

calculated in terms of the boundary constant C and was found to coincide in the 

chargele~s limit with the time delay of the sine-Gordon theory. 
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Finally we examined bound states and found the necessary restrictions for the 

boundary condition to be satisfied. A special relation was shown to exist, identifying 

bound states as the asymptotic part of soliton solutions. 

An obvious extension of the results so far is to consider the quantum case of the 

boundary CSG model. As the simplest case of a class of generalisations of the sine­

Gordon theory, the results are vital to the proper understanding of more complicated 

models. The following chapter addresses the problem of the quantum case and 

attempts to build the whole spectrum of states using two different techniques. 



Chapter 4. 

Quantum complex sine-Gordon 

model on a half line 
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4.1 Introduction 

In the previous chapters we have studied the classical complex sine-Gordon the­

ory in the bulk and on a half line. We have written down analytic solutions, examined 

their behaviour and studied their interaction with the boundary. Having established 

a firm understanding of the classical picture we shall attempt to examine the corre­

sponding quantum theory. 

The chapter begins with the quantum case in the bulk which has already been 

studied in a number of papers [46, 53, 58]. After a briefreview of the most important 

results in the bulk, we shall concentrate on the half-line case. 

A brief description of the two different methods that will be used to render the 

mass spectrum of boundary-bound states was presented in the introduction. 

The first method is the semi-classical stationary-phase approach which is the 

field theory analogue of the WKB method of quantum mechanics. A generalised 

version of Bohr-Sommerfeld quantisation will be used to obtain the semi-classical 

spectrum and its first order corrections. As we shall see, these corrections induce 

only a finite renormalisation of the coupling constant in the same fashion as in the 

bulk case. 

Following that, the bootstrap programme devised by Ghoshal and Zamolod­

chikov [6] will be used to construct the quantum reflection factors of soliton states 

and use their poles to explore the existence of boundary-bound states. This will 

provide us with an exact spectrum of states which will be directly compared with 

the one of the previous section. 

Both methods have a quite different starting point but since both describe the 

same physical setup, we expect the results to coincide. The energy spectrum derived 

by each method will prove to be the same proving the validity of our results. 

The chapter finishes with a few general remarks about the results of the quantum 

case including a brief discussion about the poles in the bootstrap method and the 

necessary conditions in order for them to lie within the physical strip. 
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4.2 Quantum complex sine-Gordon model in the 

bulk 

The complex sine-Gordon model as a quantum field theory in the bulk was stud­

ied relatively soon after the model's introduction. The classical treatment which 

showed the theory to be completely integrable and to possess soliton solutions car­

rying a U(1) charge, prompted researchers to look into the quantum case in the 

hope that the nice features of the model persisted in this limit too. 

The investigation of the quantum case began with the work of de Vega and 

Maillet [59] in which they showed that the S-matrix is factorisable at tree level. The 

model remains integrable and continues to accept soliton solutions in the quantum 

case. Provided that a specific counterterm which depends on the field is added to 

the Lagrangian, the S-matrix is also factorisable at one-loop level. In their following 

paper [46] they used the inverse scattering method to obtain the classical two-soliton 

solution and the spectrum of states using the semi-classical methods by Dashen, 

Hasslacher and Neveu [3, 4]. 

The two-loop order case was studied by Bonneau in [58] who continuing clown 

the path of de Vega and Maillet showed that the theory is non-renormalisable unless 

a finite number of counterterms (quantum corrections) are added. 

After a gap of almost ten years the quantum complex sine-Gordon case was 

revisited by Dorey and Hollowood [53] in the light of the theory emerging as a 

gauged WZW model [41]. With the semi-classical results of de Vega and Maillet as 

a guide, they proposed an exact S-matrix based on the demands of the bootstrap 

programme. 

Before reviewing the relevant results in the literature, we need to reinstate the 

coupling constant ~ into all expressions. The coupling constant was dropped in 

the first chapter since it appeared as a total factor in front of the Lagrangian after 

suitably rescalling the fields. In the quantum case however, the coupling constant 

acts much in the same way as Planck's constant fi, and thus cannot be ignored. 

Since ~ is no longer set to unity all solutions now depend on the coupling constant 

as dictated by the transformation in (2.12). Moreover, one has to bare in mind that 

the Lagrangian of the model comes with an overall factor of ~12 which should appear 
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in expressions like the energy and charge. 

In their paper Dorey and Hollowood argued that it is necessary to only consider 

specific values for the coupling constant. Specifically they argued that the only 

acceptable values are 

(4.1) 

where k is an integer. This agrees with the WZW interpretation of the theory where 

k corresponds to the level of the SU(2)/U(l) coset model. The quantum theory of 

this model is well defined only if the level is an integer greater than one. This also is 

consistent with the description of parafermions since it restricts the spectrum only to 

a finite number of states. With this constraint their proposed S-matrix reproduces 

the semi-classical spectrum of states derived by de Vega and Maillet. In addition 

they proposed that the charge is conserved if it is defined modulo k, which agrees 

with the statement made in the second chapter (Sec. 2.5). In the following, we shall 

use k instead of the coupling constant ~ for reasons of simplicity. 

The quantum spectrum can be found by using the Bohr-Sommerfeld quantisation 

rule 

S(u) + M(u)T = 2nn , n E 1£ , (4.2) 

where S is the action functional, lv! the mass and T the period of the solution u. 

Since no topological distinction exists between the vacuum and the soliton sector, 

the soliton may be regarded as the the basic particle of the CSG theory. We shall 

use the static one-soliton solution of (2.65). As we have already seen this solution 

does not translate in the x direction but oscillates in a breather-like fashion. As 

pointed out by Ventura and Marques [60], and Montonen [61], the Bohr-Sommerfeld 

quantisation is equal to charge quantisation for scalar field theories enjoying a global 

U(l) symmetry. For the CSG case the only time dependence for the soliton solution 

in the rest frame is restricted to the phase i.e. uu* does not depend on time. It is 

easy to show that for the static one-soliton 

S(u) + M(u)T = 2nQ , ( 4.3) 

which in turn implies 

Q =ne, ( 4.4) 



Chapter 4. Quantum complex sine-Gordon model on a half line 83 

with e the basic charge that we shall set to e = 1. This corresponds to a tower 

of states with ever increasing charge. However in the classical case the charge is 

a periodic function (Fig. 2.1). As suggested by Dorey and Hollowood the charge 

should be defined modulo k which leads to a finite spectrum depending on k 

Q = ±1, ±2, ... , ±k;l fork odd , 

Q= ±1,±2, ... ,±k;2,~ fork even 

From the classical expression for the charge (2.42) we have 

k 1f 

Q =-(--a). 
1f 2 

The quantisation of the charge is in fact the quantisation of a 

Through the quantisation of the charge parameter, the energy spectrum 

is also obtained 

k 
lvf = -mcos(a) , 

1f 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The Bohr-Sommerfeld quantisation provides us with the quantum spectrum only 

up to leading order. According to de Vega and Maillet the next order correction is 

achieved by a simple renormalisation of the coupling constant 

c2 -t c2 - e 
., "R- 1- e/41f (4.11) 

or equivalently 

k -t kR = k- 1. (4.12) 

In this level an S-matrix may be written down that reproduces the semi-classical 

spectrum to leading order. In their paper Dorey and Hollowood first presented a 

minimal choice for the meson-soliton scattering matrix 

(4.13) 
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which reproduced the semi-classical behaviour and agreed with the results of de Vega 

and Maillet. Moreover, through this they confirmed that the meson in the CSG 

theory can be identified with the Q = 1 soliton. The function Fo(B) is defined as 

) 
sinh(~+ ;~Q) 

F. ( () = ----;-:::-------7"'------:---
Q sinh(~- ;~Q) 

(4.14) 

S-matrices constructed from products of the FQ(B)) automatically satisfy unitarity 

and analyticity constraints. With the above result as a starting point they proposed 

the following S-matrix for arbitrary charge 

(4.15) 

which satisfies all the familiar restrictions and has the correct pole structure. In 

addition they pointed out that this is exactly the minimal S-matrix associated with 

the Lie algebra ak-l and conjectured that for the specific choices of the coupling 

this S-matrix should be exact. 

With the general form of the S-matrix the review of the bulk case is concluded. 

More details on the above results may be found in the relevant papers. Nevertheless, 

this presentation contain all the ingredients needed to examine the half-line case. 

We shall begin with the semi-classical approach as described in the introduction. 

4.3 Semi-classical quantisation 

In this section we shall attempt to build the complete spectrum of quantum 

boundary-bound states for the complex sine-Gordon model on a half line. The 

fact that the model possesses exact periodic solutions makes the stationary-phase 

method the most suitable candidate for the quantisation. As pointed out in the 

introduction, this is a generalised version of the Bohr-Sommerfeld quantisation 

fJSqu 
Squ - T fJT = 21rn , (4.16) 

where Squ = Sc1 - ~. We shall use the ordinary quantisation condition for the 

classical action Sc1 and then we shall calculate the quantum corrections factor of 

(1.49). 
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The boundary term of (3.39) preserves the U(1) charge as it only depends on 

mod(u). The theory remains U(1) invariant and therefore the Bohr-Sommerfeld 

quantisation is equivalent to charge quantisation on the half line case as it was for 

the bulk. The quantisation condition for the classical action reads 

( 4.17) 

with Uct the static one soliton solution of (2.65). In the previous chapter we saw that 

this solution satisfies the boundary condition. It is a periodic solution with period 

T exhibiting a breather-like behaviour. It provides the perfect starting point as the 

simplest boundary bound state of the classical theory. The position of the centre of 

mass will determine the charge of the bound state as a fraction of the soliton charge 

in the bulk. We can calculate the charge of the static soliton through the expression 

Q = -i 1° dx u*oou- uoou* . 
_ 00 1- uu* 

(4.18) 

This time however the integration takes place on the half line and finally yields 

k 
Q=-(7r-b-a). 

27f 
( 4.19) 

The charge now depends on the boundary parameter C = cos(b), which enters the 

calculation through the position of the centre of mass. To check that this formula is 

correct, we can set b = ~ which implies that we have Neumann boundary conditions 

thus placing the soliton at exactly x = 0. The charge is then exactly half of the 

equivalent charge of the soliton in the bulk as expected. The quantisation condition 

now reads 

k 
Q = 

2
7r ( 1r - b - a) = n , 

or in terms of the charge parameter 

27rn 
a=7r-b-k. 

(4.20) 

(4.21) 

The quantisation of a provides us with the first approximation of the semi-classical 

spectrum 

En= -lcos(a)l =- cos(1r- b--) . km km I 27rn I 
27f 27r k 

( 4.22) 

Having a general formula for the energy, it iA useful to calculate the energy difference 

between two adjacent states. We shall use this in the following section where we 
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shall compare it with the corresponding bootstrap result. For simplicity reasons, we 

shall assume that the values of the parameters are such that the cosine is positive 

for both states as is their difference so that we can ignore any modulus appearing. 

The energy difference is then written 

km ( 21r(n + 1) 21fn ) 
En+l- En= 

2
1f cos(1r- b- k ) - cos(1r- b- k) , (4.23) 

which after some manipulation simplifies to 

E +l - E = - cos - - - cos - - + b) km (1f 1f) (1f(2n + 1) 1r ) 
n n 1f 2 k k 2 (4.24) 

We shall return to this result at the end of the next section, after we have obtained 

a relevant expression from the bootstrap programme. 

The following step consists of calculating the quantity ~ of (1.44). We first 

calculate the sum over the stability angles, while the counter terms will be introduced 

later to make the result finite. In order to obtain all possible states one has to 

consider the theory in a box. The theory is already bounded on the right from the 

original boundary, therefore another boundary should be introduced restricting the 

system in the finite volume [-L, OJ thus forcing all energy levels to become discrete. 

We can afterwards take the limit L-+ -oo to recover the original system. The most 

appropriate choice would be Dirichlet boundary conditions u = 0, which reproduce 

the correct behaviour of u at infinity. 

The stability angles are obtained by solving the linearised stability equation 

(1.39) for a given classical solution. In our case we perturb around the static one­

soliton solution. Once the solutions x(x, t) for the stability equation are found then 

the stability angles can be calculated from (1.40). Instead of solving directly the 

stability equation we can follow the method of Corrigan and Delius to calculate 

the sum of the stability angles through the reflection factors. We begin with the 

classical two-soliton solution of the CSG model which satisfies the stability equation. 

By fixing the free parameters we can make one of the solitons S1 static by taking 

61 = 1 and the other S2 very small by taking the charge parameter a2 close to 

~. Effectively we are left with a small perturbation around a static one-soliton 

background. This is exactly the same method that Dashen, Hasslacher and Neveu 

followed to calculate the stability angles of the sine-Gordon model. At infinity the 

static soliton is practically zero whilst the perturbation appears as plane waves 

(4.25) 
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The reflection factor is found to be 

(cos ( b - iO)) (sin (a + iO) - 1) 
Rs=-~~--~~ ~--~--~--~ 

(cos(b + iO)) (sin(a- iO)- 1) ' 
( 4.26) 

where we have set m = 1 without loss of generality. The rapidity 0 which has been 

used is related to the momentum through k = sinh(O). The parameters a and bare 

the familiar charge and boundary parameters. From the above expression for x(x, t) 

and (1.40) we can substitute 

( 4.27) 

where wl = kl + 1 and the counter terms have been neglected. Placing the system in 

a box allows for discrete values of the wave-number k which should not be confused 

with the coupling constant. From 6. we must now subtract the vacuum contributions 

6. = ~ I: J k;,i + 1 - J k5,i + 1 . (4.28) 
t 

From the Dirichlet boundary conditions we can obtain the following equation relating 

the discrete momenta with the reflection factors 

_ 2ik L (cos(b- iO)) (sin(a + iO)- 1) 
e • = ------,----------,~ ~---'--------------,-

(cos(b + iO)) (sin(a- iO)- 1) 
( 4.29) 

A similar equation exists for the fluctuations around the vacuum 

_ 2ik L i sinh( B) +cos( b) 
e 0 =- . 

i sinh(O) - cos(b) 
(4.30) 

Using the same argument as Corrigan and Delius, we can define a function /'i,(ko) 

such that for large k we may write 

k - k K,(ko) 
s-o+ L , ( 4.31) 

where the index i has been suppressed. This is possible since in the limit 0 -----+ +oo 

and taking into account the general quantisation condition of ( 4.20), both reflection 

factors Rs and R0 are equal. Through the difference ks - k0 a function K,( 0) may be 

defined using the ratio of the corresponding reflection factors 

e-2iK(O) = _(sin( a+ iO) - 1) (sin(b + iO) - 1) 
(sin(a- iO) - 1) (sin(b- iO) + 1) 

( 4.32) 
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We can now calculate 6. in terms of""· We can substitute ( 4.31) in ( 4.28) and then 

expand the expression in terms of L. Keeping only the leading term of the expansion 

we end up with 

T k(O) K,(k(O)) 
6.r-v-2: l l 

2£ i J(k~0))2 + 1 , 
( 4.33) 

which in the limit L ~ +oo can be substituted with the integral form 

6. = I_ 1+oo dk k K,(k) . 
21f 0 Jk 2 + 1 

(4.34) 

The calculation is greatly simplified if we change variables to () 

T 1+oo 6. = - d() sinh(O)""(O) . 
21f 0 

( 4.35) 

The integral is divergent but we can introduce specially chosen counter-terms to 

obtain a finite result. We begin with an integration by parts 

( 4.36) 

The first term is not divergent since the function "" approaches zero (through the 

quantisation condition) as() goes to infinity. In this limit the combination""(()) cosh(O) 

is zero. In addition, ""(0) = 0 so the first term in (4.36) vanishes. The second term is 

however divergent and counter terms have to be introduced to cancel infinities. The 

latter appear in the same fashion as the logarithmic divergencies in the bulk which 

are tackled through normal ordering. With some straightforward manipulation the 

derivative term yields 

d"' cos(b) cos(a) 
- = - + -----;-:----:--:-
d() cosh(O) - sin(b) cosh(O) - sin(a) 

( 4.37) 

The two terms are almost identical and both divergent. A logical choice of counter­

terms seems to be 

cos(b) cos(a) 
-...,----;--=7--'--+---,-----:--,'-:--'--
cosh(O) + 1 cosh(())+ 1 

(4.38) 

where the first removes the divergence associated with the boundary and the second 

with the one in the bulk. The complete expression to be calculated is now 

6. = 1
+oo 

-

0 

d() cosh ( 0) 

( 
cos(a) cos(a) cos(b) cos(b) ) 

cosh(O) - sin(a) - cosh(O) + 1 - cosh(()) - sin(b) + cosh(O) + 1 ' 
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which finally yields 

6 =I_(- cos(a) + cos(b) + bsin(b) + ~ sin(b)- asin(a)- ~ sin(a)) . (4.39) 
21f 2 2 

Having determined the form of 6 we are now in a position to calculate the corrections 

to the classical Bohr-Sommerfeld rule. The expression of 6 depends on the period 

T through the charge parameter a 

21f 
sin(a) = T 

The correction term of (1.49) is easily calculated 

86 1f 

6 - TaT = -a - 2 . 

(4.40) 

(4.41) 

vVith all the necessary parts calculated, the generalised Bohr-Sommerfeld quantisa­

tion condition finally reads 

( 4.42) 

where 

( 4.43) 

The form of the new quantisation condition is exactly the same as the first approx­

imation of (4.20), only with a redefinition for the boundary and coupling constants. 

The shift in the coupling constant is to be expected. In the bulk case the first order 

corrections amount to a simple shift in k ( 4.12) as pointed by de Vega and Maillet 

[47]. The same holds for the half line case. The Bohr-Sommerfeld quantisation pro­

vides us with the original condition while the introduction of the next order term 

brings about the same shift k --+ k - 1 as in the bulk. 

In addition to k, the boundary constant has to be renormalised as well. It is 

not clear why this renormalisation is needed or whether it should appear at all. In 

a related paper examining the closely related ak-l theory, Penati and Zanon [62] 

argued that renormalisation of boundary parameters has to be introduced in certain 

models to ensure integrability at the quantum level. The renormalisation of the 

coupling constant and its significance remains one of the open questions for the 

quantum esc theory. 
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4.4 The Bootstrap Method 

In the previous section we constructed the quantum spectrum using the semi­

classical stationary-phase method. Although the results are not exact, they provide 

us with an accurate picture of the set of states. The same spectrum can be ob­

tained using the completely different approach of the bootstrap method which was 

described in the introduction. It is based on the pioneering work of Cherednik [26], 

Ghoshal and Zamolodchickov [6], and Fring and Koberle [27]. This way we shall 

be able to compare complementary results to acquire an even more accurate spec­

trum. The idea behind this method is to construct the reflection factors through 

the boundary bootstrap relation of (1.62), and through the poles therein to iden­

tify boundary bound states. The process is analogous to the bulk case where the 

existence of bound states is indicated by poles found in the S-matrix. 

Nevertheless there are quite a lot of drawbacks in this process. First of all in order 

to begin we need the quantum reflection factor for the particle of the theory. This 

cannot be obtained through any consistent procedure. Although the principles of 

analyticity, unitarity and crossing symmetry along with the boundary Yang-Baxter 

equation restrict the form of the reflection factor enough, it is impossible to pin it 

down completely. It is therefore a matter of "selecting" the correct reflection factor 

which should satisfy all constraints whilst introducing a pole corresponding to a 

boundary bound state. 

After carefully deciding on the correct reflection factor for the particle, we are 

faced with a second problem. Although we are only concerned with poles in the 

reflection factor which appear on the physical strip (which in the half line case is 

<s( 0) E [0, 1r /2]), not all of them correspond to boundary bound states. It is quite 

difficult to explain the appearance of all the poles which lie within the physical strip 

and no work until now exists to offer a systematic treatment of poles encountered. 

Another difficulty arises with the determination of the CDD factors in the re­

flection matrix. The restrictions imposed on the reflection factor may determine it 

up to a set of factors, quite like the CDD factors of the S-matrix. However the 

reflection CDD factors which are also restricted by the same constraints, introduce 

more poles which are also difficult to explain. 

Considering all the above we shall attempt to construct the quantum boundary-
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bound state spectrum for the CSG theory but our study will be superficial. It is 

not our objective to fully explain the quantum structure of the model but rather 

to verify crudely our semi-classical results. The detailed explanation of poles in 

the reflection factors, the determination of a general form for the reflection CDD 

factors and the comparison of the results with similar theories are quite fascinating 

problems but are beyond the scope of this thesis. In the following section we shall 

present a suitable form for the quantum reflection factor for the particle of the CSG 

model. 

4.4.1 Quantum reflection factor for the CSG particle 

We begin our attempt to introduce a suitable reflection matrix K 1 for the CSG 

particle with the assumption that it should be made out ofF factors that were de­

fined in (4.14). It is a natural selection as both the boundary Yang-Baxter equation 

and the bootstrap equations relate reflection matrices with the S-matrix which is 

expressed only in terms of such functions. There is another advantage to this choice. 

Unitarity, real analyticity and 21ri-periodicity requirements are automatically satis­

fied if K appears as a product of such factors. Some of the most important properties 

enjoyed by these functions include the following 

The first of the above is responsible for the fulfillment of the unitarity requirement. 

The remaining demonstrate basic transformations between rapidity and charge and 

will be used in the bootstrap and crossing symmetry equations. 

It should be noted that since there is no degeneracy in the spectrum we expect I< 

to be diagonal. This, in conjunction with a diagonalS-matrix, renders the boundary 

Yang-Baxter equation (1.60) trivial. In a previous section concerning the bulk case, 

the CSG particle was identified with the soliton Q = 1. In this context the first real 

constraint for K comes from the crossing symmetry relation (1.59), which for our 

case is written as 

( 4.44) 
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where KI is the reflection of the antiparticle and S1,1 is the two particle scattering 

matrix. Dorey and Hollowood noted that the CSG S-matrix is identical to the 

minimal ak_1 S-matrix which in turn can be recovered from the ai~ 1 Affine Toda 

field theory (ATFT) when the parts involving the coupling constant are omitted. It 

is therefore reasonable to build our reflection matrix based on the proposed form for 

the particle reflection matrix of the boundary ak~ 1 Affine Toda theory. In their paper 

Deli us and Gandenberger [33] present a general form for the particle reflection matrix 

of the ai1~ 1 ATFT. As in the S-matrix case the reflection matrix is a product of two 

parts, out of which only one depends on the coupling constant. Each part satisfies 

the bootstrap independently so we can recover a K-matrix for our model by simply 

ignoring the coupling dependent pieces. The block notation implies (x) = Fx(O) 

and shall be used henceforth in parallel with Fx(O). Ignoring the parts involving the 

coupling constant, the remaining factors 

n 

Kn=2:)c-l)(c-k), n=l..(k-1), (4.45) 
c=l 

constitute a complete set satisfying the crossing-symmetry condition (1.59) as well 

as the reflection bootstrap equation (1.60). This is not unexpected as both theories 

share the same minimal S-matrix . This however creates a problem as K does not 

contain any poles which can be related to boundary-bound states. This means that 

should any additional factors be added by hand to introduce the required poles, they 

should be added in such a way that they cancel between them in the crossing and 

bootstrap relations. This in turn suggests that the new factors are nothing more 

than CDD factors for the reflection matrix. Placing the poles in the CDD factors 

simplifies the whole procedure of determining a suitable particle reflection matrix 

since they satisfy simpler relations. 

Real analyticity and unitarity conditions once again prompt us to construct our 

CDD factors out of block functions, so that the former are satisfied automatically. 

In order for the crossing relation to be satisfied any block factor ( x) should be 

accompanied by the charge conjugate factor (k - x). Delius and Gandenberger 

showed for such a combination the bootstrap closes. 

Now that we have a consistent way of adding factors we need to find where the 

poles should appear. We begin with the simple formation of the boundary bound 

state described in (Fig. 1.12). During the process both energy and charge are 
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conserved. We begin with the charge conservation. Far away from the boundary 

the soliton (particle) behaves as in the theory in the bulk. Its charge is equal to the 

normal soliton charge Q1 = $(~ - a1). After the formation of the bound state the 

charge Q2 is given by the formula (4.19). Equating these yields 

7f 1 
('2 -a1) = 2(1r-b-a2). ( 4.46) 

Using the same arguments we can write down an equation describing the conserva­

tion of energy 

4m cos(a1) cosh(O) - 2 cos(b) =2m cos(a2 ) , (4.47) 

where the -2 cos(b) term is the boundary energy contribution when the field is zero. 

From (4.46) and (4.47) we can determine the rapidity e at which the boundary 

bound state is formed 

7f k k 
e~o,n) = i-k (n +B) where B = - b- - . 

7f 2 
( 4.48) 

For the above relation the quantisation condition of ( 4.20) was also used. Now 

that we have determined where the pole should be, we need to express it in block 

notation. It is easy to see that since ( x) has a pole in the denominator at e = if~ x, 

we therefore need a block (n +B) and its counterpart (k - n- B) for the CDD 

factor of I< n. 

Nevertheless the blocks containing the pole should not be the only components 

of the CDD factor. On the contrary we expect the number of CDD factors in I<n 

to increase as n increases towards ~ and then to decrease as it approaches k - 1. 

Since we have k- 1 particles and the theory is Zk symmetric we expect I<k = I<1 . 

Moreover since the reflection matrix remains the same under charge conjugation we 

expect I<n = I<k-n· 

Although it is not easy to derive the general formula for the CDD factors in the 

I<n reflection matrix, we can decide on a minimal choice for I<1 . We opt for a CDD 

factor containing only the first pole and its charge conjugate counterpart. The full 

reflection factor then reads 

I<io) = (1 + B)(k- 1- B)(1- k) . ( 4.49) 

The superscript denotes the boundary excitation state. In this particular case I<io) 

describes the reflection of a soliton of charge Q = 1 from an unexcited boundary. 
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Figure 4.1: The Bootstrap Programme 
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We ignore the poles coming from the non-CDD part of Ki0
). We shall address this 

issue at the closing stages of this chapter. The pole associated with the (1 + B) 

factor corresponds to the lowest boundary bound state with energy 

M = - cos( 1r - b - -) . (l) km I 21r I 
b 27r k 

(4.50) 

which is formed when a soliton of charge Q = 1 fuses with the boundary. The 

conjugate term (k- 1- B) also has a pole but does not lie within the physical strip 

~(fJ) f (0, ~). 

With Kio) as a starting point we can construct the whole set of KA0
) factors 

by using the reflection bootstrap (1.60). In addition, we can apply the boundary 

bootstrap (1.62) to each of them to obtain the corresponding reflection matrices 

from the excited boundary. In both cases new block factors are generated carrying 

poles which indicate new bound states. If our choice for the CDD factor in ( 4.49) 

is correct we expect the bootstrap to close, i.e. to end up with a finite spectrum of 

states which is repeated after k steps. Pictorially this can be seen in (Fig. 4.1) 

As a starting point we can calculated the reflection factor of a charge Q = 2 

soliton bouncing off the unexcited boundary 
. . 

K~o) ( fJ) = Kio) ( fJ -
2
: )Kl0

) ( fJ + 2
:) S1,1 (20). ( 4.51) 

Substituting Kl0
) from ( 4.49) and S1,1 from ( 4.15) we finally get 

K~o) = (2 + B)(k- 2- B)(B)(k- B)(1- k)(1)(2- k) . ( 4.52) 
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This result confirms that the general formula of ( 4.45) forms a complete set. Hence­

forth we shall ignore the basic blocks of the reflection matrix as they are a consistent 

set and concentrate only on the CDD factors which carry all necessary information 

about boundary bound states. The first four terms are the CDD factor for K~o) 

which introduce two new poles. An equally straightforward calculation is that of 

Kio) which is found to be 

K(o) = (B + 4)(B + 2)(k- B + 4)(k- B + 2) 
4 (-B)(-B+2)(-k+B+2)(-k+B+4) 

(4.53) 

A pattern begins to emerge from these simple results. The CDD factor of K~o) 

always involves the block pair ( n + B) ( k - n - B). This is the first consistent ap­

pearance of poles in the reflection matrices. This is also the complete set of poles 

that are produced by the bootstrap programme. With an arbitrary coupling con­

stant k, it is not easy to demonstrate the complete mechanism of pole production. 

this can easily be seen by fixing k to an integer value. One can then see the whole 

range of poles produced and how the bootstrap miraculously closes. 

4.4.2 The boundary bootstrap 

In the previous section we proposed a suitable expression for the Kio) reflec­

tion factor and saw how through the reflection bootstrap all the ](~0 ) factors can 

be obtained. We now turn to the boundary bootstrap to construct the boundary 

reflection factors of solitons bouncing off an excited boundary. We shall only exam­

ine the boundary bootstrap for the particle reflection factor. Through the reflection 

bootstrap all other states can be built (Fig. 4.1). Once again we are facing the prob­

lem that with k arbitrary and a charge-varying S-matrix we are not in a position to 

identify all poles or cancel terms in the reflection matrix. We therefore shall attempt 

to find a general formula for the energy difference between adjacent boundary bound 

states. This should be enough to build the whole spectrum of states beginning with 

the energy of the first bound state. 

We begin with the boundary bootstrap equation (1.62) for KP) which is 

(4.54) 
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where eiO,l) = i~ (1 +B) denotes the pole in K}0
). The product of S-matrices in the 

above relation is equal to a shift in their charge. In general the following relation 

holds for any '1/J 

k k 
S11(0 + i'ljJ)SII(O- i'ljJ) = (2 + -'1j;)(2- -'1/J) . 

, , 7r 7r 
( 4.55) 

Putting everything together yields 

K~ 1 ) = (1 + B)(k- 1- B)(3 + B)(1- B) . ( 4.56) 

Once again we have only used the CDD factors and ignored terms not involving the 

boundary constant. We see through this procedure a new pole appears from the 

block (3 + B) corresponding to the absorption of a charge Q = 1 particle into the 

charge Qb = 1 boundary. This will be used as an input to find a new pole in K}2l 

K}2l = (k- 1- B)(3 + B)(1- B)(5 +B) , (4.57) 

where a cancellation has already taken place. The new pole comes from the block 

factor (5 +B) which will be used in the next step. The expression for Ki3
) is 

K}3l = (k- 1- B)(1- B)(5 + B)(7 +B) , (4.58) 

where new factor (-3-B) has cancelled with the block factor (3+B) and the factor 

(7 + B) has introduced a new pole. This procedure will not continue indefinitely. 

After k steps we expect to return to original form of Kio). However it is clear that 

the Kin) reflection matrix will have a pole indicated by the block factor (2n + 1 +B) 

at '1/Jn = ~(2n + 1 +B). Having a general formula about the n-th pole allows us 

to write down a recursive relation for the energies of the bound states. We begin 

with the energy of the first bound state. The difference between the first excited 

boundary state and the non-excited boundary is 

E 1 - Eo= A cos('I/Jo) . ( 4.59) 

The right hand side is equal to the mass of the incoming particle that binds with the 

boundary at a fixed angle 0 = i'ljJ0 . The parameter A is related to the mass of the 

particle and will be determined from the comparison with the semi-classical results. 

The formula may be used recursively to finally yield 

7r 
En+I- En= A cos('I/Jn) =A cos( k(2n + 1 +B)) . (4.60) 
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This formula should be compared with the one derived from the semi-classical ap­

proach ( 4. 24). Both describe the exact same energy gaps between two bound states. 

The arbitrary parameter in ( 4.60) can be read directly from ( 4.24) 

km (7r 1r) 
A = --;- cos "2 - k . (4.61) 

This is not surprising. The energy difference between bound state A cos( 'l,bn) is equal 

to the energy of a soliton 

mk 
Ms = -cos( a) cosh( e) . 7r ( 4.62) 

The parameter A is exactly the charge of the incoming soliton. As k becomes large 

the charge of the soliton approaches zero and the soliton becomes a particle. In the 

limit that k -t oo (the classical limit) the soliton becomes infinitesimally small and 

the boundary-bound states spectrum become continuous. 

We conclude this section with a brief discussion about the poles appearing in 

the reflection matrix. We expect the non-CDD poles in ( 4.45) to be explained in 

terms of a on-shell triangle diagram as is the case for the a~l) affine Toda theory. A 

full discussion can be found in [33]. The remaining poles appear in the CDD factors 

and are the ones associated with the boundary-bound states. The full set of poles 

generated from the bootstrap programme come from the general blocks (n +B) and 

(k- n- B) which have poles at 

• 1• = -n - - + b and •1• = 1r - -n - - + b 7r 7r I (1r 7r ) 
'f/n k 2 'Pn k 2 (4.63) 

From the forms above we can see that if en lies in the physical strip (0, ~) then e~ 

does not, and vice versa. Assuming that the pole is at en then it lies in the physical 

strip if 

1r n b 1 
- > ·1• > 0 {::} 1 > - + - > -2 'f/n k 7r 2 (4.64) 

As soon the above condition is no longer true then the pole appears in the conjugate 

block at 'l,b~. This however does not alter any of our results. From ( 4.60) we can see 

that 'l,bn or 'l,b~ appear in the argument of the cosine so both correspond to the same 

absolute energy difference between two states. 
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4.5 Discussion 

The fact that the results of the semi-classical method and those of the bootstrap 

method coincide is remarkable. Although it may seem that the poles in the bootstrap 

method were "manufactured" using the ones from the semi-classical approach, this 

is not so. The introduction of the pole in Kio) which came from the semi-classical 

spectrum is not restrictive. The bootstrap approach reproduces exactly the same 

energy gaps between quantum states as the semi-classical approach. This can be seen 

by direct comparison of the relations (4.24) and (4.60). However in the bootstrap 

approach the energy of the lowest state, which is indicated by the pole in the particle 

reflection factor, is not defined and may be chosen arbitrary. At this point we choose 

the lowest energy of the semi-classical result as a starting point and the rest of the 

quantum spectrum is obtained through the recursive relation of ( 4.60). Any general 

pair of CDD blocks will have produced the exact same results and through the 

comparison with the semi-classical results the original choice will have emerged. 

The reflection and boundary bootstrap both close because the minimal choice for 

Kn ( 4.45) is consistent with our S-matrix and because the introduced blocks are 

CDD factors. 

One final point to be made is that although we have used for our comparison 

equations (4.20) and (4.24) which correspond to the first approximation in the semi­

classical approach, we can extend our results to agree with the first order corrections 

by simply substituting everywhere k = kr and b = br· The redefinition of both 

parameters change nothing in the bootstrap approach which yields the exact same 

results. 
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Integrable field theories are a fascinating subject with plenty of applications in 

the physical world. One such theory is the complex sine-Gordon model, a generalisa­

tion of the sine-Gordon theory with a global U(l) degree of freedom. Although the 

model was introduced almost three decades ago, it failed to attract enough attention 

in the research world. Even though some aspects of the model have been studied, 

it is only recently that it has been consistently explored within the framework of 

homogeneous sine-Gordon theories. 

In this thesis we have studied a different aspect of the CSG model. We have 

introduced a boundary and considered the theory on a half line. Our goal was to 

find specific boundary conditions that would be consistent with integrability and 

through which we could explore the interaction of solutions with the boundary and 

the existence of boundary-bound states. 

Our investigation has forced us to readdress a number of inconsistencies arising in 

the bulk case from previous treatments. We have shown that soliton and antisoliton 

solutions do not belong into distinct classes but are in fact the same entity. In the 

absence of topology there exists no way to separate such solutions. Only in the 

chargeless limit of the theory where the sine-Gordon model is recovered solitons 

regain their topological character and such a classification may hold. Another issue 

that needed clarification was the existence of breather solutions. 'vVe have proposed 

a elegant way to create breather solutions by analytic continuation that satisfy the 

equations of motion. An amazing property of breather solutions was also discovered. 

Since solitons and breathers are not topological objects, then it is possible to fix the 

parameters in the breather solutions so that the breather collapses to a single soliton 

solution. 

Following that we have used the zero curvature condition to construct the infinite 

number of conserved currents. With the introduction of a boundary, we demanded 

that all parity even quantities are conserved and through this restriction we found 

the form of the integrable boundary condition. This has provided us with the form 

of the boundary term in the CSG Lagrangian, thus allowing us to reexamine the 

vacuum of the theory on a half line. We have investigated the circumstances under 

which the two soliton solution satisfies the boundary condition and through the 

method of images have calculated the time delay induced when a soliton reflects off 
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the boundary wall. Finally we have addressed the issue of boundary-bound states, 

examining the static soliton and boundary breather case. 

Continuing our investigation we have examined the quantum CSG theory on a 

half line. The quantum CSG in the bulk has already been studied in a number 

of papers and the results were used in the half line case. We adopted the semi­

classical stationary-phase method to obtain the boundary-bound spectrum of the 

CSG model. The first order corrections produced the same finite renormalisation of 

the coupling constant as in the bulk case, whilst the boundary constant underwent 

a similar redefinition. In addition to the semi-classical approach, we have used the 

bootstrap method to calculate the energy difference between boundary-bound states. 

A minimal choice for the reflection factor of the CSG particle was proposed based 

on the corresponding factor of the ak-l theory, whilst new factors were introduced 

bearing the necessary poles for our boundary-bound states spectrum. In order to 

avoid any complication with the constraint equations, the poles were placed in the 

CDD factors simplifying the whole process. Using the boundary bootstrap equation 

a recursive formula was created to obtain the energy levels of states. A comparison 

showed both methods yielding the same results thus confirming their validity. 

We end our discussion with a few open questions and opportunities for further 

research. We begin with the existence of breathers. In this thesis we found a 

way to create breathers by analytic continuation of the two soliton solution when 

the parameters have been fixed in a specific way. Nevertheless, we still lack direct 

confirmation through the equations of motion. This also raises the question whether 

a valid solution is obtained without fixing any of the parameters. It is our belief that 

analytic continuation will not in general produce a solution, but that other solutions 

which describe the 'fusion' of two unequally charged soliton should exist. 

Another point which needs further exploration is the full set of boundary con­

ditions that are consistent with integrability. Apart from the solution presented 

and a set of isolated Dirichlet-like boundary conditions, one can imagine more com­

plicated forms involving higher derivatives or even time-like boundary conditions. 

Such solutions would provide an extremely interesting topic of research. 

Furthermore, the boundary quantum CSG model is not yet fully explored. Con­

tinuing with the semi-classical quantisation it would be quite interesting to see the 

next level of quantum correction~ that need to be introduced and to what extend 
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these will agree with the ones from the bulk case. In addition, the renormalisation 

of the boundary constant may or may not continue beyond this order and the reason 

for its existence needs further investigation. 

One could also contemplate testing any of our conjectures for the reflecting K 

using perturbation theory [63]. 

Last but not least, the connexion of the theory with similar models is of great 

importance. As we have already mentioned the model is the simplest of the ho­

mogeneous sine-Gordon theories and it would be interesting to see how the results 

of the boundary CSG translate for the other members of this group. The close 

connexion with ak-I which was established through the S-matrix and the reflection 

matrix present the best indication that such connexion exists and that results are 

expected to be related. Finally, a thorough investigation of the pole structure of the 

boundary CSG model would provide a clearer picture of the quantum case which 

was not implemented in this treatment. 
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One of the applications of the complex sine-Gordon theory is to provide a field 

theory description for optical pulses propagating within a non-linear medium. In 

this section we present the theory of optical pulses and its connexion to the CSG 

model. Moreover, we consider the boundary problem and demonstrate integrability 

once again by building the infinite number of conserved quantities as we did in the 

third chapter. However there is a subtle difference. In order to achieve a realis­

tic description a different gauge has to be chosen. This complicates our effort to 

construct the conserved quantities and to find boundary conditions which preserve 

integrability. 

A.l Introduction 

Non-linear optical systems lack a satisfactory field theory description. It is their 

non-linear character which makes the usual description through the scalar poten­

tial cjJ and vector potential A of electromagnetism unfeasible. Especially the vector 

potential, looses its meaning through the non-linear interactions with matter. There­

fore a Lagrangian formulation is impossible due to the absence of a potential like 

variable. The only way to describe such systems is to adopt a semi-classical approach 

and use the electric field itself as a field variable. By using special functions for the 

latter, the Maxwell-Bloch equation -which describes electromagnetic interactions- is 

satisfied and so a description of non-linear systems is possible. 

The only description which introduces a Lagrangian formulation and in which 

a potential-like variable is used, is due to McCall and Hahn [48]. The system is 

described, in certain conditions, by a potential variable cjJ(x, t), which is shown to 

satisfy the sine-Gordon equation. In this way the self-induced transparency effect 

(SIT), the phenomenon where an optical pulse in a non-linear medium propagates 

without significant energy loss, can be interpreted in terms of the soliton solutions 

that the sine-Gordon model possesses. 

The work of Park and Shin [49, 64, 65] takes the previous approach a step 

further. They argue that a better choice would be the complex sine-Gordon model 

substituting the potential variable by the matrix potential g. In comparison with 
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its predecessor, the model seems to have great advantages: frequency detuning, 

modulation and inhomogeneous broadening effects can all be described within the 

framework of the complex sine-Gordon theory, while the restriction to two level 

non-degenerate systems holds no more. In their papers, Shin and Park rewrite the 

Maxwell-Bloch equations 

2 n2 2 47f 2 J (81 - 280 )E = 280 dvtrp d 
c c 

Maxwell equation 

ifi(oo + vol)p =[(Ho-E d), p] Bloch equation 

in a dimensionless form: 

BE + 2 f3P 0, 

oD- E*P- EP* 0, (A.l) 

oP + 2i~P + 2ED 0 . 

In this form, E represents the electric field, D is the population inversion and P 

is the polarization. The parameter ~ should not be confused with the coupling 

constant of the previous chapters. In order to produce the sine-Gordon equation, a 

potential-like variable is introduced through the relation 

cp(x, t) [too E dt' . 

By identifying E = E* = 8¢ , P = - sin(2¢) and D = cos(2¢) the sine-Gordon 

equation arises 

88¢ = 2/3sin(2¢) . 

In order for the complex sine-Gordon to emerge, we parameterize the three quantities 

E, D, and P with three scalar fields ¢, (} and 7J 

D 

p 

E 

cos(2¢), 

iei(0-2TI)sin(2¢), 

ei(0-2ry) (287] cot(¢) - io¢) , 

(A.2) 

(A.3) 

(A.4) 

When the above expressions are inserted into (A.2), we obtain a set of second order 

differential equations 

- cos(¢) -
88¢ + 4 . 3 ( ) O'TJO'TJ- 2f3sin(2¢) 

sm ¢ 
- 2 - -
007]- sin(2¢) (o7Jo¢ + 07]0cp) 

0, 

0, (A.5) 
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and a couple of first order constraint equations 

0. (A.6) 

Having expressed the Maxwell-Bloch theory as the CSG equations, we can use the 

matrix potential formalism of the second chapter. The SU(2) matrix potential g of 

(2.24) is now defined through the relation 

( 
D P ) _1 = g a3g 
P* -D 

(A.7) 

The Bloch equation emerges from the identity relation 

(A.8) 

and the identification 

( 
iC -E) g- 18g + R = "' . 
E* -i~ 

(A.9) 

where R is an anti-Hermitian matrix which commutes with g- 1a3g. The Maxwell 

equation can also be expressed in terms of g 

(A.lO) 

The variation of the gauged WZW action (2.18) produces the Maxwell-Bloch equa­

tions when the gauge is fixed as follows 

W = i~a3 , W = 0 , (A.ll) 

and which in a zero curvature form is 

8+ 8--
[ ( 

ij3>.. + i~ -E ) - i ( D 

E* -i/3>..- i~ ' ).. P* 
(A.12) 

A.2 Conserved currents 

In this section we use the same method as in the third chapter to construct the 

infinite set of conserved currents and through them to obtain boundary conditions 
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consistent with integrability. However, the gauge fixing of (A.ll) is different to 

our choice in the second chapter (2.27). Although this shall modify most of the 

calculations, our original results can be recovered in the limit E, = 0. We follow 

the exact same steps for the abelianisation of the Lax pair noting that only the 

definition of the parameter A has changed 

A = ,8>. + E, . (A.13) 

The expansion of the conserved quantities J and J of (3.9) and (3.12) respectively, 

now yield 

J -i>.,B- if,- _!__EE* (~) + (.!i_EE2
- -

1
-(oE* E- BEE*)) (~) 

2,8 ). 2,82 8,82 ).2 

J iD 2_(E* P-EP*) (~) ). + 4,8 ).2 . 

These expressions should be compared with the those of (3.15). As we can see 

the parameter E, has modified our previous results significantly by introducing new 

terms. 

In the third chapter we argued that only parity even quantities are preserved. 

The conserved currents of (3.15) were neither parity even or odd and a "reflected" 

set had to be constructed that would combine with the original set to produce pure 

parity states. Since the system was parity invariant the new set was easily obtained 

by substituting o -+ [J. This is not true in this case. Although the equations of 

motion are parity invariant, the first order constraints because of the gauge fixing of 

(A.ll) are not. The new underlying symmetry of the system has first to be identified 

before we construct the set of "reflecting" currents. To this end we shall try to build 

a new Lax pair which should have the same form as the original one (A.12) but with 

the derivatives interchanged and the field variables E,P and D slightly altered. We 

begin with a gauge transformation for A 

(A.14) 

where 

(A.15) 
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and 

TJ-+ -TJ 

E = E cp-+ -cp 
a-+ a 

The same gauge transformation on A yields 
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(A.l6) 

A-+ A= gAg- 1 + 8gg- 1 = g ( -i~ E ) g-1 - i(/3A)ga3 g- 1 + 8gg- 1 . (A.17) 
-E* i~ 

'vVe can simplify the above expression using 

( 
-i~ E) g g- 1 + 8gg-1 = -i~a3 . 

-E* i~ 
(A.l8) 

It is easy to show that the following relation is true: 

(A.19) 

where 

D, P, P* = D, P, P* (A.20) 

The form of A has now simplified to 

- ( D A= -i/3).. _ 
P* 

(A.21) 

Another gauge g' transformation has to be introduced to complete the switch in the 

Lax pair 

, (i~a3(t- x)) 
g = exp 

2 
(A.22) 

As a result a phase factor will appear in front of E and P and their complex conju­

gates 

p -t p ei(t-x) 

E -t E ei((t-x) 

(A.23) 

(A.24) 
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The extra factors can be absorbed if we let 

e ---+ e + if. ( t - x) . 

Using the following set of equations 

[)gg- 1 = if,CJ3 , 8gg-l = 0 , 

we get the following expressions for A and A 

A = ;. u. _;) , 
A -iCJ3(f3A*) + ( 

0
_ E ) 

-E* 0 
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(A.25) 

(A.26) 

(A.27) 

(A.28) 

where -{3).. = )..*- 1 . The final step is to change the factor {3)..* in A to the desired 

form of {3)..* + f,. This is easily accomplished by yet another gauge transformation 

g" 

(t- x) 
g" = exp( -iCJ3f, ) . 

2 
(A.29) 

Once again the difference that appears can be absorbed in e. The new form of the 

Lax pair is 

[
- (if3)..*+if, 
[)+ -

E* 
-E ) i ( iJ P ) l = 0 

-i/3)..*- if, 'a- A* P* -iJ 
(A.30) 

Comparing this with the Lax pair of (A.12) we can see that it has the exact same 

form, with the fields E, P and D now replaced withE, P, and D, and the derivatives 

having switched places. The new Lax pair reproduces the same equations of motion 

for the new field variables but with the partial derivatives interchanged. Through 

this process we have managed to extract the hidden symmetry of the system. This 

is represented in the following transformations which leave both the equations of 

motion and the constraint equations unchanged 

(} ---+ e- 2f,x 

T) ---+ -T) 

¢ ---+ -¢ (A.31) 

8 ---+ [) 

)..* ---+ 1 
- {J>. 

We are now in a position to write down pure parity combinations of the conserved 

currents. 
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A.2.1 Conserved Currents 

For the construction of the conserved quantities we follow the same procedure as in 

section (3.1.1). The first term of the expansion of (3.18) is given by 

(A.32) 

where now E,P and iJ are given by (A.16) and (A.20). By direct substitution we 

obtain the following relation 

(A.33) 

Integration with respect to x over the semi-infinite interval yields 

(A.34) 

At infinity the fields are zero, so the left hand side which is evaluated at the 

boundary x = 0. This can be expressed as a total time derivative when suitable 

boundary conditions for the fields are chosen. Let this be a total derivative of a 

function W, depending on the fields 

(A.35) 

It is very easy to make the following identification 

aw _ f(A. ) aw _ 4cos
2
¢ ("' ) ---a;p - '+'' rJ 87) - sin2¢9 '+'' rJ (A.36) 

where the boundary conditions of the two fields take the form 

(A.37) 

Since no restrictions are imposed to the choice off and g, one has to examine the 

next conserved quantity which is associated with the J2 term and is derived from 

the addition of 

a0 (2i~EE* + ~(aEE* - aE* E)- 8i(3arycos2 ¢>) = 

1 
a1 (-2i~EE*- 2,(8EE*- aE*E)- 8if3arycos2¢>), (A.38) 
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and 

o0 (2it)3E* +~(BEE* -BE* E)- (E* P- EF*) = 

-- 1--- --- -- --
81 (2i~EE* + 2.(8EE*- 8E* E)+ (E* P-EP*) (A.39) 

Substituting in the explicit expressions for the fields we finally get the same boundary 

conditions as before 

(A.40) 

This suggests that the choice of gauge does not destroy parity invariance, but rather 

disguises it in a hidden "parity-like" symmetry. Through this symmetry we are once 

again able to construct pure-parity conserved quantities, and derive the exact same 

boundary conditions. 
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Although the CSG two-soliton solution has a relatively simple form when ex­

pressed in terms of one-soliton solutions (2.49), the full expression in terms oft and 

x is rather cumbersome making it virtually impossible to show that it satisfies the 

equations of motion. As far as we are aware no explicit formula has ever appeared 

in the literature. 

The CSG two-soliton solution is written as 

N 
U2s = D ' (B.l) 

where 

N = -i cos ( a2) 12 
2 (-2 ee1 sin ( a2) ee2 + ( ee1) 

2 
sin ( a1) + ( ee2) 

2 
sin ( a1)) 

and 

X Jl eimsin(a2)(cosh(e2)t+sinh(e2)x) cosh ( m cos (a!) (cosh ( 81) (x - xl) + sinh ( 81) t)) 

+i cos (a!) J 1 
2 (- ( ee1) 

2 
sin ( a2) + 2 ee2 sin ( a1) ee1 

- ( ee2) 
2 

sin ( a2)) 

xJ2eimsin(al)(cosh(el)t+sinh(el)x) cosh (mcos (a2) (cosh (82) (x- x2) +sinh (82) t)) 

+(eel _ ee2) (elh + ee2) cos (a2) cos (al) 112 J 2eimsin(al)(cosh(e!)t+sinh(el)x) 

x sinh (mcos (ai) (cosh (81) (x- xi)+ sinh (81) t)) , 

D = 11 12 (- ( ee1) 
2 

+ 2 ee2 ee1 sin (a I) sin ( a2) - ( ee2) 
2
) 

x cosh (mcos (a2) (cosh (82) (x- x2) +sinh (82) t)) 

x cosh (mcos (a1) (cosh (81) (x- x1) +sinh (81) t)) 

+COS (a!) COS (a2) j 22ee2+el-im(sin(a!)(cosh(el)t+sinh(el)x)-sin(a2)(cosh(B2)t+sinh(B2)x)) 

+COS ( a2) COS ( al) J 12eB2+e1 +im(sin(a1 )(cosh(e!)t+sinh(B!)x)-sin(a2)(cosh(B2)t+sinh(e2)x)) 

+2 J 1J 2 cos (a!) sinh (m cos (ai) (cosh (81) (x- xi)+ sinh (81) t)) cos (a2) 

x sinh (mcos (a2) (cosh (82) (x- x2) +sinh (82) t)) ee2+B1 . 
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