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Abstract

A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a

discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in

which grains and their grain boundaries are represented discretely, while the surrounding undamaged material is de-

scribed as a continuum. The constitutive description of the grain boundaries accounts for the relevant physical

mechanisms, i.e. viscous grain boundary sliding, the nucleation and growth of grain boundary cavities, and micro-

cracking by the coalescence of cavities. Discrete propagation of the main crack occurs by linking up of neighbouring

facet microcracks. Assuming small-scale damage conditions, the model is used to simulate the initial stages of crack

growth under C� controlled, model I loading conditions. Initially sharp or blunted cracks are considered. The emphasis

in this study is on the e�ect of the grain microstructure on crack growth. Ó 1998 Elsevier Science B.V. All rights

reserved.

1. Introduction

High temperature failure of polycrystalline
metals (see [1] for an overview) spans a wide range
of length scales, as illustrated in Fig. 1. At the
largest, i.e. macroscopic, scale we consider a
component or test specimen containing a crack
(Fig. 1(a)), while the smallest relevant scale is that
of the key failure mechanism, i.e. the nucleation
and growth of small cavities along the grain
boundaries (Fig. 1(e)). The intermediate scales
determine how this elemental mechanism leads to
growth of the macroscopic crack. At the second
smallest length scale (Fig. 1(d)), we observe the
individual grains in the material and the distribu-

tion of cavitation damage along its grain bound-
aries. This is also the scale where two other key
mechanisms are operating, namely creep of the
grains themselves and sliding of adjacent grains
relative to each other. Coalescence of the cavities
after su�cient growth leads to microcracks along
the grain facets, and at the next larger length scale
we are concerned with the distribution of these
microcracks near the tip of the crack (Fig. 1(c)).
Growth of the crack at this scale occurs by the
linking-up of facet microcracks with the main
crack. Zooming out further (Fig. 1(b)) brings us to
the size scale at which we are no longer able to
distinguish the grain microstructure of the mate-
rial; what remains is that we can identify a zone in
the neighbourhood of the crack tip in which
damage occurs. This damage zone is surrounded
by a zone of material that is not damaged and
which only creeps (Fig. 1(b)).
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A thorough understanding of creep fracture
requires that all relevant length scales are bridged.
This poses an enormous challenge, since there are
various competing mechanisms involved, each
having its own characteristic time scale and de-
pendence on stress and microstructure. Ap-
proaches in the literature now have either started
from the macroscopic scale (Fig. 1(a) and (b)) or
from the opposite microscopic scales (Fig. 1(d)
and (e)). The more engineering, macroscopic ap-
proaches include nonlinear fracture mechanics
approaches and continuum damage modelling
(e.g. [2,3]). On the other hand, micromechanical
studies have focussed on the basic damage pro-

cesses of cavity growth (e.g. [4]) and grain boun-
dary sliding (e.g. [5]), and their combination (e.g.
[6]). The missing link is at the size scale depicted in
Fig. 1(c).

The authors have recently proposed a compu-
tational procedure to forge this missing link [7,8].
The approach adopts a two-dimensional micro-
structural model of the material by individually
representing a large number of grains surrounding
the propagating crack. Cavitation and sliding
along all grain boundaries in this aggregate is
considered, and is described by a set of constitutive
equations based on micromechanical studies at the
smaller scales (Fig. 1(d) and (e)). The approach

Fig. 1. Size scales involved in creep fracture: (a) macroscopic crack; (b) crack-tip neighbourhood with creep and damage zones; (c)

mesoscopic near-tip region inside damage zone; (d) individual grains and grain boundary damage; (e) microscopic grain boundary

cavities.
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allows to study the characteristics of the inter-
granular crack growth (e.g. crack growth rate as a
function of loading) in a discrete manner and on
the basis of the relevant mechanisms.

One of the features of this kind of model is that it
allows to pick up the in¯uence of the material's
microstructure, i.e. the orientation and shape of all
grains. Even though real materials usually contain a
distribution of grain shapes and sizes, grains in two
dimensions are often assumed to have a hexagonal
shape and to be all identical. Random variations on
such a regular structure are known to a�ect the
creep [9] and damage processes [10], but for inter-
granular crack propagation also the orientations of
the grains, or rather the grain facets, will have an
e�ect. It is the objective of this paper to gain some
insight into this e�ect using the methodology of
[7,8]. We will do so by focusing on the initial stages
of crack growth under mode I creep loading con-
ditions. After presenting the exact problem and the
microstructural models used (Section 2) and dis-
cussing the key ingredients for the computational
method (Section 3), we discuss growth from an
initially sharp crack (Section 5) and proceed with
considering an initially blunted crack (Section 6).

2. Formulation

We consider a region near the tip of a pre-ex-
isting macroscopic crack that is subjected to mode
I loading. We assume that it is contained well
within the creep zone shown in Fig. 1(b) but is
much larger than the damage zone, i.e. we consider
small-scale damage conditions. Outside the dam-
age zone, the material deforms elastically and by
dislocation creep (Fig. 2(a)). Inside this region, it is
appropriate to represent the polycrystalline mate-
rial by a continuum giving a description averaged
over many grains. Inside the anticipated damage
zone or process zone (Fig. 2(b)), all grains making
up the aggregate are represented individually. All
grains are assumed to have the same hexagonal
shape for simplicity, but we allow for two di�erent
orientations of the hexagonal microstructure. One
of them is such that 1/3 of all grain facets are
oriented parallel to the crack plane. The other
microstructure is oriented perpendicular to the

®rst. Both microstructures respect symmetry with
respect to the initial crack plane, so that only half
of the region needs to be analyzed. In either case,
the process window consists of roughly 1600 grains
for all results to be presented here.

Under steady-state conditions, the material
su�ciently far away from the damage zone de-
forms by creep only. Assuming an isotropic re-
sponse, the creep rate is given by the Norton
power-law

_�C
e � Brn

e ; �1�
with B the creep parameter, n the creep exponent
and re the Mises stress. If the crack would be
mathematically sharp, the stress ®eld remote from
the damage zone would coincide with the HRR ®eld

rij � C�

BInr

� �1=�n�1�
~rij�h; n�; �2�

with C� the amplitude of the ®elds and with ~rij a
nondimensional angular function and In a con-
stant, both depending on n (r and h are polar co-
ordinates centered at the tip of the crack). For the
cases analyzed here where the crack is initially
sharp, we therefore use this ®eld to determine the
boundary conditions along the outer radius of the
region as well as the initial conditions. When an-
alyzing cases where the crack tip is initially
blunted, the HRR ®eld is employed for the
boundary conditions. Clearly, since the HHR-®eld
is only valid for a sharp crack, some time is needed
before the stress ®eld around the notch has con-
verged to a steady-state solution. Only then dam-
age development is allowed to occur.

3. Computational procedure

The problem outlined above is analyzed using
an incremental, ®nite strain, ®nite element model
involving two discretizations: one for the material
inside the process zone and one outside this zone.
Details of the procedure may be found in [7]; it
su�ces here to only reiterate the key ingredients.

The region in Fig. 2(a) outside the damage zone
is described by a standard continuum and dis-
cretized with standard continuum ®nite elements.
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The continuum constitutive equations are assumed
to represent the average behaviour of an aggregate
of grains. Hence, isotropic elasticity and disloca-
tion creep are assumed. The elastic response is
taken to be governed by the relationship

r
r � R : DE�R : �DÿDC�; �3�
in terms of the well-known Jaumann rate of Cauchy
stress, r

r
, and the elastic part of the stretching tensor

D. The fourth-order modulus tensor R is expressed
in the usual way in terms of the Young's modulus E
and Poisson's ratio m. The creep rate tensor DC in

Eq. (3) is determined by the creep law Eq. (1)
through the normality condition

DC � 3

2
_�C
e

s

re

; �4�

where s is the Cauchy stress deviator r and
re �

����������������
3s : s=2

p
is the e�ective Mises stress.

Each grain in the process zone is represented by
a single, so-called grain element, while the grain
boundary facets are treated by special-purpose
interface elements. The grain elements used here
are, in e�ect, super-elements with six nodes per

Fig. 2. The small-scale damage problem for an initially sharp crack subject to mode I loading. The outer region (a) deforms by

elasticity and creep, and is modelled as a continuum. The damage zone (b) consists of an aggregate of approximately 1600 discrete

hexagonal grains. Two principal orientations of the grains are considered.
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element, while the interface elements consist of two
nodes [11]. Each grain element accounts for the
elastic and creep behaviour of an individual grain.
Obviously, the creep behaviour of individual
grains is anisotropic. Incorporating this would
introduce a stochastic e�ect, which would obscure
the interpretation of the fracture process. There-
fore, as in [4,6,10,15], we neglect any grain ani-
sotropy, so that the constitutive equations for the
grain material are also of the form Eq. (3).

The grain-boundary elements are designed to
incorporate the relevant mechanisms that take
place inside the grain boundaries, i.e. grain boun-
dary sliding and grain boundary cavitation. The
set of constitutive equations that govern these
mechanisms are phrased, as is usual in interface
formulations, in terms of the displacement jumps
across the interface as a function, primarily, of the
conjugate tractions. Grain boundary sliding is
expressed through the following viscous relation-
ship jump in tangential displacement rate, _us, as
suggested by Ashby [12]:

_us � w
s
gB

: �5�

Here, s is the shear stress in the grain boundary, w
its thickness and gB the grain boundary viscosity.
The cavitation process along the boundary govern
the grain boundary behaviour in the normal di-
rection through the normal jump in displacement,
dc, in function of the facet normal stress rn. The
displacement jump is identical to the average sep-
aration between grains, as determined by the av-
erage volume of the grain boundary cavities, V,
and their spacing b : dc � V =�pb2� [13]. Thus, the
rate of change

_dc �
_V

pb2
ÿ 2V

pb2

_b
b

�6�
is determined by the volumetric growth rate _V of
the cavities, and by the rate of change of the cavity
spacing _b.

Ignoring ®nite strain e�ects for the sake of
clarity, the cavity spacing changes in the course of
the failure process due to the nucleation of new
cavities, i.e.

_b
b
� 1

2

_N
N
; �7�

with N the cavity density. Cavity nucleation is the
least understood mechanism of creep fracture and
convincing, physically-based nucleation models
appear to be largely lacking till today. As discus-
sed in ample detail in [7], we therefore resort to a
phenomenological description. Nucleation is taken
to be driven by the facet normal stress rn and by
the local creep rate _�C

e , such that, once nucleation
occurs, it proceeds with a rate given by

_N � Fn�rn=R0�2 _�C
e for rn > 0; �8�

until the density reaches a saturation value Nmax.
Here, R0 is a normalization parameter and Fn is the
nucleation activity parameter. However, before
nucleation can start, the parameter

S � �rn=R0�2�C
e �9�

must have attained a threshold value Sthr, which is
taken to be speci®ed as Sthr � NI=Fn in terms of the
cavity density NI at the onset of nucleation.

The volumetric growth rate in Eq. (6) is due to
the growth of the cavities by simultaneous grain
boundary di�usion and creep. Detailed numerical
studies of this phenomenon (at the size scale of
Fig. 1(e)) have been carried out by Needleman and
Rice [4] and by Sham and Needleman [14]. They
also showed that their numerical results for the
volumetric growth rate could be captured well by
the expression (slightly modi®ed in [15])

_V � _V1 � _V2; �10�
where _V1 is the contribution of di�usion, speci®ed
through

_V1 � 4pD
rn ÿ �1ÿ f �rs

ln�1=f � ÿ 1
2
�3ÿ f ��1ÿ f � �11�

with

f � max
a
b

� �2

;
a

a� 1:5L

� �2
" #

; �12�

and where the contribution of creep, _V2, is given by

_V2 �
�2p _�C

e a3h�w� an
rm

re

��� ���� bn

h in
; for � rm

re
> 1;

2p _�C
e a3h�w� an � bn� �n rm

re
for rm

re

��� ���6 1:

8><>:
�13�

Here (see Fig. 1(e)), a is the current cavity radius,
2b their spacing and h incorporates the assumed
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spherical-caps shape of the cavities as a function
of their tip angle w : h�w� � ��1� cos w�ÿ1ÿ
1
2

cos w�= sin w (we use w � 75�). The sintering
stress rs in Eq. (11) is usually relatively small
and will be neglected; D is the grain boundary
di�usion parameter. The constants an and bn in
Eq. (13) are given by an � 3=�2n� and bn �
�nÿ 1��n� 0:4319�=n2. The coupling between
di�usion and creep enters in the de®nition of f in
Eq. (12) through the length parameter [4]

L � Dre= _�C
e

h i1=3

: �14�
For small values of a=L (say, a=L < 0:1) cavity
growth is dominated by di�usion, while for larger
values of a=L creep growth becomes more and
more important. Just as in the stress dependence of
cavity nucleation, the e�ective stress re, the mean
stress rm and the normal stress rn in Eqs. (11)±(14)
are stresses remote from each cavity on the size
scale of individual cavities, but are local quantities
on the scale of grains. In the computation, their
values are inferred from the two adjacent grains.

The ®nal constitutive relationship for the grain
boundary in normal direction is obtained by sub-
stitution of Eqs. (7), (8), (10)±(14) into Eq. (6).
During the computation, Eqs. (7) and (10) are
integrated to give the current cavity spacing b and
volume V, while the latter is used at each instant to
compute the instantaneous cavity radius a from
V � 4=3pa3h�w�. When the ratio a=b approaches
unity, coalescence of cavities occurs; here, we use
a=b � 0:7 to signal coalescence. Once this has oc-
curred, the grain boundary facet has lost its stress-
carrying capacity and the interface element repre-
sents a facet microcrack.

4. Parameters

As we shall present all results in nondimen-
sional form, all parameters that govern the prob-
lem will also be speci®ed nondimensionally. All
lengths are scaled with the initial half-width of the
grain facets, RI, while cavity densities are nor-
malized by NR � 1=�pR2

I �. Stresses are normalized
with the reference stress R which is taken to be the
magnitude of the HRR stress ®eld at a distance RI

from the tip: R � �C�=BInRI�1=�n�1�
. The reference

time tR � 1= _EC
e , based on _EC

e � BRn, is used to
normalize time.

All cases to be presented have used n � 5 and
m � 0:3, and are for a crack loading C� speci®ed
through R=E � 0:9� 10ÿ3, so that elastic defor-
mations remain small. The grain boundary vis-
cosity gB in Eq. (5) is speci®ed in terms of the ratio
_EC

e = _�B, with [5]

_�B � w
d

Bÿ1=n

gB

� �n=�nÿ1�
;

d being the e�ective grain size, d � 3:64RI. Free
sliding �gB � 0� corresponds to _EC

e = _�B � 0, while
no sliding �gB !1� is equivalent to _EC

e = _�B !1;
here, we have used _EC

e = _�B � 10. Free sliding is
discussed in [7].

The density and size of freshly nucleated cavi-
ties is taken according to NI=NR � 40 and aI=RI �
0:67� 10ÿ3, respectively, while Nmax � 100NR in
all cases (other values are considered in [8]). The
two main parameters that govern nucleation and
di�usive growth are Fn and D (R0 in Eq. (8) is
arbitrarily chosen equal to R), and they are spec-
i®ed in terms of Fn=NR and LR=RI, respectively,
with LR de®ned as LR � �DR= _EC

e �1=3
. As explained

in detail in [7], a relatively large value of LR=RI

implies that cavity growth occurs predominantly
by di�usion, with creep strains remaining small so
as to lead to `brittle' fracture. As LR=RI decreases,
creep deformations increase (while cavity growth
may still be di�usion dominated) and fracture be-
comes more `ductile'. Parallel to this distinction,
Dyson [16] pointed out that there is a tendency at
larger values of LR=RI that di�usive cavity growth
is being constrained by creep of the surrounding
grains. In the present study, we employ two sets of
parameters that will be shown to lead to rather
brittle �LR=RI � 0:1� or more ductile �LR=RI

� 0:032� behaviour. The value of the nucleation
activity Fn is taken to be coupled to that of D so
that the maximum density Nmax is approximately
reached at the moment of cavity coalescence. This
leads to Fn=NR � 2:4� 103 and Fn=NR � 5:3� 104

for the ductile and brittle case, respectively. Fi-
nally, it is noted that the material is considered to
be homogeneous in that all grains and grain facets
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in the process window have the same material
properties.

5. Initially sharp crack

We start by studying crack growth of an ini-
tially sharp crack (as illustrated in Fig. 2) in the
two di�erent microstructures. Fig. 3 demonstrates
the development of cavitation damage in the two
microstructures for material and loading condi-

tions such that LR=RI � 0:032. The cavitation state
is shown by plotting the value of a=b perpendicular
to each facet and with the ordinate along the facet.
Evidently, damage initiates from the crack tip as
soon as S according to Eq. (9) reaches the
threshold value for cavity nucleation. With in-
creasing time, the damage zone further expands by
continuous cavity nucleation, while the damage
inside this zone intensi®es due to cavity growth,
until coalescence leads to facet microcracks (indi-
cated by black shading). Especially in the second

Fig. 3. Snapshots of the damage distribution at two instants during crack growth from the initially sharp crack for each of the two

microstructures (a) vs. (b) with LR=RI � 0:032. Values of a=b are plotted along and on either side of the facets. Microcracked facets,

where a=b � 0:7, are highlighted in black.
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stage shown, it is clear that the ®rst microstructure
in Fig. 3(a) develops two families of like-oriented
microcracks: one above the original crack tip with
microcracks along facets with a normal of ÿ30�

with respect to the original crack direction, and a
second one which comprises transverse facets.
Extension of the macroscopic crack requires the
linking-up of microcracks. Grain boundary sliding
is one possible mechanism, but the viscosity in
these calculations is apparently so high that it is
more favourable that microcracking occurs on
adjacent facets in the region where the two families
of microcracks overlap. This leads to short strings
of microcracks roughly along a 30� direction with
the crack plane, with the macrocrack actually
propagating by the joining of these strings of
microcracks along a direction of around 60�.

In the second microstructure (Fig. 3(b)), dam-
age is again seen to develop mainly on two out of
three families of grain facets, but they are not
concentrated so clearly in two distinct regions.
Microcracks thus develop along facets with nor-
mals at ÿ60� and along facets parallel to the
loading direction. Linking-up of these microcracks
now occurs in the 60� direction and the macrocrack
propagates in roughly the same direction as in the
other microstructure or at a slightly larger angle.

Fig. 4 shows the damage distribution develop-
ing in the two microstructures when LR=RI � 0:1,
i.e. when di�usion is more important. Comparing
the crack tip openings with those in Fig. 3 con-
®rms that the present value of LR=RI corresponds
to considerably more brittle creep fracture. In both
microstructures, advance of the macroscopic
cracks occurs by linking-up of the same two fam-
ilies of microcracks as identi®ed before for the
more ductile case in Fig. 3, but the progressive
formation of strings of linked-up microcracks is
not necessarily the same. For the second micro-
structure (Fig. 4(b)), this leads to a crack growth
direction that appears to be very close to that in
Fig. 3(b), but for the ®rst one (Fig. 4(a)), the crack
seems to advance at a somewhat lower angle.

6. Blunted crack

The initial stress state corresponding to steady-
state creep around blunt cracks is obviously

distinctly di�erent from that near mathematically
sharp cracks. We consider the consequences of this
for initially blunted cracks with a tip radius of
12

���
3
p

RI �� 5:7d�.
Typical damage states after some crack growth

for LR=RI � 0:032 are shown in Fig. 5. As com-
pared to the damage patterns for the sharp crack
cases in Fig. 3, there is much more damage de-
velopment right ahead of the crack. Especially
microcracking of the transverse facets in Fig. 5(a)
concentrates more strongly in front of the crack,
and so do the ÿ60� microcracks in the micro-
structure of Fig. 5(b). However, there are still two

Fig. 4. Snapshot of the damage distribution during crack

growth from the initially sharp crack for each of the two mic-

rostructures (a) vs. (b) with LR=RI � 0:1.
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families of microcracks and actual crack extension
still occurs by linking-up in the regions where the
two families intersect. For the ®rst microstructure
this appears to be in a direction of 30�, while for
the second microstructure two cracks emanate.
The one along the crack plane appears to grow
most rapidly.

Repeating the calculations with LR=RI � 0:1
leads again to more brittle fracture, as seen in
Fig. 6. For both microstructures the regions of
intense microcracking are now considerably

smaller than in Fig. 5. Crack growth in the mi-
crostructure of Fig. 6(a) occurs in the same, ap-
proximately 30� direction as in Fig. 5(a), while in
the second microstructure the crack tends to re-
main on the crack plane.

7. Discussion

After having considered the e�ect of micro-
structure on the crack growth direction in the
previous sections, we now address the possible
e�ect on crack growth rate. Fig. 7 summarizes the

Fig. 6. Snapshot of the damage distribution during crack

growth from the initially blunted crack for each of the two

microstructures (a) vs. (b) with LR=RI � 0:1.
Fig. 5. Snapshot of the damage distribution during crack

growth from the initially blunted crack for each of the two

microstructures (a) vs. (b) with LR=RI � 0:032.
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crack propagation inferred from the various cases
presented above. In view of the distributed mic-
rocracking that develops, there is not a unique
current crack tip; as a working de®nition, the
crack extension Dc plotted in Fig. 7 is taken to be
the distance to the tip of the most distant string of
microcracks (the current `crack tip'). It is seen that
the two microstructures analyzed lead to grossly
the same crack growth response for the same set of
parameters, especially for those corresponding to
the brittle behaviour (Fig. 7(b)). The incubation
times before crack growth actually starts appear to

be independent of the microstructure, both for the
sharp and for the blunt crack. Also, the average
crack growth rates after a transient period are
fairly close for both microstructures. In fact, it
seems from Fig. 7 that these ultimate values are
the same for the initially sharp as well as for the
blunted crack. However, the amount of crack ex-
tension must be considered to be too small for
steady-state growth to be attained.

Detailed evaluation of the numerical results
reveals that the stress ®elds in the `brittle' cases
�LR=RI � 0:1� presented above drastically change
once damage develops. This is caused by the creep
constraint on cavity growth which requires load
shedding away from the damaged regions [16]. By
contrast, the stress ®elds for the `ductile' cases
�LR=RI � 0:032� remain roughly the same as the
original steady-state creep ®elds, even close to the
microcracked tip region. In view of this, we can
rationalize the directions of damage and micro-
cracking on the basis of the initial ®elds.

Fig. 8 illustrates the angular distributions of the
facet normal stresses in the initial steady-state creep
state for viscous sliding conditions � _EC

e = _�B � 10�
around a sharp crack for both microstructures. The
normal stresses on individual facets, it will be re-
called from Eq. (11), is the main driving force for
di�usive cavity growth, and for the computations
discussed here this is the most dominant growth
mechanism. Creep deformations are an essential
contribution to cavity nucleation, cf. (8). For the
sharp crack they are distributed according to the
well-known HRR ®eld, with the maximum value
almost right above the crack tip. Careful exami-
nation of the numerical results reveals that the
latter is responsible for the highly damaged regions
seen in Fig. 3 right above the initial crack tip. The
region of concentrated damage on transverse facets
in Fig. 3(a) (h < 60� or so) can be traced back to
the fact that the normal stresses on these facets are
highest in this region (Fig. 8(a)). Normal stresses
on theÿ60� facets in the second morphology attain
peak values between 50� and 80�, which is indeed
the region where intense microcracking on these
facets occurred (Fig. 3(b)).

The di�erence in these stress distributions with
the distribution of facet normal stresses according
to the initial steady-state creep ®elds around the

Fig. 7. Crack extension Dc, normalized by the grain size d, in

the two microstructures for (a) the `ductile' cases,

LR=RI � 0:032 (cf. Figs. 3 and 5), and (b) the `brittle' cases,

LR=RI � 0:1 (cf. Figs. 4 and 6).
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blunt notch, shown in Fig. 9, can likewise help to
rationalize the di�erence in crack growth behav-
iour between Figs. 3 and 5. First, we see that the
peak in normal stress on transverse facets in the
®rst microstructure is shifted from around 45� for
the sharp crack (Fig. 8) to around 0� for the
blunted tip (Fig. 9). A similar tendency is observed
for the ÿ60� facets in the second morphology, and
both observations are consistent with the damage
concentrating more in front of the crack (Fig. 5).

Secondly, we ®nd that the directions where the
facet stresses on the two controlling families of
facets are equal have decreased from around 80�

and 110� for the two microstructures with the
sharp crack (see Fig. 8) to around 30� and 80�

according to Fig. 9 for the blunt crack. This
equality ensures roughly equal times to coales-
cence on the two facets, which is favourable for
linking-up. Indeed, the latter two directions agree
quite well with the crack growth directions found
in the simulations in Fig. 5. Fig. 9(b) also shows
that normal stresses on ÿ60� and 60� facets are

Fig. 9. Angular distribution of the initial normal facet stresses

at the three grain boundary facet orientations for each of the

two microstructures (a) vs. (b) at r � 10d for the blunt crack.
Fig. 8. Angular distribution of the initial normal facet stresses

at the three grain boundary facet orientations for each of the

two microstructures (a) vs. (b) at r � 10d for the initially sharp

crack.
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almost equal at h � 0�, which explains the micro-
crack linking-up process right in front of the crack
in Fig. 5(b).

These simple considerations do not apply to the
`brittle' cases considered in Figs. 4 and 6 because
of the continuous stress re-distribution that takes
place in order to accommodate the creep con-
strained cavitation processes. The stress re-distri-
butions tend to favour cavitation in front of the
crack, but this only leads to mild deviations in the
crack growth directions compared to those in the
`ductile' cases that we investigated. This can be
readily observed when comparing the results in
Fig. 4 with Fig. 3 and Fig. 6 with Fig. 5.

8. Conclusion

By virtue of the fact that grains in a region
around a crack are represented in a discrete man-
ner, the model allows to address the in¯uence of
the granular microstructure on creep crack
growth. In this paper, we have focussed on the
e�ect of orientations of grain boundary facets in
order to gain an understanding of the importance
of assuming a particular microstructural orienta-
tion. It is important to note that we have only
considered the morphological e�ects of grain ori-
entations. The associated crystallographic orien-
tations inside the grains may also have an e�ect
through the anisotropy of creep properties. These
e�ects have not been considered, but can be in-
corporated in principle. One of the di�culties,
however, is that the results will necessarily contain
a certain stochastic nature associated with the
crystallographic grain orientations.

This is not the only extension which involves
stochastic variations in properties. It is also perti-
nent to perform simulations, for example, (i) where
grain boundary properties concerning cavity nu-
cleation and grain boundary di�usion vary among
the grain facets, and/or (ii) where grains vary in
size and shape, resulting in a random variation of
facet size and orientation. Random variations of
the nucleation activity parameter Fn in Eq. (8)
have been explored in [7,8], and it was found, for
instance, that these variations did not signi®cantly
alter the predicted crack growth directions in the

assumed grain structure. At this stage, it is an open
question how random variations of the size and
orientation of grain facets will in¯uence the crack
growth process, including the crack growth direc-
tion. Based on the ®ndings in previous work [7,8]
and this, we expect that within the framework of a
symmetrized model as used here (Fig. 2), the av-
erage crack growth direction over many grains will
be roughly in the range spanned by the directions
found for the two periodic microstructures. How-
ever, a more realistic investigation of this e�ect
requires a model of the complete process window
rather than just the half, symmetric window. Pre-
sumably, this type of an analysis will predict me-
andering of the growing crack over many grain
distances, which may be controlled to a small ex-
tent by the randomness in microstructure, but
more importantly by the continuously evolving
stress ®elds.
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