5 research outputs found

    Assessment of Relative Accuracy of AHN-2 Laser Scanning Data Using Planar Features

    Get PDF
    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips. This paper proposes a new approach to strip adjustment and accuracy assessment of AHN-2 data by using planar features. In the proposed approach a transformation is estimated between two overlapping strips by minimizing the distances between points in one strip and their corresponding planes in the other. The planes and the corresponding points are extracted in an automated segmentation process. The point-to-plane distances are used as observables in an estimation model, whereby the parameters of a transformation between the two strips and their associated quality measures are estimated. We demonstrate the performance of the method for the accuracy assessment of the AHN-2 dataset over Zeeland province of The Netherlands. The results show vertical offsets of up to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm

    Theoretical lidar point density for topographic mapping in the largest scales

    No full text
    When ordering LiDAR data, LiDAR point density per surface unit is important information with decisive influence on the price of the LiDAR survey. The paper first deals with the theoretical calculation of the minimum LiDAR point density, necessary for the acquisition of topographic data of the largest scales. For this purpose the sampling theorem is used. However, since topographic objects (roads, water bodies, etc.) and phenomena represented on topographic maps and in topographic bases are in many cases located under vegetation, also the rate of laser beam penetration through vegetation for the area where the topographic data are to be gathered has to be known. In a research on a test case conducted in the area of the town Nova Gorica we calculated the rate of laser beam penetration for four different vegetation types: scarce Mediterranean vegetation, thick thermophilic deciduous forest, mixed vegetation (meadows, orchards and forest) and built-up area. By connecting the theoretic minimum LiDAR point density with the rate of penetration, we defined the minimum LiDAR point density for the needs of data acquisition on topographic maps of the largest scales or in topographic bases of comparable detail (from 1 : 1000 to 1 : 10,000)

    A simplified analytical model for a priori Lidar point positioning error estimation and a review of Lidar error sources

    No full text
    Although various rigorous lidar error models already exist and examples of a-posteriori studies of lidar data accuracies verified with field-work can be found in the literature, a simple measure to define a-priori error sizes is not available. In this paper, the lidar error contributions are described in detail: the basic systematic error Sources, the flight-mission-related error sources, and the target-characteristic-related error sources. A review of the different error-source sizes is drawn from the literature in order to define the boundary conditions for each error size. Schenk's geolocation equation is used as a basis for deriving a simplified error model. This model enables a quick calculation and gives a-priori plausible values for the average and maximum error size, independent of the scan and heading angles as well as being independent of any specific lidar system's characteristics. Additionally, some notes are provided for assistance when ordering lidar data, to enable easier a-posteriori quality control
    corecore