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Abstract: The analysis of optical pulse generation by phase modulation of 

narrowband continuous-wave light, and subsequent propagation through a 

group-delay-dispersion circuit, is usually performed in terms of the so-

called bunching parameter. This heuristic approach does not provide 

theoretical support for the electrooptic flat-top-pulse generation reported 

recently. Here, we perform a waveform synthesis in terms of the Fresnel 

images of the periodically phase-modulated input light. In particular, we 

demonstrate flat-top-pulse generation with a duty ratio of 50% at a quarter 

of the Talbot condition for the sinusoidal phase modulation. Finally, we 

propose a binary modulation format to generate a well-defined square-wave-

type optical bit pattern.
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1. Introduction

Generation of ultrashort optical pulses at high repetition rates is a subject of increasing 

interest, which finds substantial application in ultrahigh-speed optical communications [1]. 

Ultrashort pulses obtained directly from passively mode-locked lasers suffer from the lack of 

electrical control of the pulse parameters, such as pulse width, pulse shape, and pulse position 

in a time slot. Moreover, it is not possible to tune the repetition rate for synchronization with 

other electrical signals. The above limitations can be overcome by the use of external 

modulators that permit ultrashort pulse generation from the continuous wave (CW) light 

emerging from a narrowband laser. Amplitude modulators suffer from large insertion losses 

and a low signal-to-noise ratio [2-4]. Alternatively, phase modulators have been widely 

employed for pulse pattern generation [5-8]. The quasi-velocity-matched guided-wave 

electrooptic modulator has allowed the design of compact, stable, and low-power ultrashort 

optical pulse generators [9]. In a different context, Sato has demonstrated optical pulse 

generation from a Fabry-Perot (FP) laser [10]. Here, no external modulation is employed. The 

physical mechanisms involved are the gain nonlinearities and the four-wave mixing process 

that originate the competition among the longitudinal modes supported by the laser cavity 

[11-14]. The CW light emerging from the FP laser is periodically phase-modulated with a 

frequency that is exactly the free spectral range (FSR) of the cavity.

The electrooptic method for optical pulse generation is based on the phase modulation 

with a sinusoidal signal of a CW beam from a narrowband laser diode. This produces 

harmonic sidebands (THz) around the optical carrier frequency so that the emerging 

waveform is strongly chirped. The optical field is launched through a group-delay-dispersion 

(GDD) circuit and compressed because the sweep rate acquired upon propagation partially 

compensates for the chirp. Among others, a single mode optical fiber (SMF) of adjusted 

length, a pair of diffraction gratings, an optical synthesizer, or a linearly chirped fiber Bragg 
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grating (LCFG) have been employed as dispersive delay lines. Specifically we mention 

generation of optical pulses with a temporal duration of 4.4 ps and with a duty ratio of 11% by 

means of a LCFG and an electrooptic modulator (EOM) [15].

Up to present, only an heuristic explanation for the frequency modulation (FM) to 

amplitude-modulation (AM) conversion process is available. The bunching parameter B, 

defined essentially as the product between the frequency chirping rate and the GDD 

coefficient, provides a rough estimation for the optimum bunching of the frequency 

components. The case of 1=B  gives the condition under which the CW light is optimally 

compressed. This method shows a low pulse extinction ratio. In fact, the optical frequency of 

the sinusoidally phase-modulated light is assumed to be linearly chirped within half a period. 

Nonlinear chirped frequency components yield other substructures or broad wings, so that a 

considerable part of the energy lies outside the main pulse. On the other hand, note that blue-

chirping and red-chirping regions are repeated in every modulation period. As a result, both 

the normal GDD and the anomalous one are effective for this method. The normal dispersion 

corresponds to compression of red-chirped portions of the input field, whereas blue-chirped 

portions are compressed by an anomalous dispersion circuit. Therefore, approximately half of 

the energy in the input field does not contribute to the bunching and generates an undesirable 

dc floor level. Some attempts have been done in the past few years for highly extinctive 

electrooptic pulse pattern generation [16]. Apart from short pulse generation with a low duty 

ratio, flat-top-pulse generation with a duty ratio of nearly 50% has been very recently reported 

[15,17]. The condition needed to generate this waveform remains unknown. These pulses can 

be used for instance for return-to-zero (RZ) modulation formats in optical fiber 

communication [18].

Here, we face electrooptic pulse pattern generation from a radically different point of 

view, which allows nearly background-free picosecond pulsation. We recognize that, as a 

result of the periodic nature of the phase modulation, when the chirped light has evolved 

through the GDD circuit, the output intensity is also periodic in the time coordinate, with a 

fundamental frequency that is, in general, the same as the one for the phase modulation f. But 

the output intensity is also periodic with the GDD coefficient 
2

Φ . The period is given by the 

so-called temporal Talbot dispersion relationship, 
2

2

1 f
T

π=Φ
 [19-21]. Furthermore, we 

show that a remarkably simple formula describes the optical intensity at a quarter of the 

Talbot dispersion. On the framework of the space-time analogy [22], the above results 

constitute the temporal analogue of the field diffracted by a pure phase grating [23-25]. The 

parameters of the electrooptical modulator, the frequency of the driving signal and the 

modulation index, or alternatively the FSR in a FP laser, together with the GDD coefficient 

determine unambiguously the waveform achieved at the output. Specifically, we show flat-

top-pulse generation with a duty ratio of 50% for a modulation index of 4π  providing the 

sought theoretical support of the experimental results reported in [15,17]. The present 

description permits to identify a great variety of other pulse profiles. If we change 

continuously the dispersion amount in the GDD circuit, Fresnel patterns in intensity 

corresponding to a 1D sinusoidal phase-only grating appear, but now in the time domain, 

subsequently at the output of the arrangement. Of course, the same conclusion applies for 

other nonsinusoidal phase-only modulations.

This paper is structured as follows. In Section 2, the evolution of the optical field 

associated with a periodically phase-modulated input light through an arbitrary GDD circuit is 

provided in terms of the Talbot dispersion amount. We illustrate several examples concerning 

synthesis of different pulse waveforms at different dispersion amounts. In Section 3, the 

output pulse intensity is expressed in terms of a simple trigonometric formula when the output 

dispersion corresponds to a quarter of the Talbot dispersion. We identify an ultra-flat-top-

pulse pattern by binary phase modulation of CW light. Finally, in Section 4, the effect of the 



third order dispersion (TOD) of the SMF, or alternatively the spectral window of a LCFG, 

when used as a GDD circuit is discussed.

2. Theoretical analysis

After phase modulation, the optical field of the narrowband CW light is expressed as

 ( ) ( ) ( )[ ]tjVtjEtE
ooin

expexp ω−=    . (1)

Here 
o

E  is the constant amplitude, 
o

ω  denotes the carrier optical frequency, and ( )tV  is the 

phase modulation function. For our purposes, we assume that ( )tV  is a periodic function with 

period T. Note that the perfect sinusoid is enclosed as a particular case. As a result of the 

periodicity of the phase ( )tV , we can rewrite Eq. 1 in terms of a Fourier series expansion, 

namely,
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The periodic optical input intensity is
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Of course, from Eq. 1, ( )

2

oin

EtI = . This implies that 
0,NN

C δ= , where 
0,N

δ  denotes the 

Kronecker delta function.

Aside from an irrelevant constant factor, the phase delay of an ideal GDD circuit is

 ( ) ( )[ ] ( )[ ]
2

21

2expexp
oo

jjH ωωωωω −Φ−Φ=    , (5)

with 
1

Φ  and 
2

Φ  denoting the group delay and the GDD coefficient, respectively. Note that 

we assume no losses neither in the coupling of the input into the dispersive circuit or in the 

propagation. If we consider that the GDD circuit is implemented using a SMF, z
11

β=Φ  and 

z
22

β=Φ , with z the propagation distance. The parameters 
1

β  and 
2

β  are the inverse of the 

group velocity and the group velocity dispersion (GVD) parameter of the fiber, respectively.

Note that we neglect higher-order dispersion terms and nonlinear interactions. Roughly 

speaking, both assumptions are satisfied when the bandwidth of the input light is less than 

32

3 ββ , with 
3

β  the TOD parameter of the fiber, and the power carried by individual pulses 

is not enough to excite nonlinear mechanisms in the fiber [26]. In section 4 we will further 

consider the narrowband assumption.

After propagation inside the GDD circuit (see Fig.1) the output field becomes
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From now on, the description of the signal is given in a reference framework moving at the 

group velocity of the wave packet, i.e., 
1

Φ−= tτ
. From Eq. 6, the output intensity can be 

written as
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Two findings are clear from the above equations. First, Eq. 7 indicates that ( )
2

, Φτ
out

I  is a 

periodic function of τ . Its period is, in principle, equal to the modulation period T . Second, 

from Eqs. 7 and 8 it is clear that the output optical intensity changes periodically with the 

dispersion coefficient 
2

Φ . The period is just the Talbot dispersion, 
2

2

1 f
T

π=Φ
. From Eq. 8 

we note that ( ) )('exp)2('
2

2

22

Φ=Φ+Φ
NTN

CNjC π
. In this way, we obtain 

( ) ( )2,2,
222 Toutout

TII Φ+Φ+=Φ ττ . This means that a change in the dispersion by 2
2 T

Φ  

is equivalent to a temporal shift of half a period at the output intensity. We explore further 

implications of the above facts.

Next, we consider, as an example, the case of perfect sinusoidal modulation, 

( )tftV πθ 2sin)( ∆= . Here, θ∆  is the modulation index in radians. Of course Tf 1= . For 

this case, the Fourier coefficients are expressed by the Bessel functions of the first kind, 

)( θ∆=
nn

Jc . Therefore,
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To illustrate waveform formation, we consider a realistic example concerning sinusoidal 

modulation where 
2

Φ  and f are set to 16
22 T

Φ=Φ  and 40 GHz, respectively. Different new 

pulse waveforms not yet reported are obtained by changing θ∆ . In particular, we mention 

short pulse generation for 4πθ =∆ . Here, a duty cycle (DC) of 33% is achieved. Note that 

in this case the signal is free of annoying wings and tails but a high dc-floor level is present, as 

shown in Fig. 2(a). In Fig. 2(b) the numerical simulation shows a short pulse with a DC of 

approximately 18%. Although part of the energy lies outside the main pulse, the remaining dc-

floor level is low. Note that, aside for a temporal shift of half a period, the same profiles are 

achieved when the dispersion is set to ( ) 1618
22

+Φ=Φ q
T

 where q is an arbitrary integer. 

We also claim that the above shapes can be achieved with normal GDD as well as with 

anomalous one.

3. Flat-top-pulse generation

In this section we particularize the above key equations when dispersion is set to a quarter of 

the Talbot dispersion. From Eqs. 7 and 8, for 4
22 T

Φ=Φ  we obtain (see Appendix)

 ( ) [ ]{ })()2(sin14,

2

22

τττ VTVEI
oTout

−−−=Φ=Φ    . (10)

Equation 10, which is one of the main results of this paper, provides theoretical support for 

electrooptic flat-top-pulse generation, as will be shown next. At this point it is worth 

mentioning that the spatial analogue of the above formula was derived in [24,25], in the 

context of Fourier optics, to describe the properties of the irradiance distribution 

corresponding to the Fresnel diffraction patterns of a one-dimensional phase grating. 

Therefore, one should anticipate the above result within the framework of the celebrated 

space-time analogy.

We note that Eq. 10 is valid for a general periodic phase function ( )τV . If we consider 

the sinusoidal modulation ( )τπθτ fV 2sin)( ∆= , then



 ( ) ( )[ ]{ }τπθτ fEI
oTout

2sin2sin14,

2

22

∆+=Φ=Φ    . (11)

From Eq. 11 we observe that when 4πθ =∆ , the argument within the exterior trigonometric 

function ranges from 2π−  to 2π  for [ ]2,2 TT−∈τ . The analytical curve shown in Eq. 

11 is plotted in Fig. 3 for 4πθ =∆  and an input frequency of 40 GHz. The temporal width of 

the individual pulses is 12.5 ps. In this way, a nearly flat-top-pulse with a DC of 50% is 

achieved. Equation 11 provides an analytical formula for the waveform that was 

experimentally obtained in references [15] and [17]. Furthermore, due to the periodic nature of 

the optical field, the same result is achieved for a GDD dispersion ( ) 412
22

+Φ=Φ q
T

, with q 

an arbitrary integer. The existence of multiple GDD amounts was pointed out in [15].

Next, we seek a different phase modulation format that allows ultra-flat-top-pulse 

generation. With this aim, we consider the periodic binary phase-only modulation of the 

carrier frequency given by

 

[ )

[ )










∈

∈

=

TTif

Tif

V

,22

2,00

)(

τπ

τ

τ    , (12)

with T being the period. The modulation ( )τV  is plotted in Fig. 4(a). For this case, the 

argument inside the trigonometric function in Eq. 10 has two values, 2π−  and 2π , 

respectively. Consequently, the output intensity shows a binary shape at 4
22 T

Φ=Φ , namely
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In order to clarify our description, we have calculated numerically and plotted in Fig. 

4(b), ( )
2

,Φτ
out

I  for the phase modulation in Eq. 12 and 
2

Φ  ranging the whole first Talbot 

period. As expected, for dispersions 0
2

=Φ , 2
22 T

Φ=Φ , and 
T22

Φ=Φ , the irradiance 

presents a constant value. Whereas for 4
22 T

Φ=Φ , according to Eq. 13 an ultra-flat-top 

optical pulse train is obtained, see Fig. 4(c). This kind of pulse could be employed for RZ 

modulation formats in optical signal transmission and, in particular, for differential phase-

shift-keyed transmission.

4. GDD circuit analysis

A. Standard SMF

It is usual to perform the FM to AM conversion process by means of a SMF. The strongly 

chirped light emerging from the electrooptical modulator is temporally distorted and 

compressed due to the propagation inside the fiber. A rigorous analysis of the quadratic 

approximation in Eq. 5 must be carried out to test the performance of the setup. Generally 

speaking, the spectral bandwidth of the incoming signal, ω∆ , should be limited to 

32
3 ββω <∆ . For the case of perfect sinusoidal modulation, we have )( θ∆=

nn
Jc . To 

obtain a rough estimation for the optical bandwidth of the phase-modulated signal, we plot in 

Fig. 5 )( θ∆
n

J  versus the modulation index θ∆ . Four different values of the order n have 

been considered. The modulation index ranges within the interval 100 <∆< θ . From this plot 

we can assume that the main contribution to the output intensity comes from the Bessel 

functions with an order lower than 10. Thus, the condition for the validity of the parabolic 

approximation reads 
32

320 ββ<f . If we have an optical source peaked at the mµ55.1  



window, for a standard SMF we obtain 
mps /10168.2

22

2

−

×−=β
 and 

mps /102661.1

34

3

−

×=β
. In this way, the value of the term ( )

32
203 ββ  is approximately 

THz25 . So, the above inequality is widely satisfied even for the fastest commercially 

available electrooptical modulator, which works in the GHz range.

B. LCFG

The response of a LCFG operating in reflection is assumed to be a phase quadratic function 

only over a limited bandwidth ∆Ω . As a result two conditions must be fulfilled for the use of 

a LCFG as dispersive element. First, the carrier frequency should match the central frequency 

of the reflected spectral band of the grating. Second, the full spectral bandwidth of the phase-

modulated light, ω∆ , must be lower than ∆Ω . The spectral bandwidth of the element is 

related to the length through the expression 
eff

ncL 2
2

∆ΩΦ=
 [27], with 

eff

n
 the effective 

refractive index. We assume that the LCFG is designed to match the condition 4
22 T

Φ=Φ  

and, analogous to the previous case, ω∆  can be roughly estimated to be 20f. Thus, the device 

will provide a linear time delay whenever 
eff

ncLf 820>
. A LCFG 4 cm long is good enough 

for GHzf 25= .

5. Conclusions

The evolution of an input field, consisted in a periodically phase-modulated CW light, into an 

arbitrary GDD circuit has been carried out in terms of the Talbot dispersion. The periodicity 

of the phase function has allowed us to derive an analytical formula for the FM to AM 

conversion process at one quarter of the Talbot dispersion. Furthermore, we have provided 

theoretical support for the recently experimentally demonstrated generation of a flat-top-pulse 

train using a phase modulator and a LCFG. We have also considered the generation of ultra-

flat-top light pulses by phase modulation with a square-wave-type signal, which could be 

employed for RZ modulation format. We numerically show that a SMF or LCFG can be used 

as an efficient GDD device in terms of the spectral bandwidth of the modulated signal. We 

would like to mention that the mathematical framework developed in this work is also 

applicable to the case of a multimode laser source, such as a FP laser, working in the 

frequency-modulated supermode regime. In this case, the frequency of the equivalent 

modulator will be given by the free spectral range of the longitudinal modes supported by the 

laser cavity. In the framework of the space-time analogy, the above results constitute the 

temporal analogue of the Fresnel diffraction field diffracted by a pure phase grating.

Appendix

We note that the Fourier series expansion of ( ))(exp τjV
 in Eq. 2 can be rewritten as
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From the above equation, we have
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and, consequently,
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Let us now particularize Eq. 8 for 4
22 T

Φ=Φ . We obtain
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where, taking into account Eq. 4,
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Substitution of Eqs. A6 and A7 into Eq. A5 after some simple algebra leads to

 ( ) [ ]{ })()2(sin14,

2

22

τττ VTVEI
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−−−=Φ=Φ    , (A8)

which is Eq. 10 in the text.
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Figure 1

Schematic diagram of the electrooptic pulse generator. The GDD circuit is implemented by 

means of a LCFG working in reflection.

Figure 2

Simulated pulse waveforms obtained by dispersion of sinusoidally phase-modulated light 

through a GDD circuit.

Figure 3

Flat-top-pulse generation under sinusoidal phase modulation.



Figure 4

Ultra-flat top, RZ-format-pulse generation: a) phase modulation function ( )tV ; b) 

Numerically evaluated output intensity at dispersions values ranging the interval 

10
22

≤ΦΦ≤
T

; and c) Plot of ( )25.0,
22

=ΦΦ
Tout

I τ  given by Eq. 13 for 

GHzf 40= .

Figure 5

n

J versus the modulation index θ∆  for four different values of n.


