77 research outputs found

    The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools

    Get PDF
    On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest, and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines, and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature, and that provided the first observed signals.Comment: 41 pages, 5 figures. To appear in Bulletin of the American Mathematical Societ

    A multi-block infrastructure for three-dimensional time-dependent numerical relativity

    Get PDF
    We describe a generic infrastructure for time evolution simulations in numerical relativity using multiple grid patches. After a motivation of this approach, we discuss the relative advantages of global and patch-local tensor bases. We describe both our multi-patch infrastructure and our time evolution scheme, and comment on adaptive time integrators and parallelisation. We also describe various patch system topologies that provide spherical outer and/or multiple inner boundaries. We employ penalty inter-patch boundary conditions, and we demonstrate the stability and accuracy of our three-dimensional implementation. We solve both a scalar wave equation on a stationary rotating black hole background and the full Einstein equations. For the scalar wave equation, we compare the effects of global and patch-local tensor bases, different finite differencing operators, and the effect of artificial dissipation onto stability and accuracy. We show that multi-patch systems can directly compete with the so-called fixed mesh refinement approach; however, one can also combine both. For the Einstein equations, we show that using multiple grid patches with penalty boundary conditions leads to a robustly stable system. We also show long-term stable and accurate evolutions of a one-dimensional non-linear gauge wave. Finally, we evolve weak gravitational waves in three dimensions and extract accurate waveforms, taking advantage of the spherical shape of our grid lines.Comment: 18 pages. Some clarifications added, figure layout improve

    A sparse representation of gravitational waves from precessing compact binaries

    Get PDF
    Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultra-compact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100100 judiciously chosen precessing inspiral waveforms are needed for 200200 cycles, mass ratios from 11 to 1010 and spin magnitudes ‚ȧ0.9\le 0.9. In fact, using only the first 1010 reduced basis waveforms yields a maximum mismatch of 0.0160.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a non-precessing effective-one-body model. This evidence suggests that as few as ‚ąľ100\sim 100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.Comment: 5 pages, 3 figures. The parameters selected for the basis of precessing waveforms can be found in the source file

    Reduced Order and Surrogate Models for Gravitational Waves

    Full text link
    We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational wave (GW) science. Approaches that we cover include Principal Component Analysis, Proper Orthogonal Decomposition, the Reduced Basis approach, the Empirical Interpolation Method, Reduced Order Quadratures, and Compressed Likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is that one of practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and other disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to large extent non-intrusive and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.Comment: Invited article for Living Reviews in Relativity. 93 page

    On ab initio-based, free and closed-form expressions for gravitational waves

    Get PDF
    We introduce a new approach for fnding high accuracy, free and closed-form expressions for the gravitational waves emitted by binary black hole collisions from ab initio models. More precisely, our expressions are built from numerical surrogate models based on supercomputer simulations of the Einstein equations, which have been shown to be essentially indistinguishable from each other. Distinct aspects of our approach are that: (i) representations of the gravitational waves can be explicitly written in a few lines, (ii) these representations are free-form yet still fast to search for and validate and (iii) there are no underlying physical approximations in the underlying model. The key strategy is combining techniques from Artifcial Intelligence and Reduced Order Modeling for parameterized systems. Namely, symbolic regression through genetic programming combined with sparse representations in parameter space and the time domain using Reduced Basis and the Empirical Interpolation Method enabling fast free-form symbolic searches and large-scale a posteriori validations. As a proof of concept we present our results for the collision of two black holes, initially without spin, and with an initial separation corresponding to 25‚Äď31 gravitational wave cycles before merger. The minimum overlap, compared to ground truth solutions, is 99%. That is, 1% diference between our closed-form expressions and supercomputer simulations; this is considered for gravitational (GW) science more than the minimum required due to experimental numerical errors which otherwise dominate. This paper aims to contribute to the feld of GWs in particular and Artifcial Intelligence in general.Fil: Tiglio, Manuel. Universidad Nacional de C√≥rdoba. Facultad de Matem√°tica, Astronom√≠a y F√≠sica. Secci√≥n Ciencias de la Computaci√≥n; Argentina. Consejo Nacional de Investigaciones Cient√≠ficas y T√©cnicas. Centro Cient√≠fico Tecnol√≥gico Conicet - C√≥rdoba; ArgentinaFil: Villanueva, Uziel Aar√≥n. Universidad Nacional de C√≥rdoba. Facultad de Matem√°tica, Astronom√≠a y F√≠sica. Secci√≥n Ciencias de la Computaci√≥n; Argentina. Consejo Nacional de Investigaciones Cient√≠ficas y T√©cnicas. Centro Cient√≠fico Tecnol√≥gico Conicet - C√≥rdoba; Argentin
    • ‚Ķ
    corecore