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Abstract

The network choice revenue management problem models customers as choosing from an offer set, and

the firm decides the best subset to offer at any given moment to maximize expected revenue. The re-

sulting dynamic program for the firm is intractable and approximated by a deterministic linear program

called the CDLP which has an exponential number of columns. However, under the choice-set paradigm

when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has

been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting

with a concave program formulation called SDCP that is based on segment-level consideration sets, we

add a class of constraints called product constraints (σPC), that project onto subsets of intersections. In

addition we propose a natural direct tightening of the SDCP called ESDCPκ, and compare the perfor-

mance of both methods on the benchmark data sets in the literature. In our computational testing on the

benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken

by column generation. For a large network our 2PC procedure runs under 70 seconds to come within

0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network

with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC

runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP

when segment consideration sets overlap and the consideration sets themselves are relatively small.
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1 Introduction and literature review

Revenue management (RM) is the control of the sale of a limited quantity of a resource (hotel rooms for a

night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for a unit

of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes at a fixed

point of time in the future. Customers are independent of each other and arrive randomly during a sale

period, and demand one unit of resource each. Sale is online, and the firm has to decide which products at

what price it should offer, the tradeoff being selling too much at too low a price early and running out of

capacity, or, losing too many price sensitive customers and ending up with excess unsold inventory.

In industries such as hotels, airlines and media, the products consume bundles of different resources

(multi-night stays, multi-leg itineraries) and the decision on whether to offer a particular product at a

certain price depends on the expected future demand and current inventory levels for all the resources used

by the product (and also indirectly, all the resources in the network). Network revenue management (network

RM) is control based on the demands for the entire network. Chapter 3 of Talluri and van Ryzin (2004b)

contains all the necessary background on network RM.

RM incorporating more realistic models of customer behavior, as customers choosing from an offer set,

have recently become popular (Talluri and van Ryzin (2004a), Gallego, Iyengar, Phillips, and Dubey (2004),

Liu and van Ryzin (2008), Kunnumkal and Topaloglu (2010), Zhang and Adelman (2009), Meissner and

Strauss (2012), Bodea, Ferguson, and Garrow (2009), Bront, Méndez-Dı́az, and Vulcano (2009), Méndez-

Dı́az, Bront, Vulcano, and Zabala (2012), Kunnumkal (2011)).

The network versions of choice RM are usually modifications of older methods proposed for network RM

with the so-called independent-class assumption—for instance the choice-based deterministic linear program

(CDLP ) that we study in this paper can be considered the equivalent of the deterministic linear program-

ming (DLP ) formulation, a practical and widely used approximation for the dynamic program under the

independent-class assumption. However, accounting for customer choice behavior makes the approximations

considerably more difficult to solve. So while the DLP approximation is easy, the corresponding CDLP

approximation is NP-hard even for relatively simple models of customer choice. The CDLP formulation

has an exponential number of columns and the solution strategy is to use column generation; but finding an

entering column is computationally easy only in restrictive cases (multinomial logit (MNL) model of choice

with non-overlapping segment consideration sets).

Various mathematical programming approaches have been proposed (e.g. Kunnumkal and Topaloglu

(2010), Zhang and Adelman (2009), Meissner and Strauss (2012)) that are tighter relaxations of the dynamic
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program characterizing the underlying decision problem than the CDLP , however, their solution is more

difficult. In this paper we concentrate on the simpler deterministic linear program CDLP .

Given the hardness results for CDLP for overlapping consideration sets, we have to scale back our

ambitions of solving even this approximation to dynamic program for large problems. Another alternative is

to consider somewhat restrictive situations which still have wide applicability in practice. Along this latter

line of research, Talluri (2010) proposed the so-called segment-based deterministic concave program (SDCP )

that is weaker than the upper bound resulting from the CDLP , but coincides for non-overlapping segments

(Gallego, Ratliff, and Shebalov (2010) pursue a similar approach to the CDLP ). The advantage is that the

method is tractable for any choice model whenever the number of elements in a segment’s consideration set

is not too large.

Small consideration sets can be justified in the airline setting where a segment’s consideration set consists

of choices (on one airline) for travel for an origin and destination, and typically there are only a few such

alternatives on a given date (Talluri (2001)). Note that currently airlines solve the network problem for a

single date due to its computational complexity—so even if a customer considers multiple days of travel, as

far as the optimization model goes, a customer’s choice is for the day’s offerings.

Our model and methodology applies also to what is called the assortment optimization problem in

retail (Kök, Fisher, and Vaidyanathan (2009), Rusmevichientong, Shmoys, and Topaloglu (2010)) since

network choice RM can be considered a dynamic assortment optimization problem with an additional network

structure for the resources. For this reason we mention the research on consideration sets in the marketing

area. There is a large body of literature that empirically and experimentally verifies the formation of

consideration sets and the choice of an item in the consideration set. See for instance, Lussier and Olshavsky

(1979), Payne (1976), Wright and Barbour (1977). Hauser andWernerfelt (1990) report average consideration

set sizes of less than 4 for common items such as deodorants, shampoos, air fresheners, laundry detergents

and coffees.

SDCP is tractable, but its performance is poor when segment consideration sets overlap (i.e., the bound

is significantly looser than CDLP ). In this paper we extend the SDCP formulation to obtain progressively

tighter relaxations of CDLP for the case of overlapping consideration sets. We add a novel class of constraints

called product constraints that interpret the linear programming decision variables as randomization rules.

These constraints are easy to generate and work for general discrete choice models—in fact this is the

only approach that we know of that can handle general discrete choice models and overlapping segment

consideration sets. We report extensive computational results showing their performance on various types
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of networks. We contrast the results with an extension of SDCP called ESDCPκ. In our numerical testing,

SDCP with product constraints achieves the CDLP value at a fraction of the CPU time taken by column

generation (Tables 16, 17, 18).

The remainder of the paper is organized as follows: In §2 we introduce the notation, the demand model

and the basic dynamic program. In §3 we state the CDLP and SDCP approximations of the dynamic

program, followed by the presentation of the main computational approaches that we propose in this paper

in §4. §5 contains our numerical results using the new methods, and we present our conclusions in §6.

2 Model and notation

A product is a specification of a price and a combination of resources to be consumed. For example, a product

could be an itinerary-fare class combination for an airline network, where an itinerary is a combination of

flight legs; in a hotel network, a product would be a multi-night stay for a particular room type at a certain

price point. Time is discrete and assumed to consist of T intervals, indexed by t. We assume that the

booking horizon begins at time 0 and that all the resources perish instantaneously at time T . We make

the standard assumption that the time intervals are fine enough so that the probability of more than one

customer arriving in any single time period is negligible. The underlying network has m resources (indexed

by i) and n products (indexed by j), and we refer to the set of all resources as I and the set of all products

as J . A product j uses a subset of resources, and is identified (possibly) with a set of sale restrictions or

features and a revenue of rj . A resource i is said to be in product j (i ∈ j) if j uses resource i. The resources

used by j are represented by aij = 1 if i ∈ j, and aij = 0 if i /∈ j, or alternately with the 0-1 incidence vector

Aj of product j. Let A denote the resource-product incidence matrix; columns of A are then Aj . We denote

capacity on resource i at time t as ci,t and the vector of capacities as �ct, so the initial set of capacities at

time 0 is �c0. The vector �1 is a vector of all ones, and �0 is a vector of all zeroes (dimension appropriate to

the context).

Whenever it is clear from the context, we represent a mathematical program or a dynamic program by a

label that also serves as the optimal value of the program. For example, (CDLP ) represents the choice-based

deterministic linear program (described below) but can also represent the model or the objective function

value of the linear program depending on the context.
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2.1 Demand model

We assume there are L := {1, . . . , L} customer segments, each with distinct purchase behavior. In each

period, there is a customer arrival with probability λ. A customer belongs to segment l with probability

pl. We denote λl = plλ and assume
∑

l pl = 1, so λ =
∑

l λl. We are assuming time-homogenous arrivals

(homogenous in rates and segment mix), but the model and all solution methods in this paper can be

transparently extended to the case when rates and mix change by period. Each segment l has a consideration

set Cl ⊆ J of products that it considers for purchase. We assume this consideration set is known to the

firm (by a previous process of estimation and analysis), and the consideration sets for different segments can

overlap.

In each period the firm offers a subset S of its products for sale, called the offer set. Given an offer set S,

an arriving customer purchases a product j in the set S or decides not to purchase. The no-purchase option

is indexed by 0 and is always present for the customer.

A segment-l customer is indifferent to a product outside his consideration set; i.e., his choice probabilities

are not affected by products offered not in the consideration set. A segment-l customer purchases j ∈ S with

given probability P l
j(S). This is a set-function defined on all subsets of J . For the moment we assume these

set functions are given by an oracle; it could conceivably be given by a simple formula such as the Multinomial

Logit (MNL) model. Whenever we specify probabilities for a segment l for a given offer set S, we just write

it with respect to Sl := Cl∩S (note that P l
j (S) = P l

j(Sl)). We define the vector �P l(S) = [P l
1(Sl), . . . , P

l
n(Sl)]

(recall the no-purchase option is indexed by 0, so it is not included in this vector).

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is then given by

Pj(S) =
∑

l plP
l
j(Sl) and makes no sale with probability P0(S) = 1 − ∑

j∈S Pj(S). We define the vector

�P (S) = [P1(S), . . . , Pn(S)]. Notice that �P (S) =
∑

l pl
�P l(S). We define the vectors �Ql(S) = A�P l(S) and

�Q(S) = A�P (S). The revenue functions can be written asRl(S) =
∑

j∈Sl
rjP

l
j(Sl) and R(S) =

∑
j∈S rjPj(S).

In our notation and demand model we broadly follow Bront et al. (2009) and Liu and van Ryzin (2008).

The motivation for the design of our solution procedures comes from the following premise: The number of

elements in a segment’s consideration set is usually small. It sounds unlikely that a customer can process

hundreds of choices in making a decision. So the problem for a single segment might be tractable by just

brute-force enumeration, i.e., the number of subsets of Cl for a segment l can be enumerated explicitly as

if say, |Cl| ∼ 10, we can easily compute all the 210 = 1024 subsets of Cl. The segment is indifferent to

products outside its consideration set, hence the airline would only consider offering some subset of Cl when

optimizing revenue from this segment l.
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The empirical work of Hauser and Wernerfelt (1990) in marketing assortment optimization and route-set

model of Talluri (2001) in the airline context motivate this approach. The difficulty of CDLP is that it is

based on subsets of the set of all products J ; in contrast, basing the formulation on segment consideration

sets allows us to exploit the relatively small size of each segment’s consideration set. We remark that

all the above-mentioned articles in the literature concentrate only on the MNL model of choice so that

understanding of optimization with other choice models is rather limited at this stage. Our assumption of

small consideration sets at least allows us a tractable approach for more general discrete choice models.

2.2 Dynamic program

The dynamic program (DP) to determine optimal controls can be written down as follows. Let Vt(�ct) denote

the maximum expected revenue to go, given remaining capacity �ct in period t. Then Vt(�ct) must satisfy the

well-known Bellman equation

Vt(�ct) = max
S⊆J

⎧⎨
⎩
∑
j∈S

λPj(S)(rj + Vt+1(�ct −Aj)) + (λP0(S) + 1− λ)Vt+1(�ct)

⎫⎬
⎭ (1)

with the boundary condition VT (�cT ) = Vt(�0) = 0 for all �cT and for all t. Recall that Pj(S) is the total

purchase probability (across all the segments, in one time period) of product j and P0(S) is the total no-

purchase probability when the firm offers set S. Let V DP = V0(�c0) denote the optimal value of this dynamic

program from 0 to T , for the given initial capacity vector �c0.

3 Approximations and upper bounds

The dynamic program (1) is computationally intractable, hence we are interested in approximating the value

function. In the following, we outline two recently proposed approaches to that end.
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3.1 Choice deterministic linear program (CDLP )

The choice-based deterministic linear program (CDLP ) defined in Gallego et al. (2004) and Liu and van

Ryzin (2008) is as follows:

max
∑
S⊆J

λR(S)wS (2)

s.t.
∑
S⊆J

λwS
�Q(S) ≤ �c0

(CDLP )
∑
S⊆J

wS = T

0 ≤ wS , ∀S ⊆ J.

The formulation has 2n variables wS that can be interpreted as the number of time periods each set is offered

(including w∅). Liu and van Ryzin (2008) show that the optimal objective value is an upper bound on V DP .

They also show that the problem can be solved efficiently by column-generation for the MNL model and

non-overlapping segments. Bront et al. (2009) and Rusmevichientong et al. (2010) investigate this further

and show that column generation is NP-hard whenever the consideration sets for the segments overlap, even

for the MNL choice model.

3.2 Segment-based deterministic concave program (SDCP )

Talluri (2010) proposed the following formulation that coincides with the CDLP when the segments do

not overlap. For segment l, define a capacity vector �0 ≤ �ylt ≤ �1 that we reserve for sale to segment l in

period t (even if we cannot identify this segment at the time of purchase). Given �ylt, let R
∗
l (�ylt) represent

the optimal revenue we can obtain offering some convex combination of product sets to segment l. R∗
l (�ylt)

can be obtained by solving the following linear program:

R∗
l (�ylt) = max

∑
Sl⊆Cl

λlR
l(Sl)w

l
Sl

(3)

s.t.
∑

Sl⊆Cl

λlw
l
Sl
�Ql(Sl) ≤ �ylt

(Rgen)
∑

Sl⊆Cl

wl
Sl

≤ 1

wl
Sl

≥ 0, ∀Sl ⊆ Cl.

Note that R∗
l (�ylt) is a concave function of �ylt. The linear program (Rgen) has an exponential number of

columns but can be solved by column generation, and the column generation is often easier than that of
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CDLP as it is segment specific and (Rgen) considers only subsets of the consideration set of a single segment

at a time—for instance, in the case of latent-segment multinomial-logit demand model of choice, the column

generation of (Rgen) is tractable. If the number of considered products |Cl| for each segment is small, say

10 or 12, we can just enumerate the columns.

We now define the following concave programming problem over the capacity vectors:

max

T∑
t=1

L∑
l=1

R∗
l (�ylt) (4)

s.t.
T∑

t=1

L∑
l=1

�ylt ≤ �c0

(SDCP ) �ylt ≤ λl
�1, ∀ l, t

�ylt ≥ �0.

The above formulation of SDCP assumes uniform arrival rates and segment mix for simplicity, but can be

modified transparently by using time-dependent arrival rates λt. This discrete-time formulation can be made

compact by merging periods with the same arrival rates.

(SDCP ) is a compact formulation compared to (CDLP ), and can be solved by any number of standard

concave-programming methods generating the objective function values by solving (Rgen). So the critical

computation lies in the calculation of R∗
l (�ylt).

The relation between CDLP and SDCP is shown in (Talluri, 2010) and we repeat the connection here

to show the validity of the product constraints (i.e., SDCP with product constraints still leads to an upper

bound for the dynamic program). First, we formulate CDLP as follows:

max
∑

l λl

∑
Sl⊆Cl

Rl(Sl)w
l
Sl

(5)

(CDLPW)
∑

l λl

∑
Sl⊆Cl

�Ql(Sl)w
l
Sl

≤ �c0 (6)

(wl
Sl
) ∈ Proj(W), (7)

where (wl
Sl
) denotes the vector with (l, Sl)th component being wl

Sl
(likewise for (wS)), W is the polytope

{∑S⊆J wS = 1, wS ≥ 0 ∀S} representing probability distributions (wS) over all subsets S, and Proj(W)

is the projection of W onto the space of (wl
Sl
) via wl

Sl
:=

∑
S:S∩Cl=Sl

wS for all Sl ⊆ Cl for all l. This

projection can be re-written in a more convenient form: We define a subset incidence matrix B with rows

for all Sl ⊆ Cl, l = 1, 2, . . . , L and columns S ⊆ J , and BSlS := 1 if subset Sl = S ∩ Cl and 0 otherwise.
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With that notation, (wl
Sl
) ∈ Proj(W) if there exists a feasible solution to the following system:

∑
S⊆J

BSlSwS = wl
Sl
, ∀Sl ⊆ Cl, ∀ l (8)

(X )
∑
S⊆J

wS = 1 (9)

wS ≥ 0, ∀S ⊆ J.

The wl
Sl
’s in the above formulation can be thought of as the marginal distribution on subsets of Cl for a

distribution of wS on all subsets S ⊆ J .

Proposition 1 (Talluri (2010)). CDLPW = CDLP .

Proof

For a feasible (wl
Sl
) of (CDLPW ), (wl

Sl
) ∈ Proj(W) implies, there exists a (wS) satisfying (8). Now notice

that
L∑

l=1

λl

∑
Sl⊆Cl

�Ql(Sl)
∑
S⊆J

BSlSwS =
∑
S⊆J

λwS
�Q(S), (10)

and therefore (wS) satisfies (CDLP ) with the same objective value (the objective value is the same by a

calculation identical to that of (10)).

Likewise, equation (10) also shows that if (wS) is a feasible solution to (CDLP ) we derive a feasible

solution (wl
Sl
) for (CDLPW) by wl

Sl
= BSlSwS , and this has the same objective value.

�

Talluri (2010) shows that (SDCP ) overestimates revenue compared to (CDLP ), i.e., CDLP ≤ SDCP , and

the objective values of both formulations coincide for the case of non-overlapping segments.

Theorem 1 (Talluri (2010)). V SDCP ≥ V CDLP .

Proof

The matrix B has the property that every column, corresponding to a set S, has at most one element equal

to 1 amongst the rows corresponding to the subsets of a segment l. This implies that a feasible solution to

(CDLPW) satisfies
∑

Sl
wl

Sl
≤ 1 as

∑
wS = 1 (recall that we are normalizing T = 1). Hence we add these

redundant constraints and relax constraints (8) to obtain SDCP .

�
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4 Tightening SDCP

In the most general setting, the segments’ consideration sets can overlap in a variety of ways, and the choice

probabilities depend on the offer set, and need not follow any structure. Indeed, Rusmevichientong et al.

(2010) show that generating the columns of (CDLP ) even in a very restrictive setting (MNL model of

probabilities, two segments) is NP-hard.

In this section we describe the two computational approaches that we propose in this paper.

4.1 Product constraints

The first method is based on consistency of projections onto the intersections of the considerations sets,

that we call product constraints (the name comes from the interpretation as a restriction arising from the

marginal product probabilities). The constraints are called valid if adding them still results in an upper

bound for the dynamic program (we show that in fact it results in an upper bound on the CDLP ). We

work with a general discrete-choice model of customer behavior as in (Talluri and van Ryzin, 2004a), and

we make no assumptions on the (overlapping) structure of the consideration sets. Throughout we assume

that choice probabilities are given by an oracle for every segment l and offer set S.

We first describe the intuition behind our constraints: For any product j ∈ Cl ∩ Ck, the length of time

that product j is offered to segment l must be equal to the length of time that it is being offered to segment k.

In order to derive a corresponding constraint, we first normalize T = 1 in (CDLP) without loss of generality.

So (wS) can be interpreted as a distribution over subsets of J , and can be considered a randomization rule—

at each point choose a subset based on this distribution. The distribution in turn induces a distribution

for each one of the segments l, via the matrix B (recall BSlS := 1 if subset Sl = S ∩ Cl and 0 otherwise),

wl
Sl

:=
∑

S BSlSwS (alternately, (wl
Sl
) is the marginal distribution of (wS)).

Let Xj be a Bernoulli random variable which takes the value Xj = 1 if j ∈ S for an offer set S sampled

from the wS distribution, and Xj = 0 otherwise. The expectation E[Xj] is then the probability that

product j is offered under this randomized rule. Consider a similar sampling from another distribution given

by wl
Sl
’s. This would also lead to a Bernoulli random variable, and if the wl

Sl
are induced by the wS ’s, the

expectations of these random variables should coincide across the segments; i.e., the E[Xj ] should be the

same for two segments l and k whose consideration sets contain the product j, leading to the constraint:

∑
{Sl⊆Cl|Sl�{j}}

wl
Sl

=
∑

{Sk⊆Ck|Sk�{j}}
wk

Sk
= E[Xj].
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Now the space of wS ’s is prohibitively large, and the matrix B has almost no structure as the considera-

tions sets are arbitrary. So we choose to work in the smaller space of wl
Sl
’s as in SDCP (actually (Rgen) of

the SDCP formulation) which however are not induced by the wS ’s. So we impose consistency conditions

that arise if the segment-level distributions were generated by a common set of wS ’s. We would like these

consistency conditions to be linear and to be easily generated.

One can extend this to subsets of products. As the Xj’s are Bernoulli random variables, for any pair of

segments l and k that contain two products j1 and j2 the following equation should hold if we were to offer

the same offer set to j1 and j2 (the CDLP condition that SDCP relaxes):

∑
Sl�{j1,j2}

wl
Sl

=
∑

Sk�{j1,j2}
wk

Sk

(
= E[Xj1Xj2 ] =

∑
S�{j1,j2}

wS

)
.

So we can add linear constraints to (SDCP ) of the form
∑

Sl�{j1,j2} w
l
Sl

=
∑

Sk�{j1,j2} w
k
Sk

for all segments

l, k such that Cl, Ck 	 {j1, j2}. This extends to triples of products {j1, j2, j3} via
∑

Sl�{j1,j2,j3} w
l
Sl

=
∑

Sk�{j1,j2,j3} w
k
Sk
, and so on.

An alternate way of viewing this idea is that the distributions wS ’s and wl
Sl
’s have to be consistent once

we project them onto the subsets of the intersection of the consideration sets. Since our premise is that

consideration sets are relatively small, intersections of consideration sets are small also (definitely less than

the smaller of the two consideration sets), and if the consideration sets are not too large, we can enumerate

all subsets of the intersections without much computational effort (§4.1.2 discusses this further).

The difficulty of solving (CDLP ) for overlapping segment considerations sets lies in solving (X ) as

its columns are indexed by all subsets S and the matrix B has almost no structure when the segment

consideration sets overlap.

Let us consider the following generalization of SDCP (note that we moved the objective function to the

right-hand side by introducing variables zlt):

max�ylt

T∑
t=1

L∑
l=1

zlt

s.t.

T∑
t=1

L∑
l=1

�ylt ≤ �c0

(SDCPκ) �ylt ≤ λl
�1 ∀ l, t

∑
l∈L

zlt ≤ R∗
L(�ylt) ∀ t, ∀ L ⊂ {1, . . . , L}, |L| = κ (11)

�ylt ≥ �0, ∀ l, t,
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and

R∗
L(�ylt) = max

∑
l∈L

∑
Sl⊆Cl

λlR
l(Sl)w

l
Sl

s.t.
∑

Sl⊆Cl

λl
�Ql(Sl)w

l
Sl

≤ �ylt ∀l ∈ L,

(RgenL)
∑

Sl⊆Cl

wl
Sl

≤ 1 ∀l ∈ L,

wl
Sl

≥ 0, ∀ l ∈ L, ∀ Sl ⊆ Cl.

If we consider κ = 1, i.e., only subsets of the form L := {l}, we recover (SDCP ). However, if we define

L := {l, k} to contain two segments, i.e. κ = 2, and say the segment consideration sets overlap, then we can

tighten the formulation by adding the following constraints to (RgenL):

∑
Sl⊇Slk

wl
Sl

=
∑

Sk⊇Slk

wk
Sk
, ∀Slk ⊆ Cl ∩Ck. (12)

We call these the product constraints (PC) and if we restrict |Slk| = σ, we refer to them as σPC constraints.

We refer to (SDCP2) with σPC constraints added to R∗
L as the σPC formulation.

One can combine (SDCPκ) with (RgenL) and the σPC into a single linear program, or if the problem is

too big to fit into memory, we can implement this by obtaining the dual solution (�π, �μ) to (RgenL) with the

additional constraints (12) for the current �ylt, and adding the cut
∑

l∈L zlt ≤
∑

l∈L �π	
l �ylt + μl to (SDCP2)

iteratively.

Proposition 2. Suppose we add σPC constraints to (RgenL) and solve SDCP2 as described above (namely,

the σPC formulation), then the value of the resulting linear program is greater than or equal to CDLP .

Proof

Suppose wl
Sl

and wk
Sk
’s are feasible solutions of (CDLPW), then there exists a set of wS ’s such that wl

Sl
=

∑
S BSlSwS as wl

Sl
∈ Proj(W). Then, for any fixed Slk ⊆ Cl ∩ Ck, we have:

∑
Sl⊇Slk

wl
Sl

=
∑

Sl⊇Slk

∑
S

BSlSwS =
∑

S|S∩Cl⊇Slk

wS =
∑

S|S∩Ck⊇Slk

wS =
∑

Sk⊇Slk

wk
Sk
.

So the wl
Sl
’s should satisfy the product constraints (12) and a solution of (CDLPW ) leads to a feasible

solution of (SDCP2) with the product constraints (12) added. Thus the value of the maximization problem

(SDCP2) is higher than than of (CDLPW ).

�

Thus we obtain an upper bound on CDLP (= CDLPW) by adding product constraints that promises to
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be a considerable tightening of SDCP . In our computational testing on the benchmark data sets from the

literature that contain significant overlap in consideration sets, we obtain the CDLP value rapidly just by

adding constraints with small values of σ.

4.1.1 A small example

We illustrate the procedure with a small example. Suppose we have a single resource with capacity 10 and

five products that use this resource: a, b, c, d, e. Assume there are two segments and segment 1’s consideration

set is C1 = {a, b, c} and segment 2’s consideration set is C2 = {b, c, d, e}, so C1 ∩C2 = {b, c}. Assume T = 1

(only to reduce notation and size of the example).

The 1PC constraints are as follows. Corresponding to S12 = {b}, we have the constraint:

w1
{b} +w1

{b,c} +w1
{a,b} + w1

{a,b,c} = w2
{b} + w2

{b,c} + w2
{b,d} +w2

{b,e} + w2
{b,c,d} +w2

{b,d,e} +w2
{b,c,e} +w2

{b,c,d,e}.

Corresponding to S12 = {c}, we have the constraint:

w1
{c} + w1

{b,c} +w1
{a,c} + w1

{a,b,c} = w2
{c} + w2

{b,c} + w2
{c,d} + w2

{c,e} +w2
{b,c,d} +w2

{b,c,e} +w2
{d,c,e} +w2

{b,c,d,e}.

The 2PC constraints are as follows. Corresponding to S12 = {b, c}, we have the constraint:

w1
{b,c} + w1

{a,b,c} = w2
{b,c} + w2

{b,c,d} + w2
{b,c,e} + w2

{b,c,d,e}.

Since the problem is small, we formulate it as a single linear program combining (SDCPκ) with (RgenL)

and the σPC constraints (which makes the y and z variables unnecessary):

13



max(w1
S1

),(w2
S2

)

∑
S1⊆C1

λ1R
1
S1
w1

S1
+

∑
S2⊆C2

λ2R
2
S2
w2

S2

s.t.
∑

S1⊆C1

λ1Q
1
S1
w1

S1
+

∑
S2⊆C2

λ2Q
2
S2
w2

S2
≤ 10 (13)

(σPC)
∑

S1⊆C1

w1
S1

≤ 1

∑
S2⊆C2

w2
S2

≤ 1

w1
{b} + w1

{b,c} + w1
{a,b} + w1

{a,b,c} =

w2
{b} + w2

{b,c} + w2
{b,d} + w2

{b,e} + w2
{b,c,d} + w2

{b,d,e} + w2
{b,c,e} + w2

{b,c,d,e}

w1
{c} + w1

{b,c} + w1
{a,c} + w1

{a,b,c} =

w2
{c} + w2

{b,c} + w2
{c,d} + w2

{c,e} + w2
{b,c,d} + w2

{b,c,e} + w2
{d,c,e} + w2

{b,c,d,e}

w1
{b,c} + w1

{a,b,c} = w2
{b,c} + w2

{b,c,d} + w2
{b,c,e} + w2

{b,c,d,e}

w1
S1
, w2

S2
≥ 0.

4.1.2 Size of the problem

We show that the size of the problem with all the product constraints added is polynomial for a fixed size

of the consideration sets. Assume homogenous arrival rates so we can aggregate the time periods into one.

Let σmax = maxl∈L |Cl|, i.e., the size of the largest segment consideration set. The size of SDCP , when

written out as a single linear program (i.e. folding in (Rgen) directly in the SDCP formulation) has at most

L2σmax columns and (m + L) rows corresponding to the m resource capacities and the L time constraints.

The maximum number of product constraints that we can add are then at most
(
L
2

)
2σmax corresponding to

the intersection of consideration sets for all pairs of segments, and for every pair the fact that there are at

most 2σmax subsets in the intersection—still polynomial for a fixed size of the consideration sets. So if the

maximum consideration set size is ∼ 10, we are adding at most 1000× (
L
2

)
.

In practice it is quite unlikely that every pair of segments have overlapping consideration sets—for

instance, in the airline context, segments are defined for each origin-destination pair, and their consideration

sets are the routes they consider, so the overlap is rather limited. If memory and computational resources

permit, given the power of modern linear programming solvers such as CPLEX or GUROBI (in a 64-bit

operating system), we can even solve the entire problem (SDCP and the product constraints) as a single

linear program for a few hundred segments.

14



For larger problems or for limited computational resources, we can resort to keeping σ small or generating

the constraints on the fly. For instance, if we are taking only 2PC constraints, i.e., σ = 2, then we are adding

at most
(
σmax

2

) × (
L
2

)
constraints. Finally, if we have non-homogenous arrival rates, say represented by a

piece-wise linear curve, all the above problem sizes are multiplied by the number of break-points in the

piece-wise linear curve.

4.2 Enhanced κ-segment deterministic concave program (ESDCPκ)

In this section we describe our second method that is a natural tightening of (SDCP ). Consider SDCPκ

as given in (11) in which, for a fixed value of κ and L with |L| = κ, and a vector of capacities assigned to

segment l, �ylt, we had defined:

R∗
L(�ylt) = max

∑
l∈L

∑
Sl⊆Cl

λlR
l(Sl)w

l
Sl

s.t.
∑

Sl⊆Cl

λl
�Ql(Sl)w

l
Sl

≤ �ylt ∀l ∈ L,

(RgenL)
∑

Sl⊆Cl

wl
Sl

≤ 1 ∀l ∈ L,

wl
Sl

≥ 0, ∀l ∈ L, ∀Sl ⊆ Cl.

In the above generating mathematical program, we allow different offer sets Sl to be offered to the different

segments. Our idea now is to tighten SDCPκ by using a different generating mathematical program that

forces the use of the same offer set for all the segments. To reduce notation, we describe this new generating

mathematical program for segment pairs, i.e., κ = 2; the general case should be transparent from the

description. For every pair of segments (k1, k2) where k1 < k2 and a set of vectors of assigned capacities

�yk1 , �yk2 , define

R∗
k1,k2

(�yk1t, �yk2t) = max
∑

S⊆Ck1
∪Ck2

(λk1Rk1(Sk1) + λk2Rk2(Sk2))wS (14)

s.t.
∑

S⊆Ck1
∪Ck2

[
λk1

�Qk1(Sk1) + λk2
�Qk2(Sk2)

]
wS ≤ �yk1t + �yk2t

(Rgen(k1,k2))
∑

S⊆Ck1
∪Ck2

wS ≤ 1

wS ≥ 0, ∀S ⊆ Ck1 ∪Ck2

We call this level-κ formulation the enhanced κ-segment deterministic concave program (ESDCPκ). Thus

we can fine-tune the formulation for different values of κ, and we always maintain an upper bound on the
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dynamic program, in fact on the CDLP , and can choose the level to suit the network and computational

resources.

Notice that R∗
k,l(�ykt, �ylt) is a concave function of the variables �ykt, �ylt. We add the following constraint

to (11) for all pairs (k1, k2) of segments:

zk1t + zk2t −R∗
k1,k2

(�yk1t, �yk2t) ≤ 0 (15)

and call the resulting formulation ESDCPκ. We solve the generating concave program (Rgen(k1,k2)) on the

fly (and in parallel) and replace the constraints (15) by linear subgradient constraints (the dual solution of

R∗
k1,k2

is a subgradient from linear programming theory)

zk1t + zk2t − (�πk
tk1k2

)	(�yk1 + �yk2) ≤ μk
tk1k2

, (16)

where (�πk
tk1k2

, μk
tk1k2

) is the dual solution to R∗
k1,k2

(�yk1t, �yk2t).

To motivate ESDCPκ, consider a simple situation where there are exactly two segments (L = 2) with

consideration sets C1 and C2. ESDCPκ is then equivalent to CDLP , just written slightly differently. Now

if the network naturally has a partition of the segments so that the consideration sets of segments in two

different elements of the partition do not overlap (or have scarce overlap), then our formulation would

exploit it as follows: We assign a capacity vector to each element of the partition and then, for a fixed set of

capacity vectors, try to determine the optimal revenue from the assignment. For instance, if each element

of the partition has exactly two segments, then we do recover the CDLP as pointed out earlier.

For the general case, where each element of the partition has multiple segments, we can still solve the

ESDCP2 as an approximation. Of course, we can strengthen the formulation by defining generating concave

programs for triplets of segments and so on. For a κ-tuple of segments {k1, . . . , kκ} ⊆ {1, . . . , L} we define

generating concave programs R∗
{k1,...,kκ}(�yk1t , . . . , �ykκt) analogous to (14) and incorporate the corresponding

constraints as in (15) for the κ-tuple of variables. If we do not have an idea of the partition, we just solve it

for all pairs of segments or all κ-tuples in general. No matter to what depth we solve the problem, at every

stage, we are assured of an upper bound on the dynamic program. In general this upper bound is weaker

than the CDLP bound.

Proposition 3. ESDCPκ has an objective value greater than or equal to CDLP .

Proof

We prove for κ = 2; the general case follows identically. Let wS be a solution to (CDLP ). For every segment
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l, define

�ylt = λl

∑
S

�Ql(Sl)
wS

T
.

We verify ESDCPκ with vectors �ylt has an objective value same as (CDLP ). The vectors �ylt satisfy
∑T

t=1

∑L
l=1 �ylt ≤ �c0 as these are the same constraints as those of (CDLP ). Next, notice that by construc-

tion w̄S :=
∑

{S′|S′∩(Ck1
∪Ck2

)=S} wS′ , for all S ⊆ Ck1 ∪ Ck2 is a feasible solution to (Rgen(k1,k2)), so we

conclude ESDCPκ ≥ CDLP .

�

5 Numerical results

The (CDLP ) is usually implemented to produce an estimate of the marginal value of capacity for each

resource, and subsequently to decompose the network problem into a collection of single-resource problems.

There are numerous studies that analyze the revenue performance of this decomposition process, see for

example Zhang and Adelman (2009). Our objective is to solve the (CDLP ) for overlapping segments (or

approximate it closely), so the revenue performance will be identical to (CDLP ) if we achieve the same value,

and if we approximate it closely, be comparable. So our computations are to show how well our product

constraints tighten SDCP in the case of overlapping segment consideration sets, and in the computational

times to achieve this tightening compared to alternate approaches. The experiments in §5.2.1–5.2.3 were

programmed in Matlab R2009b with Tomlab R7 /CPLEX 11.2 on a desktop PC running MS Windows XP

with a Pentium 4 2GHz CPU and 1GB RAM. The large network experiments of §5.2.4 used Matlab R2011a

with CPLEX 12.2 on a machine with Intel Xeon 2.67 GHz CPU and 6G RAM. The data sets and the Matlab

code can be obtained at http://go.warwick.ac.uk/astrauss/research/code.

5.1 Overview of the tested methods

We conduct a numerical study on various test networks where we compare the values resulting from the

following (time-aggregated) approaches:

• CDLP : Defined in §3.1. As proposed by Bront et al. (2009), we use their pricing heuristic to identify

new columns; if it does not find any more columns, then we use their mixed integer programming

formulation until optimality is reached.
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• SDCP : Segment-based deterministic concave program as defined in §3.2.

• σPC: SDCP with product constraints as defined in §4.1. In method σPC we add product constraints

of the form (12) only for subsets |Slk| ≤ σ. We generally use σ ∈ {1, 2} and try σ = 3 only when

column generation does not solve CDLP or the gap between 2PC and CDLP is significant.

• ESDCPκ: The procedure described in §4.2.

We add product constraints for just pairs of products in the intersections of the considerations sets (2PC)

as in all but one case (where 3PC gets CDLP value) we obtain the CDLP value and need not consider

larger subsets. Likewise we test ESDCPκ with κ at most 2.

5.2 Test networks

We use the same test networks as in Liu and van Ryzin (2008) and Bront et al. (2009), where different

scenarios were obtained by scaling the capacities by a factor α ∈ {0.4, 0.6, 1, 1.2, 1.4}. For each of these

scenarios, different no-purchase weights v0 are applied to vary demand. The probabilities are derived from

the weights by using the MNL model for each of the segments exactly as in Bront et al. (2009).

5.2.1 Parallel-Flights example

The first network example consists of three parallel flight legs as depicted in Figure 1 with initial leg capacity

30, 50 and 40, respectively. On each flight there is a low and a high fare class L and H, respectively, with

fares as specified in Table 1. We define four customer segments in Table 2; note that we do not give the

preference values for the no-purchase option at this point. This is because we consider various scenarios

of this network by varying both the vector of no-purchase preferences and the network capacity. The sales

horizon consists of 300 time periods. In Table 3 we report upper bounds on the optimal expected revenue

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1,000
5 3 L 300
6 3 H 600

Table 1: Product definitions for Parallel-Flights Example.
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A B

Leg 1 (morning)

Leg 2 (afternoon)

Leg 3 (evening)

Figure 1: Parallel-Flights Example.

Segment Consideration set Pref. vector λl Description
1 {2,4,6} [5,10,1] 0.1 Price insensitive, afternoon preference
2 {1,3,5} [5,1,10] 0.15 Price sensitive, evening preference
3 {1,2,3,4,5,6} [10,8,6,4,3,1] 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} [8,10,4,6,1,3] 0.05 Price insensitive, early preference

Table 2: Segment definitions for Parallel-Flights Example.

obtained from our various approaches. The product constraints are very successful; 2PC obtains the CDLP

objective value in all instances, and even 1PC is already close to CDLP .

α v0 CDLP 2PC 1PC ESDCP2 SDCP

0.6
[1,5,5,1] 56,884 56,884 57,338 57,556 58,755
[1,10,5,1] 56,848 56,848 57,316 57,546 58,755
[5,20,10,5] 53,820 53,820 53,839 54,047 54,684

0.8
[1,5,5,1] 71,936 71,936 72,025 72,650 73,870
[1,10,5,1] 71,795 71,795 71,865 72,608 73,870
[5,20,10,5] 61,868 61,868 61,898 62,302 63,440

1.0
[1,5,5,1] 79,156 79,156 79,373 82,188 85,424
[1,10,5,1] 76,866 76,866 77,069 79,938 83,377
[5,20,10,5] 63,256 63,256 63,256 64,036 65,848

1.2
[1,5,5,1] 80,371 80,371 80,371 83,130 88,332
[1,10,5,1] 78,045 78,045 78,045 80,880 86,333
[5,20,10,5] 63,296 63,296 63,296 64,339 66,648

1.4
[1,5,5,1] 81,067 81,067 81,067 83,130 88,621
[1,10,5,1] 78,817 78,817 78,817 80,880 86,355
[5,20,10,5] 63,337 63,337 63,337 64,642 66,841

Table 3: Upper bounds for Parallel-Flights Example.
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5.2.2 Small-Network example

Next, we test the policies on a network with seven flight legs as depicted in Figure 2. In total, 22 products

are defined in Table 4 and the network capacity is �c0 = [100, 150, 150, 150, 150, 80, 80], where c0i is the initial

seat capacity of flight leg i. In Table 5, we summarize the segment definitions according to desired origin-

destination (O-D), price sensitivity and preference for earlier flights. The booking horizon has τ = 1000 time

periods.

A H

B

C

Leg 2 (morning)

Leg 1 (morning)

Leg 3 (afternoon)

Leg 4 (morning)

Leg 5 (afternoon)

Leg 6 (morning)

Leg 7 (afternoon)

Figure 2: Small-Network example.

Class = H Class = L
Product Legs Fare Product Legs Fare

1 1 1,000 12 1 500
2 2 400 13 2 200
3 3 400 14 3 200
4 4 300 15 4 150
5 5 300 16 5 150
6 6 500 17 6 250
7 7 500 18 7 250
8 2,4 600 19 2,4 300
9 3,5 600 20 3,5 300
10 2,6 700 21 2,6 350
11 3,7 700 22 3,7 350

Table 4: Product definitions for Small-Network Example
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Segment O-D Consideration set Pref. vector λl Description
1 A→B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08 less price sensitive, early pref.
2 A→B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2 price sensitive
3 A→H {2,3,13,14} (10,10,5,5) 0.05 less price sensitive
4 A→H {2,3,13,14} (2,2,10,10) 0.2 price sensitive
5 H→B {4,5,15,16} (10,10,5,5) 0.1 less price sensitive
6 H→B {4,5,15,16} (2,2,10,8) 0.15 price sensitive, slight early pref.
7 H→C {6,7,17,18} (10,8,5,5) 0.02 less price sensitive, slight early pref.
8 H→C {6,7,17,18} (2,2,10,8) 0.05 price sensitive
9 A→C {10,11,21,22} (10,8,5,5) 0.02 less price sensitive, slight early pref.
10 A→C {10,11,21,22} (2,2,10,10) 0.04 price sensitive

Table 5: Segment definitions for Small-Network Example

The upper bound results for the Small-Network example in Table 6 look a bit different from the Parallel-

Flights case in that ESDCP2 achieves the CDLP value in all instances. This is due to the fact that each

product is being considered by exactly two customer segments, and from the definition of ESDCP2 it follows

that this approach is equivalent to CDLP in this situation. The product constraints perform again quite

well: 2PC equals CDLP in all except one instance. This instance α = 0.8, v0 = [1, 5 . . .] is the only one

where 2PC does not equal CDLP ; however, 3PC does deliver the CDLP solution 266,934.

α v0 CDLP 2PC 1PC ESDCP2 SDCP

0.6
[1,5] 215,793 215,793 215,793 215,793 216,649
[5,10] 200,515 200,515 201,294 200,515 206,392
[10,20] 170,137 170,137 170,265 170,137 173,948

0.8
[1,5] 266,934 266,949 268,842 266,934 272,719
[5,10] 223,173 223,173 223,536 223,173 230,393
[10,20] 188,574 188,574 188,657 188,574 193,464

1.0
[1,5] 281,967 281,967 282,078 281,967 296,513
[5,10] 235,284 235,284 235,446 235,284 245,226
[10,20] 192,038 192,038 192,094 192,038 198,636

1.2
[1,5] 284,772 284,772 285,052 284,772 301,773
[5,10] 238,562 238,562 238,562 238,562 248,728
[10,20] 192,373 192,373 192,373 192,373 198,914

1.4
[1,5] 287,076 287,076 287,357 287,076 305,329
[5,10] 238,562 238,562 238,562 238,562 249,372
[10,20] 192,373 192,373 192,373 192,373 198,914

Table 6: Upper bounds for Small-Network example

5.2.3 Hub & spoke example

Consider the Hub & Spoke network in Figure 3. It has eight flight legs, one hub and four spokes. Each

flight i has initial capacity ci = 200 and the booking horizon is divided into τ = 2000 time periods. There
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are 80 products in total which we define in Table 7 in the following way: product 1 corresponds to the trip

ATL-BOS using leg 3 in class Y, product 4 is ATL-BOS in class Q, product 5 is BOS-ATL using leg 4 in

class Y and so on. Definitions of the 40 customer segments for this example can be found in Table 8.

LAX ATL

BOS

SAV

MIA

2

3

1

4

5

6

78

Figure 3: Hub & Spoke Network example.

O-D Market Legs Revenue
Y M B Q

ATLBOS/BOSATL 3/4 310 290 95 69
ATLLAX/LAXATL 2/1 455 391 142 122
ATLMIA/MIAATL 7/8 280 209 94 59
ATLSAV/SAVATL 5/6 159 140 64 49
BOSLAX/LAXBOS 4,2/1,3 575 380 159 139
BOSMIA/MIABOS 4,7/8,3 403 314 124 89
BOSSAV/SAVBOS 4,5/6,3 319 250 109 69
LAXMIA/MIALAX 1,7/8,2 477 239 139 119
LAXSAV/SAVLAX 1,5/6,2 502 450 154 134
MIASAV/SAVMIA 8,5/6,7 226 168 84 59

Table 7: Product definitions for hub-and-spoke Example.

We report upper bounds on the optimal expected revenue in Table 9. The product constraints 2PC obtain

CDLP value in all instances.

5.2.4 Two-hub network

We consider a hub and spoke network of the type shown in Figure 4. There are two hubs H1 and H2

connected with two flights at 11am and 3pm in each direction, and each hub is connected to B spokes each.

From each spoke leave two flights to the adjacent hub at 9am and 1pm, and two flights return at 11am and

3pm. The spokes around hub H1 (H2) are labeled from 1 to B (from B + 1 to 2B).
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Segment Cl vl λl Segment Cl vl λl

ATL/BOS H {1,2,3,4} {6,7,9,10} 0.015 BOS/MIA H {41,42,43,44} {6,7,10,10} 0.008
ATL/BOS L {3,4} {8,10} 0.035 BOS/MIA L {43,44} {8,10} 0.03
BOS/AT H {5,6,7,8} {6,7,9,10} 0.015 MIA/BOS H {45,46,47,48} {6,7,10,10} 0.008
BOS/ATL L {7,8} {8,10} 0.035 MIA/BOS L {47,48} {8,10} 0.03
ATL/LAX H {9,10,11,12} {5,6,9,10} 0.01 BOS/SAV H {49,50,51,52} {5,6,9,10} 0.01
ATL/LAX L {11,12} {10,10} 0.04 BOS/SAV L {51,52} {8,10} 0.035
LAX/ATL H {13,14,15,16} {5,6,9,10} 0.01 SAV/BOS H {53,54,55,56} {5,6,9,10} 0.01
LAX/ATL L {15,16} {10,10} 0.04 SAV/BOS L {55,56} {8,10} 0.035
ATL/MIA H {17,18,19,20} {5,5,10,10} 0.012 LAX/MIA H {57,58,59,60} {5,6,10,10} 0.012
ATL/MIA L {19,20} {8,10} 0.035 LAX/MIA L {59,60} {9,10} 0.028
MIA/ATL H {21,22,23,24} {5,5,10,10} 0.012 MIA/LAX H {61,62,63,64} {5,6,10,10} 0.012
MIA/ATL L {23,24} {8,10} 0.035 MIA/LAX L {63,64} {9,10} 0.028
ATL/SAV H {25,26,27,28} {4,5,8,9} 0.01 LAX/SAV H {65,66,67,68} {6,7,10,10} 0.016
ATL/SAV L {27,28} {7,10} 0.03 LAX/SAV L {67,68} {10,10} 0.03
SAV/ATL H {29,30,31,32} {4,5,8,9} 0.01 SAV/LAX H {69,70,71,72} {6,7,10,10} 0.016
SAV/ATL L {31,32} {7,10} 0.03 SAV/LAX L {71,72} {10,10} 0.03
BOS/LAX H {33,34,35,36} {5,5,7,10} 0.01 MIA/SAV H {73,74,75,76} {6,7,8,10} 0.01
BOS/LAX L {35,36} {9,10} 0.032 MIA/SAV L {75,76} {9,10} 0.025
LAX/BOS H {37,38,39,40} {5,5,7,10} 0.01 MIA/SAV H {77,78,79,80} {6,7,8,10} 0.01
LAX/BOS L {39,40} {9,10} 0.032 MIA/SAV L {79,80} {9,10} 0.025

Table 8: Segment definitions for hub-and-spoke example.

α v0 CDLP 2PC 1PC ESDCP2 SDCP

0.6
[1,5] 163,897 163,897 163,952 163,897 176,808
[5,10] 132,674 132,674 132,674 132,674 144,249
[10,20] 111,897 111,897 111,897 111,897 122,932

0.8
[1,5] 177,384 177,384 177,978 177,384 199,682
[5,10] 146,338 146,338 146,641 146,338 164,037
[10,20] 122,464 122,464 122,575 122,464 138,752

1.0
[1,5] 187,270 187,270 189,294 187,270 219,671
[5,10] 156,243 156,243 157,082 156,243 180,880
[10,20] 128,386 128,386 128,389 128,386 143,723

1.2
[1,5] 195,269 195,269 198,923 195,269 236,739
[5,10] 160,206 160,206 160,674 160,206 189,955
[10,20] 128,448 128,448 128,448 128,448 143,723

1.4
[1,5] 197,113 197,113 201,894 197,113 246,768
[5,10] 160,453 160,453 160,818 160,453 189,955
[10,20] 128,448 128,448 128,448 128,448 143,723

Table 9: Upper bounds for the hub-and-spoke example
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All direct flights between a spoke and a hub are short-haul flights and those between hubs are long-haul.

Depending on the number of spokes per hub, B, the network consists of 8B + 4 flight legs. There are

3

H1

1

2

H2

4

Figure 4: Two-hub network example with two hubs and B = 2 spokes each.

4B2 + 6B + 2 origin-destination pairs (4B between spoke and hub around one hub, 2 between hubs, 2B2

spoke to spoke via 2 hubs, 2B(B − 1) spoke to spoke via one hub, 2B hub to hub to spoke, and 2B spoke

to hub via another hub).

There are 8B2 + 10B + 4 possible itineraries (8B between spoke and hub around one hub, 4 between

hubs, 2B2 between spoke and spoke via 2 hubs, 6B(B − 1) between spoke and spoke via 1 hub, 2B hub to

hub to spoke, 6B spoke to hub to hub). For example, the only itinerary between spoke 1 and spoke (B+1) is

the 9am flight 1→ H1, the 11am flight H1→ H2, and the 3pm flight H2→ (B +1). Other origin-destination

pairs can have up to three possible itineraries, for example going from spoke 1 to H2, or to B.

For each itinerary there are five booking classes Y, M, Q, G and T; hence we have 40B2 + 50B + 20

products in total. The fares are sampled from a Poisson distribution with mean depending on the type

of itinerary as reported in Table 10. If the fares are not in the order Y > M > Q > G > T , then we

re-sample until that order is obtained. For each OD pair, there are four customer segments. Customers

Itinerary Type Y M Q G T
short-haul with 1 leg 100 90 60 40 30
short-haul with 2 legs 200 180 120 80 60
long-haul with 1 leg 300 270 180 120 90
long-haul with 2 legs 400 360 240 160 120
long-haul with 3 legs 500 450 300 200 150

Table 10: Mean fares for different itinerary types and booking classes.
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from each segment consider purchasing all possible itineraries for the desired OD pair, but each segment

only considers a subset of booking classes. Each segment considers either s = 2, s = 3 or s = 4 booking

classes (s is sampled from a uniform distribution). Which classes these are depends on the type of segment:

the two business segments always consider Y and M, and additional classes Q and G depending on the

drawn sample. For example, if s = 3 for such a segment, then it considers {Y,M,Q} on all itineraries for

the desired OD pair. The first leisure segment considers always Q and G class, and additionally T, and M

depending on the drawn sample s. Likewise, the second leisure segment always considers G and T class, and

additionally Q and M depending on the drawn sample s. The MNL preference values for each considered

booking class on any itinerary are sampled from a Poisson distribution with a mean for each product j given

by “round(γ exp(βrj)) + 1”, with (γ,β) defined in Table 11. The preference values v0 for the non-purchase

option, denoted by 0, are defined for all four segments for each OD pair and stated with the results. The

Type Description β γ
1 Business, insensitive -0.001 15
2 Business, insensitive -0.003 20
3 Leisure, sensitive -0.006 20
4 Leisure, very sensitive -0.01 20

Table 11: Types of customer segments for every OD pair. Parameters β and γ define the mean of preference
value distribution.

arrival rates for each segment is constructed by defining a vector b = [1, 2, 4, 5, . . . , 1, 2, 4, 5] ∈ Z
L and setting

λ = (0.7/�1T b). ∗ b. This means, for example, that an arrival of a customer of segment 4 is five times as likely

than an arrival of a segment 1 customer for any OD pair. There are 4,000 time periods.

For the network with B = 4 (B = 8) spokes per hub, all short-haul flight legs have a capacity of 70 (40)

seats, and all long-haul flight legs have capacity of 120 (70) seats. These capacities are jointly scaled up or

down via a factor α ∈ {0.6, 0.8, 1.0, 1.2, 1.4} in order to observe the effect of varied network load.

CDLP was solved with column generation using the heuristic of Bront et al. (2009). We use their mixed

integer programming formulation of the column generation subproblem if the heuristic cannot identify any

additional columns any more. The column generation process uses the following stopping criterion: stop if

reduced cost is less or equal to 10−8 ∗ (current restricted objective + reduced cost).

B Legs OD pairs Itineraries Products Segments
4 36 90 172 860 360
8 68 306 596 2980 1224

Table 12: Two-hub network specification.
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α v0 CDLP ∗ 3PC 2PC 1PC SDCP

0.6
[2,5,10,15] 190,760 190,804 190,804 190,874 196,123
[5,10,15,20] 183,291 183,314 183,314 183,349 187,725
[10,15 20,20] 177,454 177,457 177,457 177,472 181,062

0.8
[2,5,10,15] 231,498 231,508 231,508 231,604 239,532
[5,10,15,20] 219,458 219,465 219,465 219,479 225,766
[10,15 20,20] 210,502 210,506 210,506 210,519 214,820

1
[2,5,10,15] 261,334 261,399 261,399 261,457 271,337
[5,10,15,20] 243,324 243,331 243,331 243,342 250,288
[10,15 20,20] 229,808 229,810 229,810 229,813 235,642

1.2
[2,5,10,15] 281,628 281,733 281,733 281,749 292,363
[5,10,15,20] 259,528 259,538 259,538 259,545 268,458
[10,15 20,20] 245,308 245,310 245,310 245,315 252,505

1.4
[2,5,10,15] 296,527 296,546 296,546 296,586 309,249
[5,10,15,20] 272,615 272,618 272,618 272,628 283,250
[10,15 20,20] 256,902 256,905 256,905 256,906 264,364

Table 13: Upper bounds for two-hub network example with B = 4 spokes per hub. CDLP ∗: Restricted
objective of CDLP master problem once stopping criterion was met.

α v0 Δ3PC (%) Δ2PC (%) Δ1PC (%) ΔSDCP (%)

0.6
[2,5,10,15] 0.02 0.02 0.06 2.81
[5,10,15,20] 0.01 0.01 0.03 2.42
[10,15 20,20] 0.00 0.00 0.01 2.03

0.8
[2,5,10,15] 0.00 0.00 0.05 3.47
[5,10,15,20] 0.00 0.00 0.01 2.87
[10,15 20,20] 0.00 0.00 0.01 2.05

1
[2,5,10,15] 0.02 0.02 0.05 3.83
[5,10,15,20] 0.00 0.00 0.01 2.86
[10,15 20,20] 0.00 0.00 0.00 2.54

1.2
[2,5,10,15] 0.04 0.04 0.04 3.81
[5,10,15,20] 0.00 0.00 0.01 3.44
[10,15 20,20] 0.00 0.00 0.00 2.93

1.4
[2,5,10,15] 0.01 0.01 0.02 4.29
[5,10,15,20] 0.00 0.00 0.00 3.90
[10,15 20,20] 0.00 0.00 0.00 2.90

Table 14: ΔX stands for (X − CDLP ∗)/CDLP ∗. Two-hub network example with B = 4 spokes per hub.
CDLP ∗: Restricted objective of CDLP master problem once stopping criterion was met.
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α v0 CDLP 3PC 2PC 1PC SDCP

0.6
[2,5,10,15] 165,209� 169,973 169,973 170,040 175,384
[5,10,15,20] 156,642� 162,371 162,371 162,404 166,885
[10,15 20,20] 151,043� 157,308 157,308 157,314 160,963

0.8
[2,5,10,15] 196,151� 199,730 199,730 199,824 208,380
[5,10,15,20] 185,342� 188,992 188,992 189,039 195,480
[10,15 20,20] 178,338� 182,596 182,596 182,604 187,369

1
[2,5,10,15] 216,972� 219,921 219,922 220,037 229,451
[5,10,15,20] 204,982� 208,221 208,221 208,263 215,396
[10,15 20,20] 197,756� 200,904 200,904 200,930 206,411

1.2
[2,5,10,15] 235,190� 236,060 236,062 236,217 246,050
[5,10,15,20] 222,498� 222,644 222,644 222,714 230,367
[10,15 20,20] 214,136� 214,184 214,184 214,215 220,027

1.4
[2,5,10,15] 249,299* 249,324 249,324 249,474 259,483
[5,10,15,20] 234,342* 234,348 234,348 234,413 242,346
[10,15 20,20] 225,072* 225,080 225,080 225,108 230,700

Table 15: Upper bounds for two-hub network example with B = 8 spokes per hub. CDLP : restricted
objective of CDLP master problem either (*) once stopping criterion was met, or (�) once run time exceeded
10 hours. Hence, optimal CDLP value is unknown for cases marked � and comparison with other methods
is not possible.

Tables 13 and 14 show the upper bound values and percentage comparison with CDLP for the two-hub

network with 4 spokes per hub. As for the other networks, even 1PC achieves near CDLP value. Table 15

gives the upper bound values for the 8-spoke configuration, but comparison with CDLP is difficult as column

generation had to be stopped after 10 hours for many of the instances. The values of 1PC is very close for

the α = 1.4 configuration where we have CDLP values. 3PC values are in general identical to that of 2PC.

One possible explanation is that there is not much room for improvement between 2PC and CDLP (0% to

0.04%) and further minuscule improvements can be achieved, if at all (as CDLP is a NP-hard problem),

only by adding all cuts of the form σPC.

5.3 Run times

The main motivation for the methods discussed in this article is to overcome the numerical difficulties inherent

to the (CDLP ) formulation for overlapping segments. When the sets Cl are small, there are only few subsets

Sl ⊂ Cl for each segment, we can even solve the (SDCP ) (with or without product constraints) as a single

linear program. In Tables 16, 17, 18, we compare the run times in CPU seconds of the different approaches

on the networks for the small network and the large networks. We emphasize that the run times depend on

the programming language, code efficiency, hardware, and the version of the linear programming package,

but we believe the run times are indicative of their relative performance. There is considerable overlap across
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the segments, as can be seen in the gap between the SDCP and CDLP values for the networks.

When the considerations sets are small, as current linear programming packages can handle millions of

variables and computer memory has become relatively cheap, we might even be able to solve (σPC) or

(ESDCPκ) for small σ, κ as a single linear program. In our computational tests, we run (2PC), (1PC) and

(SDCP ) as a single linear program, while ESDCPκ uses the dynamic generation of constraints as described

above. The run run-times of (SDCP ) with and without product constraints are significantly shorter than

(CDLP ) using column-generation. (ESDCPκ) is slower but still significantly faster than column generation.

The advantage of (ESDCPκ) is that it may (as in one case in our computations) give a tighter bound than

(σPC) for σ = κ for small values of κ, as happens for the case of α = 0.8, v0 = [1, 5] in Table 6.

α v0 CDLP 2PC 1PC ESDCP2 SDCP

0.6
[1,5] 15.92 0.28 0.28 2.43 0.16
[5,10] 11.79 0.28 0.27 2.80 0.16
[10,20] 16.14 0.28 0.27 2.85 0.15

0.8
[1,5] 23.72 0.29 0.28 2.44 0.16
[5,10] 18.95 0.36 0.31 2.95 0.19
[10,20] 17.90 0.28 0.27 3.15 0.15

1.0
[1,5] 24.85 0.29 0.29 2.76 0.15
[5,10] 7.27 0.33 0.27 3.12 0.16
[10,20] 4.32 0.28 0.27 2.87 0.15

1.2
[1,5] 9.40 0.34 0.27 2.18 0.15
[5,10] 4.55 0.28 0.27 2.84 0.15
[10,20] 1.52 0.28 0.27 2.81 0.16

1.4
[1,5] 1.71 0.28 0.27 2.19 0.15
[5,10] 1.69 0.28 0.27 2.90 0.16
[10,20] 1.53 0.28 0.27 2.81 0.15

Table 16: Run times in CPU seconds for the hub-and-spoke network of §5.2.3. CDLP run times are for
solution by column-generation. 2PC and ESDCP2 obtain the same values as CDLP for all cases except
one where we need to go to 3PC.

5.4 Revenue simulations

In our numerical results, we have concentrated so far on comparing how well the various methods (SDCP ,

2PC, ESDCP2 etc.) achieve the CDLP objective value, even though they are all relaxations of the CDLP .

In this section we perform a small simulation study to evaluate revenue performance of the various methods.

Note that how one uses the optimization results (primal solution, dual solution, post-processing etc.) affect

the results. For reference purposes, we use the optimization output the same way as it was used in Bront

et al. (2009).
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α v0 CDLP ∗ 3PC 2PC 1PC SDCP

0.6
[2,5,10,15] 3,199 71 64 58 47
[5,10,15,20] 3,747 71 63 59 48
[10,15 20,20] 4,263 71 63 58 48

0.8
[2,5,10,15] 3,353 71 63 58 47
[5,10,15,20] 4,696 71 63 58 47
[10,15 20,20] 5,428 71 63 58 47

1
[2,5,10,15] 4,054 71 63 58 47
[5,10,15,20] 3,682 71 61 58 48
[10,15 20,20] 4,301 71 62 57 48

1.2
[2,5,10,15] 3,445 71 62 57 48
[5,10,15,20] 3,411 71 62 57 47
[10,15 20,20] 4,104 71 62 57 48

1.4
[2,5,10,15] 3,016 71 61 57 47
[5,10,15,20] 3,218 71 61 57 47
[10,15 20,20] 3,381 71 62 57 48

Table 17: Run times in seconds for the two-hub network of §5.2.4 with B = 4 spokes per hub. CDLP ∗: run
time to solve CDLP by column generation until stopping criterion is met.

α v0 CDLP 3PC 2PC 1PC SDCP

0.6
[2,5,10,15] 36,044� 644 518 483 255
[5,10,15,20] 36,016� 653 512 481 254
[10,15 20,20] 36,101� 609 511 482 252

0.8
[2,5,10,15] 36,000� 584 508 480 253
[5,10,15,20] 36,108� 745 496 474 252
[10,15 20,20] 36,114� 783 521 494 274

1
[2,5,10,15] 36,170� 633 498 473 251
[5,10,15,20] 36,054� 646 494 471 251
[10,15 20,20] 36,194� 609 497 473 255

1.2
[2,5,10,15] 36,134� 720 494 469 252
[5,10,15,20] 36,233� 651 491 466 251
[10,15 20,20] 36,232� 779 510 475 254

1.4
[2,5,10,15] 9,897* 643 502 476 257
[5,10,15,20] 7,168* 576 484 465 251
[10,15 20,20] 9,138* 650 499 484 274

Table 18: Run times in seconds for the two-hub network of §5.2.4 with B = 8 spokes per hub. CDLP :
run time to solve CDLP by column generation until either (*) stopping criterion is met, or (�) run time
exceeded 10 hours.
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CDLP by column generation takes considerable amount of time so we can run simulations only on small

networks and we restrict ourselves to the Parallel-Flights example of §5.2.1 and the Small-Network example

of §5.2.2. In each case we generated 2,000 demand sample paths (the sample paths are the same for all the

methods tested) and used the dual values of the capacity constraints of the respective policy in a dynamic

programming decomposition. At each point in time, the greedy heuristic presented in Bront et al. (2009) is

used to obtain the offer set (based on an opportunity cost estimate using the value function approximation

from the DP decomposition). For both examples, SDCP occasionally outperforms all the methods, but is

also more erratic, while revenue from CDLP , and 2PC that approximates it very closely, is more robust.

5.4.1 Parallel-Flights example

Table 20 reports the percentage average revenue improvement of policies 2PC, ESDCP2 and SDCP over

CDLP . The standard deviation of the revenue samples for each simulation can be found in Table 21.

We observe that 2PC achieves in all scenarios the same average revenue as CDLP ; as outlined above,

CDLP 2PC ESDCP2 SDCP

α v0 Rev LF Rev LF Rev LF Rev LF

0.6
[1,5,5,1] 55,967 0.98 55,967 0.98 54,708 0.96 54,708 0.96
[1,10,5,1] 55,841 0.98 55,841 0.98 54,215 0.94 54,203 0.94
[5,20,10,5] 51,360 0.95 51,360 0.95 51,551 0.96 51,943 0.97

0.8
[1,5,5,1] 69,358 0.96 69,358 0.96 66,493 0.91 69,828 0.97
[1,10,5,1] 69,094 0.95 69,003 0.95 65,311 0.89 69,433 0.97
[5,20,10,5] 60,046 0.90 60,046 0.90 59,995 0.91 59,943 0.91

1.0
[1,5,5,1] 76,936 0.95 76,936 0.95 77,331 0.95 76,782 0.94
[1,10,5,1] 75,710 0.91 75,710 0.91 75,823 0.90 75440 0.89
[5,20,10,5] 62,601 0.77 62,601 0.77 62,606 0.77 62,602 0.77

1.2
[1,5,5,1] 79,761 0.83 79,761 0.83 79,780 0.83 79,799 0.83
[1,10,5,1] 77,499 0.78 77,499 0.78 77,505 0.78 77,505 0.78
[5,20,10,5] 63,010 0.66 63,010 0.66 63,011 0.66 63,011 0.66

1.4
[1,5,5,1] 80,494 0.70 80,494 0.70 80,494 0.70 80,494 0.70
[1,10,5,1] 78,223 0.66 78,223 0.66 78,223 0.66 78,223 0.66
[5,20,10,5] 63,097 0.58 63,097 0.58 63,097 0.58 63,097 0.58

Table 19: Average revenue (Rev) and load factor (LF) results for Parallel-Flights example with 2000 demand
sample paths.

this is due to the fact that (2PC) returns almost the same objective values as (CDLP ), hence the value

function approximation resulting from the dynamic programming decomposition is almost identical. The

policy ESDCP2 appears to be not as successful; in four out of 18 cases it performs between 2–5.5% worse

than CDLP . Finally, the policy SDCP underperforms in some of the crucial scenarios of medium capacity
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tightness (i.e., α around 0.6–1) by up to 3% with respect to CDLP . However, in two scenarios it did

significantly better by improving 0.68% and 1.1% over CDLP . The results indicate that (2PC) can indeed

be used to obtain policies with the similar revenue performance as (CDLP ).

α v0 Δ 2PC
CDLP (%) ΔESDCP2

CDLP (%) ΔSDCP
CDLP (%)

0.6
[1,5,5,1] 0.00 -2.25 -2.25
[1,10,5,1] 0.00 -2.91 -2.93
[5,20,10,5] 0.00 0.37 1.13

0.8
[1,5,5,1] 0.00 -4.13 0.68
[1,10,5,1] -0.13 -5.48 0.49
[5,20,10,5] 0.00 -0.08 -0.17

1.0
[1,5,5,1] 0.00 0.51 -0.20
[1,10,5,1] 0.00 0.15 -0.36
[5,20,10,5] 0.00 0.01 0.00

1.2
[1,5,5,1] 0.00 0.02 0.05
[1,10,5,1] 0.00 0.01 0.01
[5,20,10,5] 0.00 0.00 0.00

1.4
[1,5,5,1] 0.00 0.00 0.00
[1,10,5,1] 0.00 0.00 0.00
[5,20,10,5] 0.00 0.00 0.00

Table 20: Percentage average revenue improvement over CDLP for Parallel-Flights example.

5.4.2 Small-Network example

As we noted earlier, CDLP and ESDCP2 are equivalent for this example, hence both policies are identical.

2PC produces in all except for one scenario (α = 0.8, [1,5]) the same upper bound as CDLP , and since the

dual solution is also identical, the resulting policies arising from the dynamic programming decomposition

deliver the same revenues (Table 22). The percentage average revenue improvement of each tested policy

with respect to CDLP is given in Table 23. The revenue performance of SDCP relative to CDLP is similar

to our observations for the Parallel-Flights example. The standard deviations of the revenues are reported

in Table 24.

6 Conclusions

In this paper, we have developed computationally attractive methods for approximating (CDLP ) for the

choice network RM problem with overlapping segments and small consideration sets; as the general problem is

difficult even for the MNL model with few segments, this represents a promising line of attack for industries,
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α v0 CDLP 2PC ESDCP2 SDCP

0.6
[1,5,5,1] 1,799 1,799 5,956 3,586
[1,10,5,1] 1,925 1,925 3,853 3,904
[5,20,10,5] 3,408 3,408 3,302 2,910

0.8
[1,5,5,1] 3,877 3,877 5,219 3,182
[1,10,5,1] 3,917 3,982 5,358 3,414
[5,20,10,5] 4,677 4,677 4,230 4,213

1.0
[1,5,5,1] 4,329 4,329 4,814 4,879
[1,10,5,1] 5,235 5,235 5,412 5,682
[5,20,10,5] 5,713 5,713 5,690 5,693

1.2
[1,5,5,1] 6,071 6,071 6,066 6,127
[1,10,5,1] 6,140 6,140 6,138 6,138
[5,20,10,5] 5,955 5,955 5,959 5,956

1.4
[1,5,5,1] 6,458 6,458 6,458 6,458
[1,10,5,1] 6,478 6,478 6,478 6,478
[5,20,10,5] 5,899 5,899 5,899 5,899

Table 21: Standard deviations of revenue simulations with 2000 sample paths for the Parallel-Flights Exam-
ple.

CDLP 2PC ESDCP2 SDCP

α v0 Rev LF Rev LF Rev LF Rev LF

0.4
[1,5] 149,715 0.99 149,715 0.99 149,715 0.99 149,715 0.99
[5,10] 144,216 0.98 144,216 0.98 144,216 0.98 144,449 0.98
[10,20] 134,395 0.96 134,395 0.96 134,395 0.96 133,424 0.95

0.6
[1,5] 209,167 0.94 209,167 0.94 209,167 0.94 212,280 0.95
[5,10] 193,291 0.95 193,291 0.95 193,291 0.95 190,031 0.91
[10,20] 167,545 0.95 167,545 0.95 167,545 0.95 167,290 0.93

0.8
[1,5] 262,312 0.90 262,271 0.90 262,312 0.90 254,493 0.86
[5,10] 220,525 0.93 220,525 0.93 220,525 0.93 220,468 0.92
[10,20] 185,754 0.89 185,754 0.89 185,754 0.89 185,274 0.89

1.0
[1,5] 279,023 0.86 279,023 0.86 279,023 0.86 280,444 0.85
[5,10] 233,451 0.87 233,451 0.87 233,451 0.87 229,853 0.83
[10,20] 191,345 0.81 191,345 0.81 191,345 0.81 191,148 0.79

1.2
[1,5] 284,077 0.75 284,077 0.75 284,077 0.75 284,092 0.75
[5,10] 237,974 0.75 237,974 0.75 237,974 0.75 237,974 0.75
[10,20] 192,107 0.71 192,107 0.71 192,107 0.71 192,107 0.71

1.4
[1,5] 286,165 0.64 286,165 0.64 286,165 0.64 286,165 0.64
[5,10] 238,270 0.64 238,270 0.64 238,270 0.64 238,270 0.64
[10,20] 192,120 0.61 192,120 0.61 192,120 0.61 192,120 0.61

Table 22: Average revenue (Rev) and load factor (LF) results for Small-Network example with 2000 demand
sample paths.
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α v0 Δ 2PC
CDLP (%) ΔESDCP2

CDLP (%) ΔSDCP
CDLP (%)

0.4
[1,5] 0.00 0.00 0.00
[5,10] 0.00 0.00 0.16
[10,20] 0.00 0.00 -0.72

0.6
[1,5] 0.00 0.00 1.49
[5,10] 0.00 0.00 -1.69
[10,20] 0.00 0.00 -0.15

0.8
[1,5] -0.02 0.00 -2.98
[5,10] 0.00 0.00 -0.03
[10,20] 0.00 0.00 -0.26

1.0
[1,5] 0.00 0.00 0.51
[5,10] 0.00 0.00 -1.54
[10,20] 0.00 0.00 -0.10

1.2
[1,5] 0.00 0.00 0.01
[5,10] 0.00 0.00 -0.00
[10,20] 0.00 0.00 0.00

1.4
[1,5] 0.00 0.00 0.00
[5,10] 0.00 0.00 0.00
[10,20] 0.00 0.00 0.00

Table 23: Percentage average revenue improvement over CDLP for Small-Network example.

α v0 CDLP 2PC ESDCP2 SDCP

0.4
[1,5,5,1] 2,040 2,040 2,040 2,040
[1,10,5,1] 2,232 2,232 2,232 2,478
[5,20,10,5] 3,720 3,720 3,720 4,039

0.6
[1,5,5,1] 5,020 5,020 5,020 4,284
[1,10,5,1] 5,446 5,446 5,446 6,872
[5,20,10,5] 4,908 4,908 4,908 5,370

0.8
[1,5,5,1] 6,266 6,314 6,266 7,705
[1,10,5,1] 5,666 5,666 5,666 6,391
[5,20,10,5] 5,980 5,980 5,980 5,322

1.0
[1,5,5,1] 6,848 6,848 6,848 7,738
[1,10,5,1] 6,505 6,505 6,505 6,973
[5,20,10,5] 6,951 6,951 6,951 7,123

1.2
[1,5,5,1] 7,932 7,932 7,932 7,947
[1,10,5,1] 7,545 7,545 7,545 7,545
[5,20,10,5] 6,987 6,987 6,987 6,987

1.4
[1,5,5,1] 8,077 8,077 8,077 8,077
[1,10,5,1] 7,816 7,816 7,816 7,816
[5,20,10,5] 6,991 6,991 6,991 6,991

Table 24: Standard deviations of revenue simulations with 2,000 sample paths for the Small-Network example.
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such as airline and retail, where the conditions apply. Using a formulation based on segments and their

consideration sets, we add constraints that are easy to generate and highly effective—the methods obtain

the same value as CDLP in all the benchmark test instances, usually in a fraction of CPU time (Table 16)

required for alternate approaches. Moreover, the formulation and the constraints operate at a high level

of generality being applicable to a general discrete-choice model of demand, and of course for overlapping

customer segments. Finally, we perform extensive numerical simulations to test the methods. Our results

indicate that (SDCP ) with product constraints can be very effective when segment consideration sets are

small, as is often the case in many applications, and this strategy of starting with a looser relaxation than

CDLP (SDCP ) and gradually adding constraints to tighten the formulation is a viable solution method.
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