
On Bounds for Network Revenue Management

Kalyan Talluri ∗

May 25, 2009

Abstract

The Network Revenue Management problem can be formulated as a stochastic dynamic
programming problem (DP or the “optimal” solution V ∗) whose exact solution is computation-
ally intractable. Consequently, a number of heuristics have been proposed in the literature, the
most popular of which are the deterministic linear programming (DLP) model, and a simulation
based method, the randomized linear programming (RLP) model. Both methods give upper
bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used
to provide control values that can be used in practice to make accept/deny decisions for book-
ing requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds,
the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and
showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as
it appears from empirical studies and practical experience that models that give tighter bounds
also lead to better controls (better in the sense that they lead to more revenue). In this paper
we give tightened versions of three bounds, calling them sAR (strong Affine Relaxation), sLR
(strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations
between them. Specifically, we show that the sPHLP bound is tighter than sLR bound and
sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP
bounds can potentially be applied to other instances of weakly-coupled dynamic programming.

Key words. revenue management, bid-prices, relaxations, bounds.

1 Introduction

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for a
night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for
a unit of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes
at a fixed point of time in the future. Customers are independent of each other and arrive randomly
during a sale period, and demand one unit of resource each. Sale is online, so the firm has to decide
at the time of each customer’s arrival if it wishes to sell (at a specific price) or not, the tradeoff
being selling too much at too low a price early and running out of capacity, or, rejecting too many
low valuation customers and ending up with excess unsold inventory. That is a brief description
of revenue management. The reader should consult the books by Talluri and van Ryzin [15] or
Phillips [10] or the survey articles of McGill and van Ryzin [9], Elmaghraby and Keskinocak [5], and

∗Kalyan Talluri, ICREA and UPF, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain,
email: kalyan.talluri@upf.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6591738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bitran and Caldentey [4] for a background on the theory and a survey of applications of revenue
management.

In industries such as hotels and airlines the products consume bundles of different resources
(multi-night stays, multi-leg itineraries) and the decision to accept or reject a particular product at
a certain price depends on the future demands and revenues for all the resources used by the product
(and also indirectly, all the resources in the network). Network revenue management (network RM)
is control based on the demands for the entire network. Chapter 3 of Talluri and vanRyzin [15]
contains all the necessary background on network RM.

The network revenue management problem, under certain assumptions on the demand process,
can be formulated as a stochastic dynamic programming problem. The controls of this dynamic
program are subsets of products to open up for sale at any given point in time. The state is
time remaining and the remnant capacities on the resources. This dynamic program is practically
impossible to solve for even small networks. So a number of heuristics have been devised that
generate controls to make the accept/reject decisions, of which the oldest and most well-known and
widely used are the the Deterministic Linear Programming (DLP) , proposed by Simpson [11] and
analyzed in Williamson [19], the Randomized Linear Programming (RLP) method in Talluri and
van Ryzin [13], and the Displacement Adjusted Virtual Nesting (DAVN) heuristic of Belobaba [3].
The mathematical programs on which DLP and RLP are based can be shown to form upper bounds
on the optimal value.

Recently, Adelman [1] and Topaloglu [18] have proposed new heuristics for network RM, based
on an affine approximation to the linear programming formulation of the dynamic program, and a
Lagrangian relaxation of the dynamic program respectively. Both show that their formulations give
provably tighter upper bounds on the optimal solution than the DLP upper bound.

Tight bounds are of great interest as it appears from empirical studies and practical experience
that models that give tighter bounds also lead to better controls (better in the sense that they lead to
more revenue). In this paper we give tightened versions of three bounds, calling them sAR (strong
Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight
LP), and show relations between them. Specifically, we show that the sPHLP bound is tighter
than sLR bound and sAR bound is tighter than the LR bound. The technique for deriving the
sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic
programming.

2 The optimal dynamic program

2.1 Notation

A product is a specification of a combination of resources and a price. (For example an itinerary-fare
class combination for an airline network.) We assume that the booking horizon begins at time 0 and
all the resources are consumed instantaneously at time τ . Time is discrete and assumed to consist
of τ intervals, indexed by t. We make the standard assumption that the intervals are fine enough so
that at most one customer arrives in each period.

The underlying network has m resources and n products. The current capacity on resource i
at time t is ri,t and the vector of capacities rt, so the initial set of capacities at time 0 is r0. Let
r̄0 = maxi(|ri,0|. Products are indexed by j and resources by i. The revenue from product j is fj .

2

A resource i is said to be in product j (i ∈ j) if j uses resource i. We represent this by ai,j = 1 if
i ∈ j, and ai,j = 0 if i /∈ j, or alternately with the 0-1 incidence vector aj of product j. For both r
and a, the number of indices and context should make it clear if it is a scalar or a vector. An arrival
is a purchase request for a product in a specific interval of time.

We represent a mathematical program or a dynamic program by a label that also serves as the
value of the program. For example, (DLP) represents the deterministic linear program (described
below) and DLP represents the objective function value of the optimal solution.

2.2 Demand Model

The future demand-to-come for each product is a random variable with a known distribution. The
distribution and the parameters of this distribution are assumed to be known (statistically speaking)
by some process of estimation and forecasting before the optimization.

In period t, a request for product j appears with probability pj,t. Our assumption of at most one
arrival per unit time translates to

∑
j pj,t � 1. We will assume that the demands for the different

products are independent of each other, independent across time and across products.

As in [18], to make the notation simpler, we add a dummy product in each period with ai, = 0
for all resources i and revenue 0 with an arrival probability of 1−

∑
j pj,t in period t. So from now

on, we assume
∑
j pj,t = 1 for all periods t.

The customer behavior assumption is simple: customer who wants product j, if it is unavailable
(sale closed by the firm), will simply not purchase anything and disappear, rather than purchasing
another available product. Note moreover that demand is specified at the product level. Together,
these assumptions go under the name of the independent class assumption in the RM community.

We shall be discussing simulation-based methods in this paper. The idea is to simulate the future
using our forecasts—the implicit assumption being demand does in fact follows our distributional
assumptions and, statistically, the forecasts. When put this way, it might seem a stretch, but it is
actually no different from optimizing the expected value given certain distributional assumptions.

An instance (sample path) is a single set of simulated realizations of all the demands (a sample
path) for all the products from 0 to τ . A large number of instances are generated to capture the
variance in the distribution, and each instance-specific data will be indexed with a superscript k. For
example: the demand for product j in time period t generated in instance k would be pkj,t, capacity
on resource i, at time t in instance k (under some control) is represented by rki,t, etc.

2.3 Controls

For a capacity vector rt, define the set of all “acceptable” products as Art = {j|aj ≤ rt}. The
control at time t is a subset of acceptable products that are open; i.e., given the remnant capacity
vector rt at time t, we can accept a certain set of products but based on our forecasts of demand to
come, we may close some of these products for sale and open the rest of the acceptable set for sale.

Let Urt denote the collection of all subsets of Art , i.e., the feasible controls. For a u ∈ Urt , define
urt as the incidence vector of the elements of u (a vector of size n, the number of products). If
the context is clear, we write uj,t as the j’th element of this vector and ui,j,t = ai,juj,t. We use a
different notation when the incidence vector is a vector of decision variables — y instead of u (yj,t

3

etc.).

As we deal with decomposition strategies, where the network problem is decomposed into single-
resource problems, we define the controls at the level of resource i as follows: Define Ari,t = {j|ai,j ≤
ri,t}. Define Ui,ri,t as a collection of all subsets of {j ∈ Ari,t |i ∈ j}. ui,j,t are the elements of the
incidence vector of u ∈ Ui,ri,t .

Note that the level of control we are defining is the most general possible, and not necessarily
the RM controls used in practice, where a more restrictive nested structure or a threshold price
structure called bid-price control is usually imposed1, due to industry practice, tractability or system
limitations.

2.4 Dynamic Program

The dynamic program to determine optimal controls u∗rt is as follows:

Let Vt(rt) denote the maximum expected revenue to go, given remaining capacity rt in period t.
Then Vt(rt) must satisfy the Bellman equation

Vt(rt) = max
u∈Urt

∑
j

pj,t {fjuj,t + Vt+1(rt − uj,taj)}

 (1)

with the boundary condition
Vτ+1(r) = 0, ∀r. (2)

Let V ∗(r0) denote the optimal value of this dynamic program from 0 to τ , for the given initial
capacity vector r0.

3 Classical bounds

The deterministic linear program and the randomized linear program reviewed here serve as bench-
mark methods in network revenue management.

3.1 Deterministic Linear Program

One of the earliest methods proposed for generating network bid-prices is a simple and compact linear
program that generally goes by the name of Deterministic Linear Program (DLP). See Chapter 3.3.1
of [15] for a discussion of this method and its variants. The method consists in solving the following
linear program

max
∑
j,t

fjyj,t (3)

1Roughly, a bid-price control is as follows: at any given time t, a bid-price, a non-negative real number is associated
with each resource and a request for product j is accepted if the sum of the bid-prices on the resources that j consumes
is less than the revenue from j.

4

(DLP) s.t.
∑
t

∑
j

ai,jyj,t ≤ ri,0 ∀i

0 ≤ yj,t ≤ pj,t

and using the dual prices as the bid-prices for control.

DLP is quite popular as it is very easy to program and can be solved quickly using any off-the-
shelf LP software package. Its performance is quite reasonable, and often serves as the benchmark
method in simulation comparisons.

3.2 Randomized Linear Program

Consider a simulation where we generate N instances from the demand data. Each such generated
instance k leads to a perfect-hindsight linear program PHLP k as follows. Let pkj,t = 1 if j is
generated at time t in instance k and 0 otherwise.

max
∑
j,t

fjp
k
j,ty

k
j,t

(PHLP k) s.t.
∑
t

∑
j3i

ykj,t ≤ ri,0 ∀i (4)

0 ≤ ykj,t ≤ 1

Our formulation of (PHLP k) is slightly unconventional and different from the DLP formulation
for instance k — notice that we have moved pkj,t from the constraints to the objective function. As
pkj,t is either 0 or 1, this is equivalent to having the constraint 0 ≤ ykj,t ≤ pkj,t in the more conventional
formulation.

The randomized linear programming method RLP takes the average of the dual prices of PHLP k

corresponding to resource i as the bid-price for resource i.

Define PHLP as the average of the objective values of the linear programs (PHLP (k)). Define
PHIP as the average over the integer program versions of (PHLP (k)) where we add the restriction
ykj,t ∈ {0, 1} (variables of the corresponding integer program that we call (PHIP (k))).

We do not specify the choice of the number of generated sample paths, N , but just assume it is
large enough and equal to n1 × n2 × · · · × nt × · · · × nτ , where nt are samples of arrivals drawn in
period t. We make this more precise at the beginning of Section 6

Also, in [15] the RLP method (and therefore PHLP) is presented in terms of taking expectation
over a sample path. We explicitly index the generated instances because in a proof later on we need
to link different instances by constraints.

The fact that DLP and RLP are upper bounds on V ∗(r0) is quite easy to prove; see for in-
stance [17].

4 New bounds

Recently Adelman [1] and Topaloglu [18] have proposed new bounds for the network RM problem
based respectively on an affine approximation of the dynamic program (the AR bound) and a

5

Lagrangian relaxation approach to dynamic programming (the LR bound).

4.1 The LR bound

Let the decision variable yi,j,t = 1 if we accept a request for product j on resource i in period t and
0 otherwise. Let ei be a m dimensional vector with 1 in position i and 0 elsewhere. The optimality
condition (1) can be written as

Vt(rt) = max
∑
j

pj,t{fjyı,j,t + Vt+1(rt −
∑
i∈j

yi,j,tei}

(DP) s.t. yi,j,t ≤ ri,t ∀j,∀i ∈ j (5)
yı,j,t − yi,j,t = 0 ∀j,∀i ∈ j (6)
yi,j,t ∈ {0, 1}.

Topaloglu in [18], augments the set of legs by a dummy resource ı with infinite capacity, and sets all
products to use one unit of this dummy resource ı. So yı,j,t is an extra, dummy, unrestricted variable
whose sole purpose is to impose the condition that we either accept a product on all resources, or
reject it on all the resources that the product uses.

Notice that the constraints are constraints of a recursive dynamic program, so the variable yi,j,t
has to be interpreted as a state-dependent variable and strictly speaking ought to be written as
yi,j,t,rt , i.e., one for each possible state rt at time t, i and j, as there are a set of constraints for all
possible states in the future. If there is any reason for confusion, we explicitly write them so. The
set of products j with yi,j,t,rt = 1 represents the set of products on resource i open for sale at time
t given a state rt.

Now relax the constraints of the form yı,j,t − yi,j,t = 0 with a set of Lagrange multipliers λ =
{λi,j,t} to obtain:

V λt (rt) = max
∑
j{pj,tfjyı,j,t −

∑
i∈j λi,j,tyı,j,t +

∑
i∈j λi,j,tyi,j,t +

pj,tV
λ
t+1(rt −

∑
i∈j yi,j,tei)}

s.t.
(LR) yi,j,t ≤ ri,t ∀j,∀i ∈ j (7)

yi,j,t ∈ {0, 1}.

Topaloglu ([18]) shows that (7) break up into resource-level dynamic programs. We simplify this
result slightly by showing later (Proposition 4) that one can assume that the optimal multipliers
satisfy

∑
i∈j λi,j,t = pj,tfj—which makes the decomposition transparent, as the objective function

and the constraints separate by resource.

There are a few small differences from the original formulation of [18]:

• Instead of scaling the multipliers by pj,t as in [18] we use the unscaled version for clarity.

• λi,j,t are defined only for i ∈ j.

Define the LR bound LR = minλ V λ0 (r0). Topaloglu [18] shows:

DLP ≥ LR ≥ V ∗.

6

The main advantage of Topaloglu’s method is that a relatively small set of Lagrange multipliers are
used to relax the dynamic program. Another interpretation is that a single set of state-independent
but time and product-dependent Lagrange multipliers are used for all future time periods, reducing
the state-space of the multipliers. And once relaxed, the problem decomposes into resource-level
problems with much smaller state spaces.

4.2 The AR bound

Adelman’s idea is to first formulate the dynamic program as a linear program and then use an affine
relaxation (as a special case of a broader proposal of relaxations based on basis functions) of the
dynamic programming value functions.

The dynamic program (1) can be formulated as a linear program, albeit with a prohibitively large
set of variables and constraints, as follows. The decision variables are Vt(rt), one for each possible
state vector rt at time t.

V ∗(r0) = mint,Vt(rt) V0(r0)

s.t. Vt(rt) ≥
∑
j∈u

pj,tfjuj,t +
∑
j

pj,tVt+1(rt − ajuj,t) ∀t, rt, u ∈ Urt (8)

Vτ (·) = 0

The linear program (8) has an exponential number of variables and constraints. The AR relaxation
imposes a specific affine functional form on the variables:

Vt(rt) ≈ θt +
∑
i

ri,tvi,t, ∀t, rt. (9)

So the number of variables at least are reduced to number of resources multiplied by the number
of periods. The number of constraints however remains very large, but techniques such as column-
generation can be brought to bear on a solution. A rough interpretation of Vi,t is that it represents
the marginal value of resource i at time t. Substituting (9) into (8) gives the linear program

minθ,vi,t θ0 +
∑
i

ri,0vi,0

(AR) s.t.

θt − θt+1 +
∑
i

{ri,tvi,t − (
∑
j

pj,t(ri,t − ui,j,t))vi,t+1} ≥
∑
j∈u

pj,tfj ∀t, rt, u ∈ Urt

vi,t ≥ 0

Adelman [1] shows:
DLP ≥ AR ≥ V ∗.

5 sLR

In this section we tighten the Lagrangian bound and define informally the connection between the
dynamic program, policies and PHLP .

7

5.1 Strong Lagrangian Bound (sLR)

As we mentioned at the end of Section 4.1 the Lagrangian multipliers used to decompose the DP
are state-independent—for each product j and time t, the λi,j,t, i ∈ j are constants across all states.
One natural idea to try is to make these state-dependent somehow while keeping the number of
multipliers to a reasonable level. To this end, relax the constraints of (6) by multipliers λi,j,t,ri,t ,
where ri,t is the capacity on leg i at time t. Notice that the multipliers do not depend on the state
of the network rt, but on the capacities at the resource-level, so the number of multipliers is mnτr̄0.
We label these (partially) state-dependent multipliers as λr. The relaxation becomes:

V λ
r

t (rt) = max
∑
j{[pj,tfj −

∑
i∈j λi,j,t,ri,t]yı,j,t +

∑
i∈j λi,j,t,ri,tyi,j,t +

pj,tV
λr

t+1(rt −
∑
i∈j yi,j,tei)}

s.t.
yi,j,t ≤ ri,t ∀j,∀i ∈ j (10)

yi,j,t ∈ {0, 1}

However, one quickly sees that (10) does not decompose by the resources because of the term
[pj,tfj −

∑
i∈j λi,j,t,ri,t]yı,j,t. The summation is dependent on the state vector rt, so even though it

gives a stronger bound than LR, it is not computable. We describe below two approximations to
(10) that make it computationally tractable.

5.1.1 Decomposing the problem

To make (10) tractable, one natural idea to try is to introduce new variables wi,j,t that satisfy the
equation fj =

∑
i∈j wi,j,t and substitute into V λ

r

t (rt). So the term in the square brackets becomes
[pj,t

∑
i∈j wi,j,t −

∑
i∈j λi,j,t,ri,t]. As in Topaloglu [18] we can eliminate yı,j,t by replacing

[pj,t
∑
i∈j

wi,j,t −
∑
i∈j

λi,j,t,ri,t]yı,j,t

by
[pj,t

∑
i∈j

wi,j,t −
∑
i∈j

λi,j,t,ri,t]
+,

where [x]+ = max{0, x}. Now observe that

[pj,t
∑
i∈j

wi,j,t −
∑
i∈j

λi,j,t,ri,t]
+ ≤ [

∑
i∈j

[pj,twi,j,t − λi,j,t,ri,t]+]+ =
∑
i∈j

[pj,twi,j,t − λi,j,t,ri,t]+

So we replace [pj,tfj−
∑
i∈j λi,j,t,ri,t]yı,j,t by its upper bound

∑
i∈j [pj,twi,j,t−λi,j,t,ri,t]+ and we get

a bound which does decompose by resource, and hence is computable.

For a given wi,j,t, fj =
∑
i∈j wi,j,t,∀j, t, define

V w,λ
r

t (rt) = max
∑
j{

∑
i∈j [pj,twi,j,t − λi,j,t,ri,t]+ +

∑
i∈j λi,j,t,ri,tyi,j,t +

pj,tV
w,λr

t+1 (rt −
∑
i∈j yi,j,tei)}

s.t.
(LR(w, λr)) yi,j,t ≤ ri,t ∀j,∀i ∈ j (11)

yi,j,t ∈ {0, 1}.

8

and then we find the best bound by calculating min{λr,w|fj=
∑
i∈j wi,j,t,∀j,t} V

w,λr

0 (r0); let λ∗r, w∗

denote the minimizers. Unfortunately, we do not improve over LR.

Proposition 1 LR = min{λr,w|fj=
∑
i∈j wi,j,t,∀j,t} V

w,λr

0 (r0).

Proof
As we show in Proposition 4 in the next section, the optimal Lagrangian multipliers of (LR) can be
assumed to satisfy

∑
i∈j λi,j,t = fjpj,t, ∀j, t. So LR corresponds to a specific choice wi,j,t = λi,j,t

pj,t

and λi,j,t,ri,t = λi,j,t, and hence LR ≤ V w
∗,λ∗r

0 (r0).

In the other direction, in LR, set λ∗i,j,t of LR equal to pj,tw∗i,j,t. For any given state rt , in LR
the revenue obtained from j from resource i ∈ j in that state is λ∗i,j,tyi,j,t = pj,tw

∗
i,j,tyi,j,t; whereas,

in (11), the revenue from j from resource i ∈ j in that state is

[pj,tw∗i,j,t − λ∗i,j,t,ri,t]
+ + λ∗i,j,t,ri,tyi,j,t ≥ pj,tw

∗
i,j,tyi,j,t.

Q.E.D

Even though we could not improve over LR, formulation (LR(w, λr)) is useful as it shows a way
to tighten LR bound.

5.1.2 Another attempt at decomposing the problem

LR can be tightened by obtaining the optimal separable approximation to the troublesome quan-
tity [pj,tfj −

∑
i∈j λi,j,t,ri,t]

[+] as follows: Let variables wi,j,t,ri,t satisfy
∑
i∈j wi,j,t,ri,t ≥ 0 and∑

i∈j wi,j,t,ri,t ≥ [pj,tfj −
∑
i∈j λi,j,t,ri,t] for all states rt; We replace [pj,tfj −

∑
i∈j λi,j,t,ri,t]

[+] by∑
i∈j wi,j,t,ri,t .

This approximation is clearly an upper bound on (10) as in each state we are tallying a quantity
strictly greater than in (10) while keeping all other parameters exactly the same. So fixing a policy
and summing the transition and state-dependent rewards, we would end up with a higher value
function in this approximation.

We define sLR (strengthened LR or optimal separable LR) as follows: Define variables λi,j,t,ri,t
and wi,j,t,ri,t , such that ∑

i∈j
wi,j,t,ri,t ≥ 0 (12)

and ∑
i∈j

wi,j,t,ri,t ≥ [pj,tfj −
∑
i∈j

λi,j,t,ri,t] (13)

for all states rt; and the dynamic program

V w
r,λr

t (rt) = max
∑
j{

∑
i∈j wi,j,t,ri,t +

∑
i∈j λi,j,t,ri,tyi,j,t +

pj,tV
wr,λr

t+1 (rt −
∑
i∈j yi,j,tei)}

s.t.
yi,j,t ≤ ri,t ∀j,∀i ∈ j (14)

yi,j,t ∈ {0, 1}.

9

Then, define sLR = min{wi,j,t,ri,t ,λi,j,t,ri,t ,t=0,...,τ,∀ri,t} V
wr,λr

t (r0), subject to (12) and (13).

The decomposition procedure of the previous section combined with Proposition 1 shows

Proposition 2 sLR ≤ LR.

sLR decomposes by resource for a fixed wi,j,t,ri,t , λi,j,t,ri,t . While the size of the problem is much
larger than (LR), it has the same convexity properties as (LR) (convex in λ and w as V w

r,λr

t (rt)
can be formulated as a linear program where all the w’s and λ’s appear only on the right hand-side
of the linear program). So it can be solved by using the same sub-gradient optimization techniques
of Topaloglu [18].

5.2 Policy interpretation

We would like to compare sLR with PHLP . The former is a dynamic program, and the latter a
heuristic that is based on generated sample paths. To make the comparison we reinterpret the sLR
in terms of sample paths and policies.

For a fixed set of wr’s and λr’s, sLR is a finite-period, finite-state dynamic program and hence
the solution can be stated in terms of a policy—a specification of the optimal decision in each period
at each state. We specify a policy π as a map from time and state (remaining capacity) to a subset
of acceptable products from the set of feasible products.

π : (t, rt)→ Urt

Since the dynamic program of sLR decomposes by resource for a fixed set of wr’s and λr’s, we define
the policies at the resource-level as:

πi : (t, ri,t)→ Ui,ri,t

For a given set of wr’s, λr’s and πi, let V w
r,λr

i,0 (πi) be the expected revenue from applying policy πi.

sLR can be rewritten in terms of policies as

sLR = min
wr,λr

∑
i

max
πi

V w,λ
r

i,0 (πi) = min
λr

max
πi,i=1,...,m

min
w

∑
i

V w,λ
r

i,0 (πi) (15)

The value function V w,λ
r

i,0 (πi) can be interpreted in terms of sample paths as follows: Generate N
sample paths and for the fixed w’s, λr’s and πi’s, observe the amount of revenue obtained on that
sample path. The average of the observed revenue as N →∞ equals V w,λ

r

i,0 (πi).

We write it in this form and give this interpretation because we introduce policy constraints and
compare sLR with PHLP in the next section.

6 A joint framework for PHLP and sLR

In this section we interpret PHLP in the framework of LR and sLR, showing they are different
relaxations of a dynamic program disaggregated over sample paths. Then we give a a stronger
version of PHLP called sPHLP and show that it is a tighter bound than sLR.

10

6.1 Some properties of the Lagrange multipliers

First, we state Proposition 1 of [18] that shows how (7) breaks up into resource-level dynamic
programs (modified to use unscaled multipliers).

Proposition 3 [18] For a fixed λ, for resource i, define a resource-level dynamic program recursion
as

ϑλi,t(ri,t) = max
yi,j,t∈{0,1}

∑
j∈Ai,ri,t

λi,j,tyi,j,t + pj,tϑ
λ
i,t+1(ri,t − yi,j,t).} (16)

Then,

V λt (rt) =
τ∑
t′=t

∑
j

[fjpj,t′ −
∑
i∈j

λi,j,t′]+ +
∑
i

ϑλi,t(ri,t), (17)

for all t, rt.

We are interested in minimizing V λ0 (r0) over λ. The following shows we can restrict ourselves to λ’s
that satisfy

∑
i∈j λi,j,t = fjpj,t.

Proposition 4 The optimal Lagrangian multipliers can be assumed to satisfy
∑
i∈j λi,j,t = fjpj,t, ∀j, t.

Proof
Suppose for product j and time t′ ≥ t have

∑
i∈j λi,j,t′ > fjpj,t′ . Then for some i ∈ j, λi,j,t′ > 0 ,

and letting δ = min{λi,j,t′ , λi,j,t′ − fjpj,t′} replace λi,j,t′ by λδi,j,t′ = λi,j,t′ − δ.

ϑλ
δ

i,t(ri,t) ≤ ϑλi,t(ri,t) as we are reducing the value of a product keeping all other product prices
the same, and as the first part of the right hand side of (17) is unaffected by this change, we get

V λ
δ

t (rt) ≤ V λt (rt).

If after performing this step,
∑
i∈j λi,j,t′ > fjpj,t′ still, we can repeat for another resource i of

this product j in this period t′ till we get equality.

Suppose for some product j and time t′,
∑
i λi,j,t′ < fjpj,t′ then for some i ∈ j, and δ =

fjpj,t′ −
∑
i λi,j,t′ replace λi,j,t′ by λδi,j,t′ = λi,j,t′ + δ.

ϑλ
δ

i,t(ri,t) ≤ ϑλi,t(ri,t) + δ,

as increasing the value of j in period t by δ keeping all other values same cannot increase the optimal
value of resource i by more than δ.

[fjpj,t −
∑
i

λi,j,t]+

however decreases by exactly δ, so
V λ

δ

t (rt) ≤ V λt (rt).

Q.E.D

11

6.2 DP and PHIP

TheRLP method originated as a more or less heuristic way to generate bid-prices, and the connection
between the DP and the PHLP and PHIP bounds, as far as we are aware of, not explicitly
formulated in the literature. In this section we show that PHIP is a relaxation of DP in its way.

Instance k of the PHIP bound, can be considered a multi-period network RM problem in its
own right, The arrival probabilities in this case are pkj,t, equal to 1 if there is an arrival of j in period
t in this instance k and 0 otherwise.

We can write (PHIP) in an aggregated form over the N generated instances, as

max
1
N

N∑
k=1

∑
j,t

fjp
k
j,ty

k
j,t (18)

(PHIP) s.t.
∑
t

∑
j3i

ykj,t ≤ ri,0 ∀i, ∀k

0 ≤ ykj,t ≤ 1

ykj,t ∈ {0, 1}.

For each generated sample path k, the (PHIP k) can in fact be formulated as a dynamic program
similar to (5) (that an integer program can be formulated as a dynamic program is nothing new,
but here our formulation follows the format of (5)).

V kt (rt) = max
∑
j

pkj,t{fjykı,j,t,rt + V kt+1(rt −
∑
i∈j

yki,j,t,ri,tei}

(PHIP kDP) s.t. yki,j,t,ri,t ≤ ri,t ∀j,∀i ∈ j (19)

ykı,j,t,rt − y
k
i,j,t,ri,t = 0 ∀j,∀i ∈ j

yki,j,t,ri,t ∈ {0, 1}.

We combine (PHIP kDP) for k = 1, . . . , N into a single dynamic program (PHIPDP) that can be
considered as solving N dynamic programs in parallel. Let rt = [r1

t , . . . , r
N
t] represent the state

vectors of all the N instances in a single vector (a vector of size N ×m).

Vt(rt) =
1
N

(
N∑
k=1

{V kt (rkt) = max
∑
j

pkj,t[fjy
k
ı,j,t,rkt

+ V kt+1(rkt −
∑
i∈j

yki,j,t,rki,t
ei)]})

(PHIPDP) s.t. yki,j,t,ri,t ≤ ri,t ∀k, ∀j, ∀i ∈ j (20)

ykı,j,t,rkt
− yki,j,t,rki,t = 0 ∀j, ∀i ∈ j (21)

yki,j,t,,ri,t ∈ {0, 1}.

with the state transition to rt+1 given by rkt+1 = rkt −
∑
i∈j y

k
i,j,t,rki,t

ei. Notice that the variables

yki,j,t,ri,t are defined for all possible ri,t, but the constraints (21) are defined only for the state we are
in at time t in instance k, namely, rkt .

Formulating PHIP as (PHIPDP) allows us to view PHIP as a relaxation of (DP) and also
brings out the connection to LR in Section 6.4.

12

To the formulation (PHIPDP) add the following constraints (with new variables yi,j,t,ri,t) that
we call policy constraints (akin to non-anticipative constraints in stochastic programming)

yki,j,t,ri,t = yi,j,t,ri,t , ∀k, j, t, ri,t, i ∈ j. (22)

The reason we can do this is because we have formulated (PHIP k) and (PHIP kDP) such that the
instance-specific pkj,t appears only in the objective function and not in the constraints (see discussion
after the formulation of PHLP k) (4).

Proposition 5 PHIPDP with the constraints (22) has the same value as V ∗(r0) from (5).

Proof
Let y∗i,j,t,rt represent the optimal decision variables (namely, a policy) of the dynamic program (5).
If we generate the sample paths and apply these controls, we get expected value of the dynamic
program, which also coincides with the value of the PHIPDP with these variables and satisfies (22),
and vice versa. Q.E.D

So PHIP is a relaxation of the policy constraints. This observation can also be applied to a
dynamic program at the resource level.

6.3 PHLP

PHLP is a linear program but it too can be formulated as a dynamic program albeit on a continuous
state space. The dynamic programming representation of PHLP k is

V kt (rt) = max
∑
j,t

pkj,t{fjykı,j,t,rt + Vt+1(rt −
∑
i∈j

yki,j,t,ri,tei}

(PHLP kDP) s.t. yki,j,t,ri,t ≤ ri,t ∀j,∀i ∈ j (23)

ykı,j,t,rt − y
k
i,j,t,ri,t = 0 ∀j, ∀i ∈ j

0 ≤ yki,j,t ≤ 1.

Using the same ideas as LR, we can relax the constraints −yki,j,t + ykı,j,t ≤ 0. However, the vari-
ables yki,j,t are actually yki,j,t,rt so there are an infinite number of Lagrange multipliers (as yki,j,t are
continuous the state rkt is continuous). Since LR uses a common set of state-independent Lagrange
multipliers across all states, it is not clear that we get the same value as PHLP k. However, since
PHLP kDP is a deterministic dynamic program, we expect that if we apply the optimal controls (or
the optimal decomposition) the state evolution is deterministic, and we reach only one state vector
at each time point, and the optimal Lagrange multipliers corresponding to the variables of these
states will “work” for all states - i.e., prevent these other states from being ever reached. This is
the intuition behind the next proposition, the proof of which, to avoid the technicalities of infinite
linear programming, uses only (finite) linear programming duality.

Equation (16) was defined with 0-1 variables. Consider the relaxed version for instance k

ϑ̂λ,ki,t (ri,t) = max
0≤yki,j,t,ri,t≤1

∑
j∈Ai,ri,t

λki,j,ty
k
i,j,t,ri,t + pkj,tϑ̂

λ,k
i,t+1(ri,t − yki,j,t,ri,t). (24)

13

and the equivalent of (17) for instance k

V̂ λ,kt (r0) =
τ∑
t=0

∑
j

[fjpkj,t −
∑
i

λki,j,t]
+ +

∑
i∈j

ϑ̂λ,ki,0 (ri,0), (25)

Proposition 6 There exist state-independent optimal Lagrange multipliers λki,j,t for the constraints
ykı,j,t,rt − y

k
i,j,t,ri,t

= 0 of (PHLP kDP) such that
∑
i∈j λ

k
i,j,t = fjp

k
j,t and PHLP kDP = V̂ λ,k0 (r0).

Proof
Consider the following (slightly different from DLP , but mimicking LR constraints), linear pro-
gramming formulation of PHLP k:

max
∑
j,t

fjp
k
j,ty

k
ı,j,t (26)

(PHLP2k) s.t.
∑
t

∑
j3i

yki,j,t ≤ ri,0 ∀i (27)

ykı,j,t − yki,j,t = 0 ∀j,∀i ∈ j (28)

yki,j,t ≤ 1 (29)

yki,j,t ≥ 0

Let y∗,ki,j,t be the optimal primal variables and µ∗,ki , λ∗,ki,j,t, γ
∗,k
j,t be the optimal dual variables corre-

sponding to (27), (28) and (29) respectively. λ∗,ki,j,t ≥ 0, and
∑
i∈j λ

∗,k
i,j,t = fjp

k
j,t as yı,j,t is unre-

stricted. Relax the constraints (28) using λ∗,ki,j,t:

max
∑
i

∑
t

∑
j3i

λ∗,ki,j,ty
k
i,j,t (30)

(PHLP2λ
∗,k) s.t.

∑
t

∑
j3i

yki,j,t ≤ ri,0 ∀i

yki,j,t ≤ 1 (31)

yki,j,t ≥ 0

From linear programming duality theory, it can easily be verified that

PHLP2k = PHLP2λ
∗,k

as y∗,ki,j,t and and µ∗,ki , γ∗,kj,t can serve as the optimal primal and dual variables of PHLP2λ
∗,k.

PHLP2λ
∗,k is composed of resource-level linear programs, each of which has the same value as

ϑ̂λ
∗,k
i,0 as can be seen by simple substitution of the y∗i,j,t variables. Q.E.D

Define the integer program version of (PHLP2λ
∗,k):

max
∑
i

∑
t

∑
j3i

λ∗,ki,j,tp
k
j,ty

k
i,j,t (32)

(PHIP2λ
∗,k) s.t.

∑
t

∑
j3i

yki,j,t ≤ ri,0 ∀i

yki,j,t ∈ {0, 1}.

14

Let (V λ
∗,k

0) be (V λ
∗

0) of (17) applied to instance k (i.e., with pkj,t). Compare (PHIP2λ
∗,k) with

(V λ
∗,k

0): as
∑
i∈j λ

∗,k
i,j,t = fjp

k
j,t, ∀j, and ignoring all j, t with pkj,t = 0, we see that they are the same.

The Lagrangian relaxation of a (maximization) integer program is a tighter upper bound than
the linear programming relaxation, and an equivalent result for the dynamic program version of the
integer program PHIP kDP , by adding the 0-1 variable restriction after relaxing (28) is as follows:

Proposition 7 PHLP k = V̂ λ
∗,k

0 (r0) ≥ V λ
∗,k

0 (r0) ≥ PHIP kDP .

Define the perfect hindsight Lagrangian relaxation as PHSLR = 1
N

∑
k V

λ∗,k
0 (r0). PHSLR is

the average of resource-level dynamic programs with product costs given by λ∗,ki,j,t. By Proposition 7,
PHLP ≥ PHSLR.

6.4 A joint view of PHIP and sLR

In this section we show that both PHIP , LR and sLR are in fact different relaxations of the same
dynamic program. This allows us to compare them in the next section.

In Section 6.2 we showed that (PHIPDP) with additional constraints approaches (DP) for
sufficiently large N . For N generated sample paths, we write (DPN) for all possible state vectors
rt as follows:

Vt(rt)N =
1
N

(
N∑
k=1

{V kt (rkt) = max
∑
j

pkj,t[fjy
k
ı,j,t,rkt

+ V kt+1(rkt −
∑
i∈j

yki,j,t,rki,t
ei)]})

(DPN) s.t. yki,j,t,ri,t ≤ ri,t ∀k, ∀j,∀i ∈ j (33)

yki,j,t,ri,t − yi,j,t,ri,t = 0 ∀k,∀j,∀i ∈ j (34)

ykı,j,t,rkt
− yki,j,t,rki,t = 0 ∀k, ∀j,∀i ∈ j (35)

ykı,j,t,rkt
− yı,j,t,rkt = 0 ∀k, ∀j (36)

ykı,j,t,rkt
− yı̄,j,t,rkt = 0 ∀k, ∀j (37)

yı̄,j,t,rkt , yı,j,t,rt , y
k
i,j,t,rki,t

, yi,j,t,ri,t ∈ {0, 1}

with state transitions as defined in (PHIPDP). yı̄,j,t,rt is a set of new dummy variables. Equations
(37) are redundant, but will serve to interpret sLR. As in (PHIPDP), constraints (33) and (34) are
defined for all states rt whereas constraints (35), (36) and (37) are defined only for the state rkt we
are in in instance k at time t.

The constraints of (DPN) implement the dynamic programming policies discussed in Section 5.2;
namely, if for two instances we have the same capacity vector, we should be making the same decision.
The variables yi,j,t,ri,t and yı,j,t,rt implement this common decision for state rt.

The value of (DPN) converges to the value of (DP) by considering the state vector rt = [rt, . . . , rt]
by invoking a sample-path argument: fixing the variables yi,j,t,ri,t and yı,j,t,rt common to both, as
N →∞ the value of (DPN) converges to that of (DP).

Relaxations of the constraints of (DPN) lead to PHIP and LR: Relaxing equations (34), equa-
tions (36) and equations(37) with 0 (that is removing them) leads to PHIP . Relaxing equations

15

(35) with λi,j,t and substituting yi,j,t,ri,t and yı,j,t,rt for yki,j,t,ri,t and ykı,j,t,rt respectively leads to
LR.

6.5 (sLR) from (DPN)

We can derive sLR from (DPN) as follows. Relax equations (35) with λi,j,t,ri,t and equations
(37) with wi,j,t,ri,t whenever rki,t = ri,t; with the multipliers satisfying

∑
i∈j wi,j,t,ri,t ≥ 0 and∑

i∈j(wi,j,t,ri,t + λi,j,t,ri,t) ≥ fjpj,t for all states rt. In the objective function, the coefficient of
yı̄,j,t,rkt is

∑
i∈j wi,j,t,rki,t , the coefficient of yi,j,t,rki,t is λi,j,t,rki,t and the coefficient of yk

ı,j,t,rkt
is [pkj,tfj−∑

i∈j(λi,j,t,rki,t + wi,j,t,rki,t)]. After relaxing equations (35) with λi,j,t,ri,t and equations (37) with
wi,j,t,ri,t , (DPN) becomes the following:

V N,w
r,λr

t (rt) =
1
N

(
N∑
k=1

V k,w
r,λr

t (rkt) = max{
∑
j

(pkj,tfj −
∑
i∈j

(λi,j,t,rki,t + wi,j,t,rki,t))y
k
ı,j,t,rkt

+
∑
i∈j

λi,j,t,rki,ty
k
i,j,t,rki,t

+ (
∑
i∈j

wi,j,t,rki,t)yı̄,j,t,rkt + pkj,tV
k
t+1(rkt −

∑
i∈j

yki,j,t,rki,t
ei)})

(DPN,w
r,λr

1) s.t. yki,j,t,ri,t ≤ ri,t ∀k, ∀j,∀i ∈ j (38)

yki,j,t,ri,t − yi,j,t,ri,t = 0 ∀k, ∀j,∀i ∈ j (39)

ykı,j,t,rkt
− yı,j,t,rkt = 0 ∀k, ∀j (40)

yı,j,t,rt , yı̄,j,t,rt , y
k
ı,j,t,rkt

, yki,j,t,rki,t
, yi,j,t,ri,t ∈ {0, 1}

We can substitute yi,j,t,ri,t for yk
i,j,t,rki,t

using (39) whenever ri,t = rki,t, and yı,j,t,rt for yk
ı,j,t,rkt

by (40)

whenever rt = rkt . As
∑
i∈j wi,j,t,ri,t ≥ 0, we can replace (

∑
i∈j wi,j,t,ri,t)yı̄,j,t,rt by (

∑
i∈j wi,j,t,ri,t)

(as yı̄,j,t,rt does not appear in the constraints once we relax (37)). Replacing yki,j,t,ri,t by yi,j,t,ri,t
and yk

ı,j,t,rkt
by yı,j,t,rt leads to

V N,w
r,λr

t (rt) =
1
N

(
∑
rt

∑
k∈S(rt)

V k,w
r,λr

t (rt) = max{
∑
j

(pkj,tfj −
∑
i∈j

(λi,j,t,ri,t + wi,j,t,ri,t))yı,j,t,rt

+
∑
i∈j

λi,j,t,ri,tyi,j,t,ri,t + (
∑
i∈j

wi,j,t,ri,t)yı̄,j,t,rt + pkj,tV
k
t+1(rt −

∑
i∈j

yi,j,t,ri,tei)})

(DPN,w
r,λr) s.t. yi,j,t,ri,t ≤ ri,t ∀k, ∀j,∀i ∈ j (41)

yı,j,t,rt , yı̄,j,t,rt , yi,j,t,ri,t ∈ {0, 1}

Proposition 8 For every ε > 0, there is a Nε such that for all N > Nε the value of |sLR −
DPN,w

r,λr | < ε, where wr, λr are the optimal multipliers of sLR.

Proof
From (14), the sLR subproblem for resource i is the following

V w
r,λr

i,t (ri,t) = max
∑
j3i{wi,j,t,ri,t + λi,j,t,ri,tyi,j,t,ri,t +

pj,tV
wr,λr

i,t+1 (ri,t − yi,j,t,ri,t)}
s.t.

16

yi,j,t,ri,t ≤ ri,t ∀j 3 i (42)
yi,j,t,ri,t ∈ {0, 1}.

Assume as in sLR that λi,j,t,ri,t and wi,j,t,ri,t satisfy, for all rt

pj,tfj −
∑
i∈j

(λi,j,t,ri,t + wi,j,t,ri,t) ≤ 0 (43)

and ∑
i∈j

wi,j,t,ri,t ≥ 0. (44)

For any fixed solution yi,j,t,ri,t (i.e., fixing a policy), define S(rt) = {k|rkt = rt}; i.e., the subset
of the instances 1, 2, . . . , N where the state is rt at time t. If no instance is in state rt, then S(rt)
is defined as ∅. Likewise, define S(ri,t) = {k|rki,t = ri,t}; i.e., the subset of the instances 1, 2, . . . , N
where the state on resource i at time t is ri,t. Let nrt = |S(rt)| and nri,t = |S(ri,t)|. As under any
policy we are at most in exactly one state per instance, we have

∑
rt
nrt = N .

Consider the co-efficient of yı,j,t,rt in period t under a fixed policy

1
N

∑
k∈S(rt)

(pkj,tfj−
∑
i∈j

(λi,j,t,ri,t+wi,j,t,ri,t))yı,j,t,rt =
nrt
N

(

∑
k∈S(rt)

pkj,t

nrt
fj−

∑
i∈j

(λi,j,t,ri,t+wi,j,t,ri,t))yı,j,t,rt

(45)

yı,j,t,rt = 0 if {
∑
k∈S(rt)

pkj,t
nrt

fj −
∑
i∈j(λi,j,t,ri,t +wi,j,t,ri,t)} ≤ 0 and yı,j,t,rt = 1 otherwise. Likewise,

the optimal solution of (DPN,w
r,λr) will always have yı̄,j,t,rt = 1 because of our assumption (44).

First, as a sub-optimal solution to (DPN,w
r,λr), set yı,j,t,rt = 0 irrespective of the value of its

co-efficient. Once we substitute these values, the dynamic program ((DPN,w
r,λr)) decomposes into

resource-level dynamic programs, as there are no variables or constraints in common between the
different resources. Let ri,t be the N -dimensional vector of state on resource i in instance k. The
decomposed problem on resource i is

V N,w
r,λr

i,t (ri,t) =
1
N

(
∑
ri,t

∑
k∈S(ri,t)

V k,w
r,λr

i,t (rki,t) = max{
∑
j3i

λi,j,t,ri,tyi,j,t,ri,t + wi,j,t,ri,t (46)

+pkj,tV
k
i,t+1(ri,t − yi,j,t,ri,t)})

(DPN,w
r,λr

i) s.t. yi,j,t,ri,t ≤ ri,t ∀j 3 i, (47)
yi,j,t,ri,t ∈ {0, 1}

and
∑m
i=1 V

N,wr,λr

i,t (ri,t) is the value of the solution (DPN,w
r,λr) with yı,j,t,rt set to 0.

For N large, V N,w
r,λr

i,t (ri,t) converges to the value of sLR on resource i: Fix the optimal policy
of the dynamic program (42). The value of the dynamic program is approximated arbitrarily closely
by generating sample paths and applying the policy on each sample path, and taking the average of
the value for each sample path; in short, the solution applied to (DPN,w

r,λr

i), and vice versa.

One final detail is the effect of setting yı,j,t,rt = 0 in (DPN,w
r,λr). We argue that for N large,

the effect of this is negligible, that is bounded by ε.

Call a state rt reachable under a fixed policy if rkt = rt for some instance k applying the policy.
If a state is reachable it is reachable an infinite number of times as N → ∞ as we have a finite

17

number of periods and random variables with discrete distributions (Bernoulli for each product) in
each period. So, for all reachable states rt under a fixed policy as N →∞, nrt →∞, and we expect∑

k∈S(rt)
pkj,t

nrt
→ pj,t.

Consider the optimal solution (in other words, policy) for a fixed N for the dynamic program
(DPN,w

r,λr). Since we have only a finitely many states and policies, as N → ∞ we have some
policy repeating as the optimal policy, and the value of this optimal policy is within (say) ε

2 of the
value that (DPN,w

r,λr) converges to as N →∞. Fix such a policy. Assume N is large enough (and
consequently, nrt) such that

|
∑
k∈S(rt)

pkj,t

nrt
− pj,t| ≤

ε

2nτf̄
∀t, j

for all reachable states rt under our fixed policy, where f̄ = maxj fj . The difference between an
optimal solution after we fix yı,j,t,rt = 0 and the optimal solution to (DPN,w

r,λr) under the optimal
policy, from Equation (45):

1
N

∑
t

∑
j

∑
rt

[
∑

k∈S(rt)

pkj,tfj −
∑
i∈j

(λi,j,t,ri,t + wi,j,t,ri,t)]
+

=
1
N

∑
t

∑
j

∑
rt

[
∑

k∈S(rt)

pkj,tfj − fjpj,t + fjpj,t −
∑
i∈j

(λi,j,t,ri,t + wi,j,t,ri,t)]
+

≤ 1
N

∑
t

∑
j

∑
rt

[
∑

k∈S(rt)

pkj,tfj − fjpj,t]+ + [fjpj,t −
∑
i∈j

(λi,j,t,ri,t + wi,j,t,ri,t)]
+

=
1
N

∑
t

∑
j

∑
rt

[
∑

k∈S(rt)

pkj,tfj − fjpj,t]+

=
∑
t

∑
j

∑
rt

nrt
N
fj [

∑
k∈S(rt)

pkj,t

nrt
− pj,t]+

≤
∑
t

∑
j

∑
rt

nrt
N
fj |

∑
k∈S(rt)

pkj,t

nrt
− pj,t|

≤
∑
t

∑
j

∑
rt

nrt
N

ε

2nτ

≤
∑
t

∑
j

ε

2nτ

=
ε

2

Q.E.D

6.6 sPHLP

The interpretation of sLR as a relaxation of ((DPN)) also shows a way to improve the upper bound
sLR. What, if instead of a common λi,j,t,ri,t and wi,j,t,ri,t for all instances as in sLR, we relax
the constraints using instance-specific multipliers as in PHIP : using λk

i,j,t,rki,t
, 0, and wk

i,j,t,rki,t
to

18

relax constraints (35),(36) and (37) respectively, with the restrictions that
∑
i∈j w

k
i,j,t,ri,t

≥ 0 and
[pkj,tfj −

∑
i∈j(λi,j,t,ri,t + wi,j,t,ri,t)] ≤ 0 for all states rt. We call this relaxation sPHIP and if we

ignore the integer constraints, sPHLP .

We claim that sPHIP is a tighter relaxation than sLR. Given the optimal λi,j,t,ri,t and wi,j,t,ri,t
from sLR, we define (assume pj,t > 0)

wki,j,t,ri,t =
pkj,twi,j,t,ri,t

pj,t
(48)

and

λki,j,t,ri,t =
pkj,tλi,j,t,ri,t

pj,t
(49)

Then, for all states,
∑
i∈j w

k
i,j,t,ri,t

≥ 0 and [pkj,tfj − (
∑
i∈j(λ

k
i,j,t,ri,t

+wki,j,t,ri,t)] ≤ 0, as [pj,tfj −
(
∑
i∈j(λi,j,t,ri,t + wi,j,t,ri,t))] ≤ 0 for the multipliers in sLR.

Relax the constraints (35),(36) and (37) with λk
i,j,t,rki,t

, 0, and wk
i,j,t,rki,t

to obtain:

Vt(rt)N =
1
N

(
N∑
k=1

{V kt (rkt) = max
∑
j

[(pkj,tfj − (λki,j,t,rki,t + wki,j,t,rki,t
))ykı,j,t,rkt + (

∑
i∈j

wki,j,t,rki,t
)yı̄,j,t,rkt

+
∑
i∈j

λki,j,t,rki,t
yki,j,t,rki,t

+ pkj,tV
k
t+1(rkt −

∑
i∈j

yki,j,t,rki,t
ei)]})

(PHIPN,w
r,λr

1) s.t. yki,j,t,ri,t ≤ ri,t k = 1, . . . , N, ∀j,∀i ∈ j (50)

yki,j,t,rki,t
− yi,j,t,rki,t = 0 ∀k, ∀j,∀i ∈ j (51)

yı̄,j,t,rkt , yı,j,t,rt , y
k
i,j,t,rki,t

, yi,j,t,ri,t ∈ {0, 1}

for which we can set yı̄,j,t,rkt = 1 and yk
ı,j,t,rkt

= 0 to obtain

Vt(rt)N =
1
N

(
N∑
k=1

{V kt (rkt) = max
∑
j

[
∑
i∈j

wki,j,t,rki,t
+

∑
i∈j

λki,j,t,rki,t
yki,j,t,rki,t

+pkj,tV
k
t+1(rkt −

∑
i∈j

yki,j,t,rki,t
ei)]})

(PHIPN,w
r,λr

2) s.t. yki,j,t,rki,t
≤ rki,t ∀k, ∀j,∀i ∈ j (52)

yki,j,t,rki,t
− yi,j,t,rki,t = 0 ∀k, ∀j,∀i ∈ j (53)

yki,j,t,rki,t
, yi,j,t,ri,t ∈ {0, 1}

Substituting (48) and (49) into (PHIPN,w
r,λr

2) and replacing yk
i,j,t,rki,t

by yi,j,t,ri,t we get resource-
level dynamic programs. For resource i, this is as follows:

Vi,t(ri,t)N =
1
N

(
N∑
k=1

{V kt (rki,t) = max
∑
j

[
pkj,twi,j,t,ri,t

pj,t
+
pkj,tλi,j,t,ri,t

pj,t
yi,j,t,rki,t

+pkj,tV
k
t+1(rki,t − yi,j,t,rki,t)]})

(PHIPN,w
r,λr

3) s.t. yi,j,t,ri,t ≤ ri,t ∀k,∀i ∈ j (54)
yi,j,t,ri,t ∈ {0, 1}

19

We claim

Proposition 9 ε > 0, there is a sufficiently large Nε such that for all N > Nε the value of
(PHIPN,w

r,λr

3) is within ε of the value of sLR.

Proof
(Sketch) For each resource i, consider the optimal solution corresponding to the sub-problem for
resource i in sLR. One can approximate the value for this subproblem by fixing the policy, gen-
erating sample-paths and taking the average over all the revenues obtained over the sample paths.
This is essentially the revenue obtained by (PHIPN,w

r,λr

3) for the same policy for large enough N .
Likewise, one can fix the optimal policy (it is a policy as we use a common yi,j,t,ri,t over all instances)
for (PHIPN,w

r,λr

3) and show that it approaches the revenue of sLR for each resource i. Q.E.D

In (PHIPN,w
r,λr

3), the multipliers corresponding to a j, t and k are 0 whenever pkj,t = 0. One
can assume this to be true in general. We claim

Proposition 10 For sPHIP , whenever pkj,t = 0, we can assume the optimal multipliers satisfy
λki,j,t,ri,t = wki,j,t,ri,t = 0.

Proof
As we require the multipliers to satisfy

∑
i∈j w

k
i,j,t,ri,t

≥ 0 and [pkj,tfj−
∑
i∈j(λi,j,t,ri,t+wi,j,t,ri,t)] ≤ 0,

whenever pkj,t = 0,
∑
i∈j(λi,j,t,ri,t + wi,j,t,ri,t)] ≥ 0. The multipliers affect only the value in period

t where they appear in the objective function as
∑
i∈j w

k
i,j,t,ri,t

+ λki,j,t,ri,tyi,j,t,ri,t . When pkj,t = 0
both

∑
i∈j w

k
i,j,t,ri,t

≥ 0 and
∑
i∈j(λi,j,t,ri,t +wi,j,t,ri,t)] ≥ 0, the optimal multipliers would minimize

the objective function for any fixed yi,j,t,ri,t ∈ {0, 1} by setting λki,j,t,ri,t = wki,j,t,ri,t = 0. Q.E.D

Proposition (10) implies that the number of multipliers are a lot less than the maximum possible—
two multipliers for every generated arrival in the simulation, rather than 2mnNτr̄0).

While solving sPHIP would be very difficult, sPHLP can be formulated as a linear program
with an exponential number of constraints, but with number of variables relatively small and linear
in N ; for small values of N (say 20 or 30) it is solvable even for large problems. The main advantage
of sPHLP is that even though there are exponential number of constraints, the separation problem
can be solved trivially, so we can generate violated constraints on the fly very easily.

6.7 Solving sPHLP

For a fixed λki,j,t,ri,t and wki,j,t,ri,t we formulate the maximization problem as a linear program—in
fact, a set of network-flow problems, one each for resource i and instance k, linked by constraints
(34). We then take its dual and combine it with the minimization over λki,j,t,ri,t and wki,j,t,ri,t .

The problem has an exponential set of constraints as the multipliers have to satisfy [pkj,tfj −∑
i∈j(λi,j,t,ri,t + wi,j,t,ri,t)] ≤ 0 and

∑
i∈j w

k
i,j,t,ri,t

≥ 0 for all states rt. We generate violated
constraints on the fly. For a given set of λki,j,t,ri,t and wki,j,t,ri,t ’s, finding a violated constraint is
trivial which makes the method appealing (say compared to the AR bound)

20

Figure 1: Network for resource i and instance k

First, for a fixed λki,j,t,ri,t and wki,j,t,ri,t , consider the dynamic program without constraints (34)
linking the different instances for resource i and instance k:

V kt (ri,t) = max
∑
j

[wki,j,t,ri,t + λki,j,t,ri,tyi,j,t,ri,t + pkj,tV
k
t+1(rki,t − yi,j,t,ri,t)]) (55)

(PHIP k,,w
r,λr) s.t. yi,j,t,ri,t ≤ ri,t ∀k, ∀j 3 i

yi,j,t,ri,t ∈ {0, 1}

This can be viewed as network-flow problem on an acyclic network with nodes representing the states
ri,t, a node-weight of

∑
j3i w

k
i,j,t,ri,t

, and arcs from ri,t to ri,t+1 = ri,t− 1 with revenues λki,j,t,ri,t for
each j 3 i with pkj,t = 1, and an arc from ri,t to ri,t+1 = ri,t with a revenue of 0 (see Figure 1). We
want to find a maximum-value flow from the starting state to some terminal state. This is nothing
more than the standard network representation of a deterministic finite-state, finite-period dynamic
program.

There is a network for each resource i and instance k. The linear program formulation of
this flow problem has variables yki,j,t,ri,t and the constraints (34) are nothing more than setting
yki,j,t,ri,t = yli,j,t,ri,t = yi,j,t,ri,t for two instances k and l where pkj,t = plj,t = 1, as by Proposition 10
whenever pkj,t = 0, we can assume λk

i,j,t,rki,t
= wk

i,j,t,rki,t
= 0.

So for a fixed λki,j,t,ri,t , w
k
i,j,t,ri,t

we have a maximization linear programming problem. We want
to minimize this over all λki,j,t,ri,t , w

k
i,j,t,ri,t

subject to the constraints [pkj,tfj −
∑
i∈j(λi,j,t,ri,t +

wi,j,t,ri,t)] ≤ 0 and
∑
i∈j w

k
i,j,t,ri,t

≥ 0. By taking the dual of the inner maximization problem, we
obtain a single minimization problem.

So the solution for sPHLP exploits the fact that for a deterministic dynamic program there is
a compact linear programming formulation.

21

7 LR vs. AR bound

Computational results of [18] seem to indicate that the AR bound is weaker than the LR bound, but
we don’t know of any theoretical result that proves it is the case for all instances. It is quite possible
of course that the two bounds are not comparable and there are instances where one dominates the
other.

In this section we propose a minor variation of the AR bound that, at the expense of expanding
the number of variables, leads to a formulation and a bound provably tighter than the LR bound.

7.1 The sAR bound

Our variation of the AR bound consists of the following relaxation of the dynamic programming
value functions:

Vt(rt) ≈ θt +
∑
i

ri,t∑
r=1

vi,t,r, ∀t, rt. (56)

A few words on this variant are in order. The number of variables have increased. If R is the
maximum capacity on the resources, then they have increased by R from the AR relaxation as now
we specify a variable for all possible capacity points for each t and i. One can then think of these as
capacity-dependent marginal values or bid-prices. For lack of a better alternative we call this sAR
for strong AR bound or strengthened AR bound2.

Since we are imposing a functional form on the value functions, this is clearly an upper bound
on the dynamic program. Since the AR bound is a special case with the additional restriction
vi,t,r = vi,t,s for r, s, if one substitutes (56) into (1) and solve the resulting linear program, the
objective value is less than or equal to the AR bound value (as it is a minimization problem).

So we have:

Proposition 11 AR ≥sAR≥ V ∗(r0).

The interesting thing is that sAR can be shown to be stronger than the LR bound.

7.2 sAR vs. LR bound

Consider the linear program obtained after substituting the sAR approximation (56) for the optimal
value functions:

minθ,vi,t,r θ0 +
∑
i

ri,0∑
r=1

vi,0,r

(sAR) s.t. θt − θt+1 +
∑
i

{
ri,t∑
r=1

vi,t,r

−
∑
j

pj,t

ri,t−ui,j,t∑
r=1

vi,t+1,r} ≥
∑
j∈u

pj,tfj ∀t, rt, u ∈ Urt (57)

2Some alternative names are piece-wise linear relaxation bound or capacity-dependent AR bound.

22

vi,t,r ≥ 0

Let λi,t,j be a set of Lagrange multipliers to the LR relaxation satisfying
∑
i∈j λi,j,t = fjpj,t, ∀t, j,

and let
vλi,t,r = ϑλi,t(r)− ϑλi,t(r − 1),

and therefore,

ϑλi,t(ri,t) =
ri,t∑
r=1

vλi,t,r.

Since ϑλi,t(r) is an optimal value of the dynamic program on resource i once the problem is
decomposed using λ,

ϑλi,t(ri,t) ≥
∑
j

λi,j,tui,j,t + pj,tϑ
λ
i,t+1(ri,t − ui,j,t) ∀ri,t, u ∈ Ui,ri,t . (58)

We show that θt = 0 and vλi,t,r are feasible solutions to (sAR) of (57). Equation (58) can be
written in terms of vλi,t,r as

ri,t∑
r=1

vλi,t,r −
∑
j

pj,t

ri,t−ui,j,t∑
r=1

vλi,t+1,r ≥
∑

j3i,j∈u
λi,j,t ∀ri,t, u ∈ Ui,ri,t .

For each u ∈ Urt , define the corresponding ūi ∈ Ui,ri,t of feasible subsets on i as follows:

ūi = {j|j 3 i, j ∈ u}.

For a given t, rt, u ∈ Urt , summing over all i, and ūi:

∑
i

{
ri,t∑
r=1

vλi,t,r −
∑
j

pj,t

ri,t−ui,j,t∑
r=1

vλi,t+1,r} ≥
∑
i

∑
j∈ūi

λi,j,t =
∑
j∈u

pj,tfj .

as
∑
i∈j λi,j,t = fjpj,t, which shows:

Proposition 12 LR ≥sAR .

The sAR bound can be computed using the same column generation techniques of Adelman [1].

8 Some further comments

Our contributions in this paper are (i) we give a stronger Lagrangian relaxation bound sLR that
conserves all the attractive computational properties of LR, (ii) we give a stronger simulation based
perfect-hindsight bound sPHLP by adding constraints at the resource level (iii) we compare the
sLR bound with the sPHLP bound and show that the former is always tighter as N →∞ (iv) we
give a new strengthened AR bound sAR and show that it is stronger than the LR bound.

Comparing these seemingly disparate approaches also gives insights into the connections between
the methods.

23

We note that the piecewise-linear control proposed here sAR has in fact been implemented in soft-
ware developed by Garrett van Ryzin and the author in the mid-1990’s (U.S. patent 6263315, [16]).

There are various interesting research directions we identify:

• It would be interesting to obtain a tighter (reasonably computable) bound than sAR.

• LR,sLR, AR, sAR and sPHLP are time consuming and at the time of this writing, unlikely
to be feasible for large problems that one sees in airline or e-commerce applications. So faster
ways of computing them are of interest.

• The results of this paper can likely be extended to a choice model of customer behavior for
a network with a model similar to the ones in ([12],[14]), as most of the models based on
the independent class assumption have been extended to a multi-nomial logit type models of
customer behavior: see Gallego et al. [6], Liu and van Ryzin [8], Kunnumkal and Topaloglu [7]
and Adelman and Zhang [2]. The last two extend the LR and AR methods to network RM
under the choice model.

• The relationship between sAR and sLR and sPHIP is intriguing. It would be very interesting
if one could prove that sAR is tighter or weaker than the others.

Finally, the sLR and sPHIP bounding technique can potentially be applied to strengthen other
applications of Lagrangian relaxation to dynamic programs.

References

[1] D Adelman. Dynamic bid-prices in revenue management. Operations Research, 55(4):647–661,
July 2007.

[2] D Adelman and D. Zhang. An approximate dynamic programming approach to network revenue
management with customer choice. Technical report, Graduate School of Business, University
of Chicago, Chicago, 2007.

[3] P. P. Belobaba. Optimal vs. heuristic methods for nested seat allocation. Presentation at
ORSA/TIMS Joint National Meeting, November 1992.

[4] G. R. Bitran and R. Caldentey. An overview of pricing models and revenue management.
Manufacturing and Service Operations Management, 5:203–229, 2003.

[5] W. J. Elmaghraby and P. Keskinocak. Dynamic pricing: Research overview, current practices,
and future directions. Management Science, 2003. (To appear).

[6] G. Gallego, G. Iyengar, R. Phillips, and A. Dubey. Managing flexible products on a network.
Technical Report TR-2004-01, Dept of Industrial Engineering, Columbia University, NY, NY,
2004.

[7] S. Kunnumkal and H. Topaloglu. A new dynamic programming decomposition method for the
network revenue management problem with customer choice behavior. Technical report, School
of IEOR, Cornell University, Ithaca, NY, 2008.

[8] Q. Liu and G. van Ryzin. On the choice-based linear programming model for network revenue
management. Manufacturing and Service Operations Management, 10(2):288–310, Spring 2008.

24

[9] J. I. McGill and G. J. van Ryzin. Revenue management: Research overview and prospects.
Transportation Science, 33:233–256, 1999.

[10] R Phillips. Pricing and Revenue Optimization. Stanford Business Books, Stanford, CA, 2005.

[11] R. W. Simpson. Using network flow techniques to find shadow prices for market and seat
inventory control. Technical Report Memorandum, M89-1, Flight Transportation Laboratory,
MIT, Cambridge, MA, 1989.

[12] K. T. Talluri. Airline revenue management with passenger routing control: A new model with
solution approaches. International Journal of Services Technology and Management, 2:102–115,
2001.

[13] K. T. Talluri and G. J. van Ryzin. A randomized linear programming method for computing
network bid prices. Transportation Science, 33:207–216, 1999.

[14] K. T. Talluri and G. J. van Ryzin. Revenue management under a general discrete choice model
of consumer behavior. Management Science, January 2004.

[15] K. T. Talluri and G. J. van Ryzin. The Theory and Practice of Revenue Management. Kluwer,
New York, NY, 2004.

[16] K.T. Talluri. Revenue management system and method. United States Patent, 6263315, July
2001.

[17] H. Topaloglu. On the asymptotic optimality of the randomized linear program for network
revenue management. Technical report, School of IEOR, Cornell University, Ithaca, NY, 2007.

[18] H. Topaloglu. Using lagrangian relaxation to compute capacity-dependent bid prices in network
revenue management. Technical report, School of IEOR, Cornell University, Ithaca, NY, 2007.

[19] E. L. Williamson. Comparison of optimization techniques for origin-destination seat inventory
control. Master’s thesis, Flight Transportation Laboratory, MIT, Cambridge, MA, 1988.

25

