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Abstract

Many dynamic revenue management models divide the sale period into a finite number
of periods T and assume, invoking a fine-enough grid of time, that each period sees at most
one booking request. These Poisson-type assumptions restrict the variability of the demand
in the model, but researchers and practitioners were willing to overlook this for the benefit of
tractability of the models.

In this paper, we criticize this model from another angle. Estimating the discrete finite-
period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads
to arbitrary control values and on the other hand estimating T from data adds an additional
layer of indeterminacy. To counter this, we first propose an alternate finite-population model
that avoids this problem of fixing T and allows a wider range of demand distributions, while
retaining the useful marginal-value properties of the finite-period model.

The finite-population model still requires jointly estimating market size and the parameters
of the customer purchase model without observing no-purchases. Estimation of market-size
when no-purchases are unobservable has rarely been attempted in the marketing or revenue
management literature. Indeed, we point out that it is akin to the classical statistical problem of
estimating the parameters of a binomial distribution with unknown population size and success
probability, and hence likely to be challenging. However, when the purchase probabilities are
given by a functional form such as a multinomial-logit model, we propose an estimation heuristic
that exploits the specification of the functional form, the variety of the offer sets in a typical
RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show
that the estimator is very promising in obtaining unbiased estimates of population size and the
model parameters.

Key words. revenue management, estimation, multi-nomial logit, risk-ratio.

1 Introduction

Many published papers in the area of revenue management model time in discrete intervals with a
finite number of periods and assume that there is at most one customer arrival per period. Some
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prominent examples are Lee and Hersh [21] and Talluri and van Ryzin [24, 25]1. The rationale is
that by taking the number of periods large enough we can assume that the physical time period
is sufficiently small so the possibility of more than one arrival in that period can be discarded.
These assumptions have the same flavor as the ones behind the Poisson distribution. Moreover,
they make the resulting finite-period dynamic program amenable to analysis allowing us, say, to
obtain monotone marginal value properties.

This discrete finite-period model however carries over some of the limitations of the Poisson
demand assumption—namely, the demand distribution has a co-efficient of variation significantly
lower than what is seen in data (1 compared to a c.v of 2 or 3 in most RM industries). This criticism
of the model is well-known and practitioners either use non-dynamic-programming heuristics or
adjust their dynamic program results somehow to account for it.

To this existing criticism we add another significant one from the point of view of estimating the
model: the model says the number of periods T is fixed and large enough but gives no guidance on
what it is. Different values of T give different control values which leads to an awkward gap between
theory and implementation. Estimating T directly from data is also troublesome—it adds another
source of indeterminacy to the estimation as we discuss shortly.

Rather than continuing developing theory using this finite-period model, we propose in this
paper that we change the paradigm to a finite-population model, that effectively avoids choosing
the number of periods. It also has the advantage of allowing arbitrary distributions (and arbitrary
variance) in the aggregate demand. Estimating such a model still involves some indeterminacy and
we propose a new method of resolving this using a least-squares criteria. Finally we show that some
of the standard monotone properties of the dynamic program carry over to this model.

Our main contributions in this paper are:

• To propose a more realistic and flexible finite-population model for revenue management and
show that many of the appealing properties of the finite-period model carry over to this finite-
population model.

• Propose a new estimation heuristic, the log risk-ratio estimate, that, once we fix a functional
form on the purchase probabilities such as the multinomial-logit model, and under reasonable
assumptions on the data, does a remarkable job of jointly estimating the market-size and
purchase probabilities.

The finite-population model facilitates estimation as follows: we can consider the population or
market size M = λT where λ is the arrival rate in the finite period model. By posing the model
in terms of M , we reduce it to estimating a single parameter M rather than the two parameters
T and λ. Nevertheless, when no-purchases are unobservable, there is still a significant problem of
jointly estimating the market-size and purchase probabilities, and we consider the risk-ratio based
estimation heuristic that we propose as the main contribution of the paper. This problem comes
up in many areas of marketing, supply-chain management and revenue management, and is of great
practical importance. Biased or unstable estimates can lead to significantly less revenues, and as we
point out in Section 3.1 evidence from the literature indicates that both bias and stability are likely
to be serious problems.

Researchers have widely used the MNL model to model purchase probabilities, but by and large
1There are many examples in other areas of Operations Management as well, but for concreteness, we take revenue

management as our example area.
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have avoided considering this joint-estimation problem by assuming there is sufficient data on total
population ([11]) or some exogenous knowledge of market size ([19], [27]).

Our proposed solution does not cover all situations, and indeed, given the relationship with the
binomial estimation problem with unknown population and success probability, it would be too
much to expect a complete solution. We now enumerate the limitations of our procedure and the
situations where it is applicable.

1. It is designed for situations where the customer’s consideration set (and the firm’s offer set)
consists of at least two products, or situations where the consideration set is a single product
but the firm knows a priori how to rank the products. An example of the latter is restriction-
free revenue management where price is the only differentiating factor between the products
and the co-efficient of the price variable is negative—an entirely reasonable proposition.

2. We make the assumption that demand arrives over time and the firm has some idea of which
periods have similar demand rates. This can potentially restrict applying our estimation
procedure, but there are many situations where it is reasonable to expect that the firm has
some knowledge of arrival rates. Airlines for instance divide the booking period to data-
collection-points or DCPs such that the arrival rates within each DCP are similar across
different instances of the flight. Note that this is a qualitative requirement—the analyst or
manager only needs to know that two periods have similar arrival rates, but need not have any
knowledge of what the arrival rate exactly is. This is much easier to implement than requiring
the analyst guess the market size or potential population.

3. We assume a single segment. In many RM situations it is more reasonable to assume that the
population is made up of two or three distinct segments with different purchase behavior.

The proposed estimation heuristic performs very well in simulations within the confines of its stated
assumptions. We believe further research extending the method to multi-segment populations holds
the promise of a significant improvement in the estimation of RM models. In the last section we
outline some possible directions such research might take.

2 Models

For concreteness we consider the finite-period multinomial-logit (MNL) customer choice model of
revenue management ( [25]). The MNL model is parsimonious, widely used in practice, and serves
to illustrate the basic ideas in our estimation procedure with a concrete model.

2.1 The Finite-Period Model

Time is discrete and indexed by t, and the indices run backwards in time (e.g. smaller values of t
represent later points in time). That is, time 0 represents the deadline for the sale of units. There
are a total of T time periods.

In each period there is at most one arrival (the time grid is sufficiently fine, or alternately T is
sufficiently large, to justify this assumption). The probability of arrival is denoted by λ, which we
assume is the same for all time periods t.
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There are n fare products and N = {1, ..., n} denotes the entire set of fare products. Each fare
product j ∈ N has an associated revenue rj , and without loss of generality we index fare products
so that r1 ≥ r2 ≥ ...rn ≥ 0.

In each period t, the firm must choose a subset S ⊆ N of fare products to offer. When the fares
S are offered, the probability that a customer chooses class j ∈ S is denoted Pj(S) and we assume
Pj(S) = 0 if j /∈ S. We let j = 0 denote the no-purchase choice; that is, the event that the customer
does not purchase any of the fares offered in S, so P0(S) denotes the no-purchase probability.

The probability that a sale of class j is made in period t is therefore λPj(S), and the probability
that no sale is made is λP0(S) +(1−λ). This last expression reflects the fact that having no sales in
a period could be due either to no arrival at all or an arrival that does not purchase; as mentioned,
this leads to an incomplete data problem in practice.

2.1.1 MNL model

Pj(S) is defined for all possible subsets S and j ∈ S. Such generality clearly poses an estimation
problem—to estimate these probabilities we would need an unreasonable amount of data. To keep
the parameters small, we fix on a functional form for the choice probabilities.

The MNL is used widely in travel demand forecasting and marketing (see Ben-Akiva and Lerman
[2].) In the MNL, consumers are utility maximizers and the utility of each choice is a random variable.
Formally, the utility of each alternative j is assumed to be of the form

Uj = uj + ξj

where uj is the mean utility of choice j and ξj is an i.i.d., Gumbel random noise term with mean
zero and scale parameter one for all j. (The Gumbel, or double-exponential, distribution with zero
mean and scale parameter is F (x) = exp(−e−(x+γ), x ≥ 0 where γ ≈ 0.577 is Euler’s constant.)
Because utility is an ordinal measure, the assumption of zero mean and a scale parameter of one are
without loss of generality (see Ben-Akiva and Lerman [2]). Similarly, there is a no-purchase option
where the no-purchase utility is assumed to be

U0 = u0 + ξ0,

where and ξ0 is also Gumbel with mean zero and scale parameter one. Again, since utility is ordinal,
without loss of generality we can assume u0 = 0.

Under this utility model, one can show (See Ben-Akiva and Lerman [2] for a derivation.) that
the choice probabilities are given by

Pj(S) =
euj∑

i∈S e
ui + euo

, j ∈ S or j = 0. (1)

and zero otherwise. For notational convenience, we define “weights” wj = euj , j = 0, 1..., n, so that
the choice probabilities can be expressed as

Pj(S) =
wj∑

i∈S wi + 1
, j ∈ S or j = 0. (2)

That is, the probability of choosing j is its weight wj divided by the weights of all other choices in
S. So the no-purchase weight is w0 that we can normalize to 1.
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2.1.2 Discrete-choice finite-period dynamic program

Let C denote the initial resource capacity, t the number of remaining periods (recall time is indexed
backwards) and x the number of remaining inventory units. Define the value function Vt(x) as the
maximum expected revenue obtainable from periods t, t− 1, . . . , 1 given that there are x inventory
units remaining at time t. Then the Bellman equation for Vt(x) is

Vt(x) = max
S⊆N

∑
j∈S

λPj(S)(rj + Vt−1(x− 1)) + (λP0(S) + 1− λ)Vt−1(x)


= max

S⊆N

∑
j∈S

λPj(S)(rj −∆Vt−1(x))

 + Vt−1(x), (3)

where ∆Vt−1(x) = Vt−1(x) − Vt−1(x − 1) denotes the marginal cost of capacity, and we have used
the fact that for all S, ∑

j∈S
Pj(S) + P0(S) = 1.

The boundary conditions are

Vt(0) = 0, t = 1, . . . , T and V0(x) = 0, x = 1, . . . , C. (4)

2.1.3 Unobservability, Estimation and Indeterminacy

The paramters of the multi-nomial logit model are fairly straightforward to estimate if one can
observe all transactions, including no-purchases. (See Section 5.5 of Ben-Akiva and Lerman [2]).
However, the main complication arises when we cannot observe no-purchases, which is the case in
most revenue management sale settings.

Talluri and van Ryzin [25] give a procedure to simultaneously estimate λ and the parameters of
the MNL, the w’s, using the EM algorithm to correct for unobserved no-purchases. T is assumed
fixed. Kök and Fisher [19], in the context of assortment planning, generalize this algorithm when
there is a substitution matrix. Recently Vulcano, van Ryzin and Ratliff [27] propose an alternate
method with Poisson aggregate demand between state changes (change in the subset of offerings). To
overcome the complexity of the likelihood function, [27] propose estimating based on unobservable
primary demand (essentially, an estimate of what the customer would have chosen if all products
were offered).

All these procedures suffer a fundamental indeterminacy problem which can be described roughly
as follows: if there are M customers who arrive to purchase the product but only m purchase it
(the others say found it too expensive and walked away) then our model is m = Mq, where q is
the purchase probability. We observe m but neither M nor q, and we are trying to estimate both
M and q from data on m. Clearly, many different solutions are possible for a given m, such as a
high M and a low q or a low M and a high q. There is really no way to resolve this observing only
m. Unfortunately, different values of M and q would give different control values in our subsequent
optimization problem, so this is not just a theoretical curiosity.

Talluri and van Ryzin [25] note this indeterminacy but do not propose a way to resolve it.
Vulcano, van Ryzin and Ratliff [27] show that there can be an infinite number of parameterized
solutions that can explain the data and propose using an exogenous parameter, representing potential
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market, to resolve this extra degree of freedom, but the question of choosing this parameter becomes
another issue.

2.1.4 Criticism of the finite-period model

Before one can implement the finite-period model, one needs to know T , λ, and the parameters of
the choice model, in this case the w’s (or the utilities u’s as a function of the product characteristics
such as price).

That the dynamic program gives different control values for different values of T should be
obvious. For instance, say if capacity is one and there is just one period left, then the marginal value
(bid-price) would be zero whereas if we half λ and make it a two period model, the bid-price would
go positive.

The relationship between choice of T and estimation is a bit more subtle. At first glance, as
we are working with the same T in the estimation as well as the optimization part, it might seem
that one can just fix a large enough T , and changing T would not have an effect. In one sense this
is true: the convergence criteria of the EM algorithm (see for instance Equation 9.61 on page 480
of [26]) show that, say, if we double T , halving λ and keeping the same MNL parameters satisfy the
convergence and optimal solution criteria of the EM algorithm, as it should be. But the problem
is that, with unobservable no-purchases, the log-likelihood function is not globally concave (which
is another problem in practice) so the choice of T influences the local maximum the EM algorithm
converges to. So one could possibly get different solutions for different choices of T .

One could of course make T endogenous to the model and let the estimation algorithm determine
T , but this only introduces further, unnecessary, indeterminacy into the model. Going back to our
illustration of indeterminacy in Section 2.1.3, the observed purchases m would then satisfy m = λTq,
so now we really have to estimate λ, T and q observing only m.

2.2 The Finite-Population Model

One way of getting around the problem of choosing T is to switch to a finite-population model. As
an added benefit we also get more flexibility in modeling the demand distribution.

2.2.1 The Model

Let M be a random variable representing the total, potential, market size. M can be considered
the forecast at the current point of time (the point of optimizing the controls) over the remaining
sale period. Note that one can specify any distribution for M , allowing us to fit the variance in the
observed data.

One of the hallmarks of revenue management industries is that demand arrives over the sale
period. This has led to time-based models such as Poisson, and the concept of a booking-curve.
The resulting dynamic program indexes over time (some earlier papers, Curry [12], Wollmer [28],
Brumelle and McGill [9], index over classes assuming independent classes; Lee and Hersh [21] appears
to be the first paper with a time-based model). Here we forgo doing this—the order of arrivals is
immaterial to our optimization problem, just the total number of customers yet to come. The model
can potentially be extended to multiple segments and incorporate knowledge of how they arrive

6



over time with the advantage that such an extension uses fewer time periods explicitly linked to our
knowledge of the demand.

To summarize, we model the demand process for the usage of the resource for a specific day in
the future is as follows:

1. A population size that is a draw from a known distribution M with unknown parameters.

2. The individual customers in the potential market arrive over the booking horizon, distributed
according to some distribution. For simplicity of exposition, assume they are distributed
uniformly from 0 to T .

3. Each customer considers the prospect of buying exactly one item of a subset of the n products.
If a subset S is offered, the customer buys j ∈ S with probability Pj(S), and does not buy any
product with a probability P0(S) = 1 −

∑
j∈S Pj(S). If he does not purchase, he disappears

from the system. For simplicity we assume that the purchase probabilities follow a multinomial-
logit model, but conceivably more complicated models of purchase can be substituted in.

2.2.2 The Dynamic Program

We make no distributional assumptions on M except it is bounded above by a number B. Given
a distribution for M , we can define distributions for the random variables M −m where m is any
positive integer, 0 ≤ m ≤ B. Let V (x,M −m) be the value function given current capacity is x and
the distribution of the future market size is given by the random variable M−m. V (x,M−m|M ≥ k)
is the value function when the market size distribution is given by M −m conditional on M ≥ k.

The Bellman equation is given by

V (x,M) = max
S

P (M ≥ 1){
∑
j∈S

Pj(S)(rj+V (x−1,M−1|M ≥ 1))+(1−
∑
j∈S

Pj(S))V (x,M−1|M ≥ 1)},

(5)
with the boundary condition V (0|·) = V (·|M −B) = 0.

B in Equation 5 is typically not too large. For instance, for an airline flight with 200 seats the
probability of a demand of 1000 would be so low that we would just bound the distribution at 1000.

The fact that we could eliminate time from Equation 5 is mainly because we are assuming just
one type of customer. If there are more segments, and we know how their arrivals are correlated with
time, we would have to bring back time as a state variable. However, we could take a very coarse
breakup of time without affecting the value function too much. For instance in the independent class
models of Curry [12], Wollmer [28], Brumelle and McGill [9], the number of time intervals correspond
to the number of classes. If we know that the low-sensitivity segment arrives closer to the usage of
the resource, breaking up the booking horizon into two or three periods might be sufficient. Notice
arrival rates can differ for different periods but as long as the segment mix does not change we do
not need more time periods. For simplicity of exposition we assume from now on that there is only
one segment.

The difference between the recursions (5) and (3) is that the latter assumes we can optimize after
every arrival and at any point in time, whereas the former optimizes only after every arrival. So,
the finite-population model is restrictive in some sense. On the other hand, the finite-period model
fixes the evolution of the demand over time (it has to, to figure out the optimization as a function
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of time) and this leads to restrictions on the variance of the demand. The finite-population model
can easily be extended to incorporate re-optimization and re-forecasting points in the future; such
extensions are more appealing in our view because we can have a coarse grid where the choice of
the grid is linked to physical time points where we actually plan to do such re-optimizations, rather
than a vague parameter as in the finite-period model.

Finally we would like to mention that (5) is not entirely new—the implicit dynamic program
considered by Dudey [14] is the duopoly version of (5) when M is deterministic. Also, the estimation
procedure of Section 3 can be applied equally well to the finite-period model with a fixed T .

While Equation 5 does not make use of time, we need to model demand as arriving over time
when estimating the parameters of the model, as explained further in Section 3.

Define the marginal value function ∆V (x|M) = V (x|M)−V (x−1|M). Akin to the finite-period
model, the marginal values exhibit nice properties.

Proposition 1 ∆V (x|M) ≤ ∆V (x− 1|M) and ∆V (x|M − 1) ≤ ∆V (x|M).

Proof
See Appendix. Q.E.D

Proposition 1 justifies the use of a threshold value control such as the bid-price control.

3 Estimation

In this section we informally define the estimation procedure using examples. First, we review
existing literature for the estimation of models similar to ours.

3.1 Literature

The classical problem of estimation of the parameters of a binomial distribution Bin(M,p) from
K samples (representing counts of successes), X1, X2, . . . , XK , with M and p fixed but unknown is
a good place to start. It was considered by Fisher [16] and Haldane [17]. In theory the sample
maximum X(K) → M , as observed by Fisher, and hence the problem is “solved”, but the number
of samples required for the sample maximum to approach M makes this fact irrelevant for practice.

Our problem has a similar flavor. Consider the model as described in Section 2.2.1. If we fix the
population size and fix an offer set, the number of purchases is a binomial random variable with a
fixed purchase probability. We can only observe purchases, so this is akin to the binomial problem
with M and p fixed but unknown. In our model, the population size is considered a random draw
from a distribution and the offer sets change frequently, so neither M nor p is fixed. So, as it were,
the binomial problem is a special case as far as M is concerned, but also a less restrictive one with
regards to p, as it is allowed to be any number, while we impose a functional form on the values it
can take.

Time plays a crucial role in our model. The population is supposed to be uniformly distributed
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over the booking horizon2, and we can exploit this, along with the fact that the purchase probabilities
follow a functional form, to estimate population size.

Coming back to the literature on the binomial estimation problem, the problems of estimating M
or p when both are unknown is considered notoriously difficult. Both maximum-likelihood (MLE)
and method-of-moments (MME) estimators are found to be highly unstable, i.e., even the addition
of a single success changes the estimate M̂ by a tremendous amount; moreover underestimation
of M is pervasive to all the methods. So stabilized estimates are given in Olkin et. al. [23] and
Carroll and Lombard [10]. DasGupta and Rubin [13] show theoretically that no function of just M
or just p can produce unbiased estimates, and give two new estimates of M that compare favorably
with the Carroll-Lombard estimator; Blumenthal and Dahiya [6] study small-sample and asymptotic
properties. Some of these approaches are Bayesian in nature ([10]) requiring a prior on the form of p,
that may be hard to apply in our context. The problem has further connections with the reliability
literature ([1]), and similar estimation problems have been studied for other distributions ([7]).

Given the difficulty of the fixed M,p estimation problem, obtaining statistically good estimates
for our problem, or even heuristic methods that perform well, seems like a daunting task. The
Operations Management and Marketing literature where similar estimation problems crop up mostly
sidestep the issue by exogenously fixing a market size. For instance in revenue management [27]
assume that the firm knows the potential “market share”, akin to fixing M and estimating p in the
binomial model. In the marketing literature, some examples of fixing potential market exogenously
are [22] and [3].

Fixing a potential market makes sense if it is a stable market and we have at least aggregate
market level data. Neither applies to our operational revenue management problem. The potential
market changes depending on which day the resource is used—the variability across days of the
observed demand ought to convince us of this. Nor do we have market-share data at the resource
level. So, it is very important that estimates of the market size are endogenously determined.

Considering the evidence from literature, the performance of a joint estimation procedure—
efficiency, consistency, unbiasedness—might be too hard to prove theoretically. But simulations can
provide reasonable validation as the models are easy to simulate.

3.2 Risk-ratio

The statistical basis for the method is the following set of results ([15],[18], [20]) on the comparison
of the ratio of two binomial proportions: Let X1 ∼ Bin(M1, p1) and X2 ∼ Bin(M2, p2) be two
independent binomial random variables and let R = p1/p2, called the risk-ratio. If x1 and x2 are the
realizations of X1 and X2 then p̂1 = x1/M1 and p̂2 = x2/M2 are estimates of p1 and p2 respectively,
and R̂ = p̂1/p̂2 an estimate of R.

• The random variable p̂1 − Rp̂2 is approximately normally distributed with approximate zero
mean and approximate variance p̂1(1−p̂1)

M1
+ p̂2(1−p̂2)

M2
.

• The random variable ln(R̂) is approximately normally distributed with approximate mean
ln(R) and approximate variance (1−p̂1)

x1
+ (1−p̂2)

x2
.

2In practice, we can relax the uniform distribution assumption, but just assume that we can divide the booking
horizon a priori into periods where the population arrives uniformly within the period.
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One could use either fact to build an estimation heuristic, but for computational reasons, to be
explained shortly, we fix the logarithmic risk-ratio in our subsequent discussion. So ln(R̂) converges
to logR.

3.2.1 Logarithmic risk-ratio estimate

We describe the two situations where we can use our estimation procedure.

3.2.2 Case 1: customers consider multiple products

First consider the case where the customer’s consideration set consists of at least two products of
the firm, and the firm offers at least two products, or at least there are enough periods where the
firm had offered at least two products.

We first estimate the weights in the MNL model w1, . . . , wn corresponding to the n products,
conditioned on the purchases. We can do this based only on observed purchases. The w’s are
functions of the product characteristics (typically of the form w = euj , where uj = β0 +β1y1j + . . .).
The maximum-likelihood estimation of these weights, conditioned on purchase, is quite standard
and we refer the reader to Ben-Akiva and Lerman [2], page 118.

We note that the maximum-likelihood function is globally concave (under the form of utili-
ties mentioned above) and the estimators have nice properties—consistent, asymptotically normal,
asymptotically efficient etc. So from now on we fix ŵ1, . . . , ŵn.

The difficult part of the problem then is to estimate the no-purchase weight w0 (with respect to
the ŵ1, . . . , ŵn) and the parameters of the distribution of M .

Assume that the potential demand arrives uniformly over time. (The adjustments required when
this is not the case are rather straightforward, and the assumption simplifies the presentation.) Note
that we do not require knowledge of the rate itself (which would make the whole problem trivial),
but a breakdown of the booking horizon into periods with more or less uniform rates. In the airline
industry it is common to break up the booking period into data collection points (DCPs) which
roughly corresponds to this idea.

Suppose in a sample k we had offered a set S1 for a certain period of time and set S2 the rest.
The expected number of purchases under each offer set is proportional to the market size M̃k (the
realization of the market size for instance k). So by taking a ratio of the number of purchases, we
eliminate the unobserved M̃k. Based on these ratios we estimate w0 in the first step, and based on
the estimate of w0, we form a sample specific estimate of M̃k and thus estimate the parameters of
the distribution of M . This procedure works if we have sufficiently rich data, with enough variation
in the offer sets, as well as some knowledge of the arrival rates.

Consider an example with three products where demand comes uniformly over time, and for a
proportion ρ of the booking period products 1 and 2 were offered, and for the remaining fraction
(1−ρ), products 2 and 3 were offered. Let mij be the total number of sales that have been observed
for product i during the period j. Let M̃ represent the unobserved total number of customers who
had arrived (i.e., the unknown realization of the random variable M).

We first make a modeling approximation and assume that the market population M̃ is distributed
deterministically over the booking period. So in the above example with three products, we assume
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that the number of potential customers who show up in the first period when products 1 and 2 are
offered are exactly ρM̃ , rather than being a (higher-level) draw from a binomial distribution with
parameters ρ and M̃ . This assumption allows us to treat the number of purchases in the two periods
as drawn from two independent binomial distributions with population sizes ρM̃ and (1− ρ)M̃ (we
fudge over integrality) that we now compare using the risk-ratio approximation.

Since we know ρ, the risk-ratio cancels out the unobservable M̃ in the sample estimate ln(R̂)
allowing us to calculate it without observing M̃ , and at the same time, ln(R) conserves its dependence
on w0 if have rich enough data. We illustrate this using our example.

As we mentioned earlier, we have the (correct) estimates of the weights w1, w2, w3, namely ŵ1,
ŵ2 and ŵ3. From our model and assumption, we know that the first period has ρM̃ arrivals, and
the second period (1 − ρ)M̃ arrivals. Let pij be the probability of purchasing product i in period
j given our offer sets. These are given by the multinomial logit model assumption, so for instance,
p11 = ŵ1

w0+ŵ1+ŵ2
as {1, 2} was the offer set in period 1.

The total probability of a purchase in period j be pj , so p1 = p11 + p21 and p2 = p22 + p32,
and the risk ratio R is a function of w0—just notice that because the offer sets are different in the
two periods, the denominators in the ratio p1/p2 do not cancel out3—so we write it as R(w0) to
emphasize this.

R̂ =
p̂1

p̂2
=

(m11 +m21)/(ρM̃)
(m22 +m32)/((1− ρ)M̃)

=
(m11 +m21)/(ρ)

(m22 +m32)/((1− ρ))
. (6)

So R̂ can be computed based only on observed purchases.

ln(R̂) is an observation from a normal distribution with mean ln(R(w0)). So we can extract one
observation for each sample (in this two period example). So if there are K samples and nk different
offer sets in each sample, by taking ratios pairwise from these nk periods in each sample we would
have created a large number of observations of the risk-ratios from normal distributions.

By the law of large numbers, the sum of a sufficiently large sample of these observations should
tend to the sum of means of these random variables, which, for most samples, would be a function
of w0. We have complete freedom on which sub-sample we take. It is possible that the ratios cancel
out, for instance taking pairs 1 and 2 and 2 and 1 would give us ln(p1p2 ) + ln(p2p1 ) = 0 serving no
purpose. Our choice is guided by this and computational considerations: If we choose the ratios
such that the numerator is always less than or equal to the denominator we are assured that the
numerator and denominator do not cancel out, and also we minimize a convex objective function by
the following fact.

Proposition 2 Let the sum of the weights of the set of products be w1 in period 1 and w2 in period
2 and w1 < w2. Let w0 be the no-purchase weight, and the purchase probability in period 1 be given
by p1(w0) = w1

w1+w0
and in period 2 by p2(w0) = w2

w2+w0
. Then L = ln(p1(w0)

p2(w0)
) is a convex function

of w0.

Proof
See Appendix. Q.E.D

3There is a small possibility that w0 + ŵ1 + ŵ2 = w0 + ŵ2 + ŵ3 but by assuming the products are sufficiently
different we ignore this from now on.
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The reason for using the logarithm of the risk-ratio should be apparent now. We can take
two periods with different lengths and base the statistic only on the risk-ratio of the purchase
probabilities. The ratio of the lengths of the two periods separates out as a constant. For instance,
taking the log of (6) gives the additive constant log (1−ρ)

ρ .

Let F represent a collection of feasible pairs. For sample k (an instance of the usage of the
resource, such as all the arrivals for a single flight departure on a specific date), define (i, j)k if
(i, j) ∈ F if the periods i and j are believed to have equal arrival rates. The duration of the
two periods can differ. But as we pointed out, this just adds a constant, so it does not make a
difference to the optimization problem that we define below (it changes the objective value, but not
the convexity properties)—and to keep the notation simple we ignore this and assume the periods
are of the same duration. Let Fk be the collection of all feasible pairs (i, j)k in sample k.

Every pair in F leads to a function of w0, Lij(w0) = ln( pi(w0)
pj(w0)

) with an observed ratio lijk =
ln(mikmjk

) if (i, j)k ∈ Fk . Let nij be the number of times the pair i, j appear in the samples nij =

|{(i, j)k ∈ Fk}|. We expect Lij(w0) to be close to l̄ij =

∑
(i,j)k∈Fk

lijk

nij
.

Our estimate ŵ0 minimizes the squared error:

ŵ0 = arg min{
∑
ij

(Lij(w0)− l̄ij)2}

which by Proposition 2 is a convex minimization problem.

All along we have ignored the possibility that one of the denominators can be zero. For instance,
p̂1 or p̂2 could be 0 if there were no purchases in that period. We ignore such periods which also
implies that we should rederive the statistics with binomial distributions conditional on at least
one success—rather than getting into these messy technicalities, as a heuristic, we can still use the
logarithmic risk-ratio method as is.

So the method completely avoids any EM-style iterations and subsequent problems of conver-
gence. Moreover, as we pointed out earlier, evidence from the binomial distribution case suggests
that the MLEs of the population size and probabilities are themselves likely to be poor predictors
of the true values, so even if the EM algorithm finds the true MLEs they do not inspire much
confidence.

Once we obtain ŵ0, ŵ1, · · · , ŵn, we use them to estimate the parameters of the market size
distribution by first obtaining a point estimate of the market size for each instance. Given our
model this is quite trivial. If mS is the total number of observations during a period when the offer
set was S, an estimate of the number of true arrivals M̂S would be

M̂S = mS(
ŵ0 +

∑
j∈S ŵj∑

j∈S ŵj
).

We replace the observed mS for each instance of the data and forecast the total market size
distribution based on the M̂S ’s. The sum of the M̂S ’s across all the state changes in an instance is
the “market” demand for that sample. The parameters of the market demand distribution are then
estimated. For instance, if we assume the demand comes from a normal distribution, we take the
sample mean and sample standard deviation as our estimate of the mean and standard deviation
respectively.
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3.2.3 Case 2: customers consider a single product

If the customer’s consideration set consists of a single product, or if the firm offers only one product
at a time, then we cannot estimate the parameters of the MNL model based only on purchases. This
situation can arise for instance in restriction-free revenue management (followed by many low-cost
carriers) where a single price is quoted at any point in time.

We make the assumption that the firm can compare products and determine which product
has a higher probability of purchase, without actually knowing the parameters of the model. In
the restriction-free RM case, where price is the only attribute, it would amount to an innocuous
assumption that customers are sensitive to price, so the higher price product has a lower probability
of purchase. If the product has many other attributes this assumption might prove restrictive
however.

To estimate the model, we fix the weight of the no-purchase option at 1. Let β be the vector of
parameters for the products. Say product 1 is offered in period 1 and product 2 in period 2. The

purchase probabilities are given by p1(β) = eβ
>x1

eβ
>x1+1

and p2(β) = eβ
>x2

eβ
>x2+1

, and suppose we know

that p1(β) ≤ p2(β).

The function log(p1(β)
p2(β) ) is in general not convex, but quasiconvex, based on the following fact:

Proposition 3 p1(β)
p2(β) is quasiconvex in β when p1(β) ≤ p2(β).

Proof
See Appendix. Q.E.D

Sum of quasiconvex functions is not necessarily quasiconvex, so finding β̂ by minimizing a squared
error poses a computational problem.

Define F , (i, j)k and Fk exactly as in Case 1 but now assuming that in sample k, we can rank
periods such that pi(β) ≤ pj(β) (without knowing β).

Every pair in F leads to a function of β, Lij(β) = ln( pi(β)
pj(β) ) with an observed ratio lijk = ln(mikmjk

) if
(i, j)k ∈ Fk . Let nij be the number of times the pair i, j appear in the samples nij = |{(i, j)k ∈ Fk}|.

As before, we expect Lij(β) to be close to l̄ij =

∑
(i,j)k∈Fk

lijk

nij
. The function (Lij(β) − l̄ij)2 is

quasiconvex, but
∑
ij(Lij(β)− l̄ij)2 need not be; however, maxij(Lij(β)− l̄ij)2 is quasiconvex.

Our estimate β̂ minimizes the maximum error:

β̂ = arg min{max
ij

(Lij(β)− l̄ij)2} (7)

which involves minimizing a quasiconvex function.

4 Computational Results

The objective of this section is to test the effectiveness of the risk-ratio estimation procedure with
MNL purchase probabilities. We use simulations to test how effectively the procedure recovers the
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MNL parameters and unknown market size distribution.

We believe simulations, rather than estimating real-world data sets, are the right test for the
method at this stage. First, we have no access to a RM data set with market size information
(indeed, the definition of market itself is somewhat ambiguous) so it is unclear how one would verify
the performance of the procedure. Second, even if one has a good idea of the true market-size it
is not clear if the (unobservable) customer purchase behavior fits the MNL model (or some other
functional form), and it is difficult to separate specification error from the estimation error.

So our controlled simulation experiments, while limited in scope, are designed to answer only
the following question: If the customer purchase behavior follows the MNL model, how well does
the risk-ratio method recover the true MNL parameters and the true market size distribution. We
also keep the simulations very simple for two reasons: to illustrate the estimation procedure, and to
make the results easily reproducible (using say Excel and a public and free software (BIOGEME)).

We perform two simulations corresponding to the situations described in Case 1 and Case 2. In
both cases, the simulation methodology is simple. First, we generate a set of samples from a normal
distribution representing market size. Each customer is randomly assigned to a booking period.

In the first experiment, there are three periods, each product has two attributes and customers
consider both products if they are offered. The firm offers both products in the first period and one
of the two products in the remaining two periods. Customers purchase according to the probabilities
given by an MNL model with certain parameters. Only purchase information is available for the
estimation procedure. We study how well the risk-ratio procedure recovers the MNL parameters
and the moments of the market-size distribution.

For the second experiment corresponding to Case 2 we perform two simulations. In the first,
there are two periods and each product has exactly one attribute (the price) and customers purchase
only as a function of price. The firm offers a low-price product in the first period and raises the
price in the second period. Since there is a single pair, the optimization with the min-max criterion
coincides with the least-squares criterion. In the second simulation, we perform the estimation with
three periods and prices and test the min-max criterion.

In both experiments customers are myopic—if they cannot purchase the product they disappear
and find alternatives outside the firm’s purview. Also, as the primary assumption behind the risk-
ratio estimate is that customers are distributed deterministically across the periods, we want to
emphasize that in all the simulations below, customers are randomly assigned to each period. That
is, first a customer population size is generated from the population distribution and each generated
customer is randomly assigned to one of the periods with equal probability.

4.1 Multi-product consideration sets

The maximum likelihood function of the MNL distribution is not strictly concave and one can get
multiple optimal solutions. To test the procedure we run the simulation on data where the variety
in the offer sets is limited and the maximum-likelihood procedure gives estimates of the parameters
which are quite different from the original—but with purchase probabilities nearly identical—and
we see that the procedure still does a remarkable job of recovering the true purchase probabilities
and the market size.

The market-size distribution is taken as Normal with mean µ of 125 and standard deviation σ
of 20.
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The products and their attributes, and the MNL co-efficients are given as in Table 1. The no-
purchase weight is fixed at 0.25. The purchase probabilities depending on the offer set are given as

Product 1 Product 2 True MNL Coefficient
attribute 1 (price) 70 200 β1 = −0.005
attribute 2 (other) 30 5 β2 = −0.001

Table 1: Two products, two attributes, their coefficients β under the MNL model.

in Table 2

Product 1 Product 2
{1,2} 0.52608526 0.281593148
{1} 0.732294324 —
{2} — 0.594185249

Table 2: Purchase probabilities under the MNL model with no-purchase weight fixed at 0.25.

A sample of the generated purchase data is given in Table 3 (in BIOGEME format).

ID x11 x21 x12 x22 av1 av2 Choice
0 70.0 200.0 30.0 5.0 1 1 2
0 70.0 200.0 30.0 5.0 1 1 2
0 70.0 200.0 30.0 5.0 1 1 1
...

...
...

...
...

...
...

...

Table 3: Choices offered, their attributes, and the choices made in period 1.

The MNL estimation is done using BIOGEME ([5],[4]), a freely available software for estimating
extreme-value distributions. The MNL estimates conditioned on purchases use only the first period
data. Based on 100 samples, and a total of 3411 customer purchases choosing one of the two
alternatives during the first period, the summary statistics are given in Table 4.

Summary statistics
Number of observations = 3411

L(0) = −2364.325
L(β̂) = −2192.658

−2[L(0)− L(β̂)] = 343.334
ρ2 = 0.073
ρ̄2 = 0.072

Table 4: Summary statistics output of BIOGEME.

The co-efficient estimates are given in Table 5.
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True MNL Coefficient 2 Estimated MNL Coefficient
attribute 1 (price) β1 = −0.005 β̂1 = −0.0269
attribute 2 (other) β2 = −0.001 β̂2 = −0.114

Table 5: True and estimated co-efficients under the MNL model.

We use our risk-ratio procedure, using a simple search procedure along the single dimension.
After scaling4 the product weights by 100 we obtain a no-purchase weight estimate ŵ0 of 0.0018.

Although the parameters are significantly different (primarily because of our limited variety in
the offer sets during the first period), the purchase probabilities are remarkably close, as seen in
Table 6. Finally, based on these estimated probabilities, we estimate the market-size for each instance

Product 1 Product 2
{1,2} 0.530418446 0.277734665
{1} 0.734381702 —
{2} — 0.591451394

Table 6: Purchase probability estimates with β̂1 = −0.0269,β̂2 = −0.114 and ŵ0 = 0.0018, to be
compared with Table 2.

and an estimate of the parameters of the market-size distribution. Just taking the sample mean
and standard-deviation of the market sizes, we get the following estimates: µ̂ = 123.94, σ̂ = 30.01,
reasonably close to the true values µ = 125, σ = 20.

When the MNL estimates are close to the true estimates, say with a large variety of offer and
consideration sets, the no-purchase weight estimate in turn turns out to be much closer in value to
the true weight.

4.2 Single-product consideration sets

As we mentioned in Section 3.2.3 when customers consider a single product, the methodology used
in the previous section—estimate the MNL parameters, and then the no-purchase weight—cannot
be applied. So in this section we simulate a restriction-free revenue management situation where
customers only consider the lowest-priced product. This situation also satisfies one of the conditions
for quasiconvexity of the objective function that we minimize—it is safe to assume that the price-
coefficient is negative so customers have a higher probability of purchasing a lower-priced product.

As in the previous section, we assume that the market-size distribution is Normal with mean µ
of 125 and standard deviation σ of 20. We run two simulations for this case.

4.2.1 Two prices, two periods

There are exactly two periods and a single product is offered at a price of 50 in the first period and
a price of 100 in the second period. The two periods are of equal length and customers arrive at the

4Because of the low values of the β̂’s; the procedure is robust with respect to this scaling, and one gets good results
multiplying by 10 or 1000 in this case.
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same rate in each period.

Price is the only attribute influencing customer purchase and the price-sensitivity is captured
by the negative co-efficient on the price attribute β = −0.04. We generate 100 observations of the
market size, with customers within each instance distributed randomly over the two periods, and
record the number of purchases at the price of 50 in the first period and 100 in the second period.
The weight of the no-purchase option is fixed at 0.03 (unknown to the estimation).

The purchase probabilities with the above set of parameters are given as in Table 7.

Price Purchase Probability
50 0.818550527

100 0.379083032

Table 7: True purchase probabilities for the restriction-free revenue management simulation with
price coefficient β = −0.04 and no-purchase weight 0.03 in the MNL model.

In our estimation procedure we set the no-purchase weight as 1.0 and find a constant β̂0 and
the co-efficient of the price attribute, β̂1 that minimizes Equation (7). This minimization can be
done by any standard minimization procedure, and as the objective function is quasi-convex, we are
assured of convergence to a global minima.

The estimates for this example turn out to be β̂0 = 7.39, β̂0 = −0.076, with purchase probabilities
as given in Table 8, and population estimates µ̂ = 107, σ̂ = 18.46.

Price Purchase Probability
50 0.973

100 0.4476

Table 8: Estimated purchase probabilities for the restriction-free revenue management simulation
to be compared with the true probabilities in Table 7.

4.2.2 Three prices, three periods

To test the min-max criterion, we need richer data with more feasible pairs. So we simulate a three
period model with prices 50, 75 and 100 respectively in each period. As for the two period case,
true co-efficient of price is β = −0.04 with a no-purchase weight of 0.03 (both unknown to the
estimation), and the population is equally distributed amongst the three periods. The purchase
probabilities with the above set of parameters are given as in Table 9.

The estimates for this example with the min-max criterion of Equation (7) using the three period
pairs (1 vs 2 and 3; 2 vs 3) turn out to be β̂0 = 3.8, β̂0 = −0.042, with purchase probabilities as
given in Table 10, and population estimates µ̂ = 124.21, σ̂ = 20.562. The richer set of data leads to
a striking recovery of the original parameters even with the min-max criterion.
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Price Purchase Probability
50 0.818550527
75 0.623999219

100 0.379083032

Table 9: True purchase probabilities for the restriction-free revenue management simulation with
price coefficient β = −0.04 and no-purchase weight 0.03 in the MNL model.

Price Purchase Probability
50 0.845534735
75 0.657010463

100 0.40131234

Table 10: Estimated purchase probabilities for the restriction-free revenue management simulation
to be compared with the true probabilities in Table 9.

4.3 Extensions and further research

This paper presents a finite population model of RM and a log risk-ratio estimation heuristic that
appears to be very effective in estimating the unobservable market size when customer’s purchase
probabilities follow the MNL model. We also point out the considerable difficulty in this joint
estimation of purchase probability parameters and market size by its connection to the binomial
estimation problem.

While we consider the results very promising, considerable more research is needed to increase the
robustness and scope of the method. First, the estimation idea can be applied to models other than
MNL, perhaps at the risk of losing the convexity properties. Second, many revenue management
applications exploit the presence of multiple segments in the population with distinct purchase
characteristics and price sensitivities.

Extending the estimation procedure to a multi-segment population with unobservable mixture
probabilities is perhaps the most important direction from a practice point of view. One idea is to
combine the heuristic with an EM-style updating algorithm for estimating the mixture probabilities,
as this is one of the standard applications of the EM algorithm.
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Proof of Proposition 1: The proof is essentially identical to that for the marginal values time-
based discrete choice model of RM, so we keep it brief.

(i) ∆xV (x|M) ≤ ∆xV (x− 1|M)

Induction on m assuming ∆xV (x−m|M) ≤ ∆xV (x−m−1|M),m ≥ 1. V (x,M) can be rewritten
as

V (x,M) = P (M ≥ 1)V (x,M − 1|M ≥ 1) + max
S

P (M ≥ 1){
∑
j∈S

Pj(S)(rj −∆V (x,M − 1|M ≥ 1))}

(8)
Let S∗(x) be the optimal offer set for the first customer in the calculation of V (x,M).

∆V (x,M) = V (x,M)− V (x− 1,M) (9)

≤ P (M ≥ 1)[∆V (x,M − 1|M ≥ 1) +
∑

j∈S∗(x−1)

Pj(S∗(x− 1))(−∆V (x,M − 1|M ≥ 1)

+∆V (x− 1,M − 1|M ≥ 1))]
(10)

and

∆V (x− 1,M) = V (x− 1,M)− V (x− 2,M) (11)
≥ P (M ≥ 1)[∆V (x− 1,M − 1|M ≥ 1)

+
∑

j∈S∗(x−1)

Pj(S∗(x− 1))(−∆V (x− 1,M − 1|M ≥ 1)

+∆V (x− 2,M − 1|M ≥ 1))]
(12)

so it suffices to show the quantity (10) is less than or equal to the quantity (12). By induction,
∆V (x,M − 1|M ≥ 1)−∆V (x− 1,M − 1|M ≥ 1) ≤ 0, using which,

∆V (x,M)−∆V (x− 1,M) = P (M ≥ 1)[(∆V (x,M − 1|M ≥ 1) (13)
−∆V (x− 1,M − 1|M ≥ 1))
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+
∑

j∈S∗(x−1)

Pj(S∗(x− 1))(−∆V (x,M − 1|M ≥ 1)

+∆V (x− 1,M − 1|M ≥ 1) + ∆V (x− 1,M − 1|M ≥ 1)
−∆V (x− 2,M − 1|M ≥ 1))]

= P (M ≥ 1)[(1−
∑

j∈S∗(x−1)

Pj(S∗(x− 1)))(∆V (x,M − 1|M ≥ 1)

−∆V (x− 1,M − 1|M ≥ 1))

+
∑

j∈S∗(x−1)

Pj(S∗(x− 1))(∆V (x− 1,M − 1|M ≥ 1)

−∆V (x− 2,M − 1|M ≥ 1))]
≤ 0

(ii) ∆mV (x|M − 1) ≤ ∆mV (x|M)

Consider

∆V (x,M) = V (x,M)− V (x− 1,M) (14)
≥ P (M ≥ 1)[∆V (x,M − 1|M ≥ 1)

+
∑

j∈S∗(x)

Pj(S∗(x− 1))(−∆V (x,M − 1|M ≥ 1)

+∆V (x− 1,M − 1|M ≥ 1))]

= ∆V (x,M − 1) + P (M ≥ 1)
∑

j∈S∗(x−1)

Pj(S∗(x− 1))(∆V (x− 1,M − 1|M ≥ 1)

−∆V (x,M − 1|M ≥ 1))
≥ ∆V (x,M − 1)

as ∆V (x− 1,M − 1|M ≥ 1)−∆V (x,M − 1|M ≥ 1) ≥ 0 from the proof of (i).

Proof of Proposition 2: Let the sum of the weights of the set of products be w1 in period 1 and w2

in period 2 and w1 < w2. w0 is the no-purchase weight. We show L = ln(p1(w0)
p2(w0)

) = ln(w1(w2+w0)
w2(w1+w0)

) =
ln(w1

w2
) + ln(w2+w0

w1+w0
) is convex in w0.

dL

dw0
=
w1 + w0

w2 + w0
(− w2 + w0

(w1 + w0)2
+

1
w1 + w0

) =
w1 − w2

(w1 + w0)(w2 + w0)

and
d2L

dw2
0

=
−(w1 − w2)

(w1 + w0)2(w2 + w0)2
(2w0 + w1 + w2)

which is greater than 0 if w1 < w2.

Proof of Proposition 3: If the customer’s consideration set consists of a single product, p1(β)
p2(β)

is quasi-convex in β (see Boyd and Vandenberghe [8], Chapter 3 for all the facts on convex and
quasiconvex functions used here). Note that as log(·) is an increasing function, this shows quasi-
convexity of log(p1(β)

p2(β) ) as well.

We show that for any 1 > α ≥ 0, the set

S = {β|p1(β)
p2(β)

≤ α}
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is convex.

Let the product offered during period 1 be indexed by 1 and the product in period 2 be indexed
by 2. Recall that we normalize the weight of the no-purchase option to 1. As only one product is
offered, S can be written as

S = {β|(1− α) expβ
>(x1+x2) ≤ α expβ

>x2 − expβ
>x1}

Let β1, β2 ∈ S, so
(1− α) expβ

>
1 (x1+x2) ≤ α expβ

>
1 x2 − expβ

>
1 x1 (15)

and
(1− α) expβ

>
2 (x1+x2) ≤ α expβ

>
2 x2 − expβ

>
2 x1 (16)

Consider the case 1 ≥ α. Multiplying the two sides of the inequalities of (15) and (16), and
expanding

(1− α)2 exp(β1+β2)
>(x1+x2) ≤ exp(β1+β2)

>x1 −α expβ
>
1 x2+β

>
2 x1 −α expβ

>
1 x1+β

>
2 x2 +α2 exp(β1+β2)

>x2

(17)

We next verify that

exp(β1+β2)
>x1 −α expβ

>
1 x2+β

>
2 x1 −α expβ

>
1 x1+β

>
2 x2 +α2 exp(β1+β2)

>x2 (18)

≤ (α exp(
β1+β2

2 )>x2 − exp(
β1+β2

2 )>x1)2

which reduces to verifying that

2 expβ
>
1 x1+β

>
2 x2 expβ

>
1 x2+β

>
2 x1 ≤ expβ

>
1 x1+β

>
2 x2 + expβ

>
1 x1+β

>
2 x2 (19)

which is true by the AM-GM inequality. So for α ≤ 1,

(1− α) exp(
β1+β2

2 )>(x1+x2) ≤ (α exp(
β1+β2

2 )>x2 − exp(
β1+β2

2 )>x1)

implying β1+β2
2 ∈ S, so S is a convex set.
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