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Abstract

Models incorporating more realistic models of customer behavior, as customers choosing from
an offer set, have recently become popular in assortment optimization and revenue management.
The dynamic program for these models is intractable and approximated by a deterministic
linear program called the CDLP which has an exponential number of columns. However, when
the segment consideration sets overlap, the CDLP is difficult to solve. Column generation
has been proposed but finding an entering column has been shown to be NP-hard. In this
paper we propose a new approach called SDCP to solving CDLP based on segments and their
consideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound on
the dynamic program but coincides with CDLP for the case of non-overlapping segments. If
the number of elements in a consideration set for a segment is not very large (SDCP ) can be
applied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by
(i) simulations, called the randomized concave programming (RCP ) method, and (ii) by adding
cuts to a recent compact formulation of the problem for a latent multinomial-choice model of
demand (SBLP+). This latter approach turns out to be very effective, essentially obtaining
CDLP value, and excellent revenue performance in simulations, even for overlapping segments.
By formulating the problem as a separation problem, we give insight into why CDLP is easy
for the MNL with non-overlapping considerations sets and why generalizations of MNL pose
difficulties. We perform numerical simulations to determine the revenue performance of all the
methods on reference data sets in the literature.

Key words. assortment optimization, randomized algorithms,network revenue management

1 Introduction and literature review

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for a
night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for
a unit of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes
at a fixed point of time in the future. Sale is online, so the firm has to decide what products to offer
(at a given price for each product), the tradeoff being selling too much at too low a price early and
running out of capacity, or, rejecting too many low-valuation customers and ending up with excess
unsold inventory.
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In industries such as hotels and airlines the products consume bundles of different resources
(multi-night stays, multi-leg itineraries) and the decision to accept or reject a particular product
at a certain price depends on the future demands and revenues for all the resources used by the
product and indirectly, on all the resources in the network. Network revenue management (network
RM) is control based on the demands for the entire network. Chapter 3 of Talluri and van Ryzin
[24] contains all the necessary background on network RM.

RM incorporating more realistic models of customer behavior, as customers choosing from an
offer set, have recently become popular, initiated in Talluri and van Ryzin [23] for the single-resource
problem. Many network RM extensions of such models (Gallego, Iyengar, Phillips, and Dubey [8],
Liu and van Ryzin [14], Kunnumkal and Topaloglu [13], Zhang and Adelman [26], Meissner and
Strauss [16], Bodea, Ferguson, and Garrow [4]) have recently been proposed. In many cases they
are modifications of older methods proposed for network RM with the so-called independent class
assumption.

The extension to the choice model of customer behavior however makes the approximations
considerably more difficult to solve. The formulations have an exponential number of constraints and
the solution strategy is to use column generation, but finding an entering column is computationally
easy only in a limited number of cases.

In this paper we first give a segment-based deterministic concave-program (SDCP ) upper bound
to the underlying dynamic program (defined in §1.3), which is a relaxation that offers different offer
sets to different customers, and that coincides with the CDLP upper-bound for non-overlapping
segments. We then tighten the bound in two different ways (i) By a simulation-based randomized
concave programming (RCP ) method, similar to the Randomized Linear Program (RLP ) for the
independent-class model ([22]) (ii) By adding valid inequalities to SDCP . Our cuts are a special-
ization of the ones developed in Meissner, Strauss, and Talluri [17] to the compact formulation of
Gallego, Ratliff, and Shebalov [9] for the multinomial-logit choice model. The advantage of these
cuts is that the space of the resulting program is exponential only in the number of products in the
intersection of two segments’ consideration sets, rather than the size of the consideration sets as in
[17].

If the number of elements in a consideration set for a segment is not very large, both (SDCP )
and (RCP ) can be applied to any choice model whatsoever, expanding the models well beyond
tractable-but-restrictive ones such as multinomial-logit. Small consideration sets can be justified in
the airline setting where a segment’s consideration set consists of choices (on one airline) for travel
between an origin and destination, and typically there are only alternatives on a given date (Talluri
[21]).

Another stream of literature that considers essentially the same mathematical problem in a
different application context is assortment optimization for the retail industry (Kök, Fisher, and
Vaidyanathan [12]). Network choice RM (the one considered in this paper) can be considered a
dynamic assortment optimization problem with an additional network structure for the resources.
For this reason many of the solution methodologies developed for network RM can be applied to the
retail setting as well. Empirical studies in the marketing literature also motivate our assumption
of small consideration sets; Hauser and Wernerfelt [11] report average consideration set sizes of 3
brands for deodorants, 4 brands for shampoos, 2.2 brands for air fresheners, 4 brands for laundry
detergents and 4 brands for coffees.

To summarize, the contributions of this paper are as follows (i) We develop a new solution
strategy for solving CDLP based on segment consideration sets rather than column generation (ii)
We tighten the formulation using randomization (RCP ) and by adding cuts for the MNL choice
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model (SBLP+) to get close to the CDLP value (iii) Give some insights as to why column-generation
works for non-overlapping consideration sets and MNL and why it is difficult for any generalization
of MNL (iv) Perform numerical experiments that show that SBLP+ runs extremely fast and should
be scalable to industrial-size problems, giving the most robust revenues.

1.1 Notation

A product is a set of resources and a price. For example, a product could be an itinerary-fare class
combination for an airline network, where an itinerary is a combination of flight legs; in a hotel
network, a product would be a multi-night stay for a particular room-type at a certain price point.

We assume that the booking horizon begins at time 0 and all the resources are consumed instan-
taneously at time T . Time is discrete and assumed to consist of T intervals, indexed by t. We make
the standard assumption that the intervals are fine enough so that at most one customer arrives in
each period.

The underlying network has I resources (indexed by i) and J products (indexed by j) of resources.
Whenever it is clear from the context, we let J represent the set of products also (as in j ∈ J).
Product j uses a subset of resources, and is identified (possibly) with a set of sale restrictions or
features and a revenue of rj . A resource i is said to be in product j (i ∈ j) if j uses resource i. The
resources used by j are represented by aij = 1 if i ∈ j, and aij = 0 if i /∈ j, or alternately with the
0-1 incidence vector Aj of product j. Let A denote the resource-product incidence matrix; columns
of A are then Aj .

We denote capacity on resource i at time t as ci,t and the vector of capacities �ct, so the initial

set of capacities at time 0 is �c0. The vector �1 is a vector of all ones, and �0 is a vector of all zeroes
(dimension appropriate to the context).

1.2 Demand model

The demand model is a (latent, finite) segment-mixture model. We assume there are L underlying
segments, each with distinct purchase behavior. Customers are assumed independent of each other,
arrive randomly during a sale period and demand one unit of resource each. In each period, there
is a customer arrival with probability λ, and a customer belongs to segment l with probability pl.
We denote λl = plλ and assume

∑
l pl = 1, so λ =

∑
l λl. Define �λ = [λ1, . . . , λL]. We are assuming

time-homogenous arrivals (homogenous in rates and segment mix), but the model and all solution
methods in this paper can be transparently extended to the case when rates and mix change by
period.

Each segment l has a consideration set, a subset of products Cl ⊆ J that it considers for purchase.
We assume this consideration set is known to the firm (by a previous process of estimation and
analysis).

In each period the firm offers a subset S of its products for sale, called the offer set. Given an
offer set S, an arriving customer purchases a product j in the set S or decides not to purchase. To
simplify notation, we just assume that the null set, ∅, represents the no-purchase option, and it is
always present in all offer sets. We clarify that when we write j ∈ S in a summation or union, it
does not include the null set; that is the indexing is over the products 1, . . . , J . The no-purchase
option is indexed by 0 when necessary. We represent subsets of Cl by Sl. If the firm offers a set S
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of products, the segment l customer would only consider the subset Sl = Cl ∩ S.

The choice probabilities are given as follows: A segment-l customer purchases j ∈ S with prob-
ability Plj(S). This is a set-function defined on all subsets of J . For the moment we assume these
set functions are given by an oracle; it could conceivably be given by a simple formula such as the
multinomial-logit model (§3 and §4).

The choice probabilities are assumed to satisfy, Plj(S) = Plj(S ∩ Cl), ∀j ∈ S ∩Cl and Plj(S) =
0, ∀j �∈ S ∩Cl; i.e., a segment-l customer is completely indifferent to a product outside his consider-
ation set and his choice probabilities are not affected by products offered outside his consideration
set. So whenever we specify probabilities for a segment l for a given offer-set S, we just write it with
respect to Sl. Define the vector �Pl(S) = [Pl1(Sl), . . . , Pln(Sl)].

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is then
given by Pj(S) =

∑
l plPlj(Sl). The probability of the no-purchase option is given by P0(S) =

1−∑j∈S Pj(S). Define the vector �P (S) = [P1(S), . . . , PJ (S)]. Notice that �P (S) =
∑

l pl
�Pl(S).

Define the m-vectors �Ql(S) = A�Pl(S) and �Q(S) = A�P (S). Define the revenue functions Rl(S) =∑
j∈Sl

rjPlj(Sl) and R(S) =
∑

j∈S rjPj(S).

Define a segment-offer set subset-incidence matrix B with rows for all Sl ⊆ Cl, l = 1, 2, . . . , L
and columns S ⊆ J , and BSlS = 1 if subset Sl = S ∩ Cl and 0 otherwise.

In our notation and demand model we broadly follow Bront, Méndez-Dı́az, and Vulcano [5] and
Liu and van Ryzin [14]. We refer the reader to these papers for motivating examples behind the
demand model.

1.2.1 Non-overlapping segments model

Liu and van Ryzin [14] show that their CDLP approximation is tractable for a model with MNL
choice and non-overlapping segment consideration sets: for any two segments l and m, Cl ∩Cm = ∅.

The non-overlapping segment assumption can potentially be limiting in applications. For in-
stance, in an airline context, Talluri [21] models the different itineraries between a city pair by a
route-set. If say there are two types of customers, business and leisure, and we define a segment
as type of customer and the origin-destination pair: A business customer might be considering just
the shortest route, or the itinerary closest to his preferred time, whereas a leisure customer might
consider both, looking for the cheapest flight. This would constitute overlapping consideration sets.

In the context of assortment optimization consideration sets are determined both by tastes as
well as incomes and non-overlapping considerations sets would be a serious restriction.

As far as we know only Bront et al. [5] and Rusmevichientong, Shmoys, and Topaloglu [20]
tackle the case of overlapping segments—they show that column-generation is NP-hard, and propose
heuristics and a mixed-integer programming method for generating columns.

1.3 Dynamic program

The dynamic program (DP) to determine optimal controls is as follows: Let Vt(�ct) denote the
maximum expected revenue to go, given remaining capacity �ct in period t. Then Vt(�ct) must satisfy
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the Bellman equation

Vt(�ct) = max
S⊆J

⎧⎨
⎩
∑
j∈S

λPj(S)(rj + Vt+1(�ct −Aj)) + (λP0(S) + 1− λ)Vt+1(�ct)

⎫⎬
⎭ (1)

with the boundary condition VT+1(�c) = Vt(�0) = 0, ∀�c. Let V DP denote the optimal value of this
dynamic program from 0 to T , for the given initial capacity vector �c0.

2 Approximations and upper bounds

2.1 Choice Deterministic Linear Program (CDLP )

The choice deterministic linear program (CDLP ) defined in Gallego et al. [8] and Liu and van Ryzin
[14] is as follows:

V CDLP = maxtS T
∑
S⊆J

λR(S)tS (2)

(CDLP ) s.t.
∑
S⊆J

λ�Q(S)tS ≤ 1

T
�c0

∑
S⊆J

tS ≤ 1

0 ≤ tS , ∀S ⊆ J

The formulation has a 2J − 1 variables tS , which represents the time each set is offered. Liu and van
Ryzin [14] show that CDLP is an upper bound on the DP given in (1). They also show that the
problem can be solved efficiently, using column-generation, for the non-overlapping segments MNL
model of customer choice.

2.2 Segment-based Deterministic Concave Program (SDCP )

In this section we give a formulation based on segment consideration sets. In general it is a looser
formulation than CDLP but we show that it coincides exactly with CDLP for non-overlapping
segments, is solvable for small consideration sets for more general choice probability functions, and
can be tightened by randomization and valid inequalities bringing it closer to CDLP for non-
overlapping segments.

For segment l, define a capacity vector �yl ≥ 0 (even if we cannot identify that segment at the
time of purchase). Given �yl, let G

∗
l (�yl, λl) represent the optimal revenue we can obtain offering some

convex combination of sets to segment l. G∗
l (�yl, λl) can be obtained by solving the following linear
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program:

G∗
l (�yl, λl) = max

∑
Sl⊆Cl

λlRl(Sl)w̃Sl
(3)

(Rgen) s.t.
∑

Sl⊆Cl

λlw̃Sl
�Ql(Sl) ≤ �yl

∑
Sl⊆Cl

w̃Sl
≤ 1

w̃Sl
≥ 0, ∀Sl ⊆ Cl

which, by performing a change of variables (λlw̃Sl
= wSl

), we can write equivalently as as

G∗
l (�yl, λl) = max

∑
Sl⊆Cl

Rl(Sl)wSl
(4)

(Rgen) s.t.
∑

Sl⊆Cl

wSl
�Ql(Sl) ≤ �yl

∑
Sl⊆Cl

wSl
≤ λl

wSl
≥ 0, ∀Sl ⊆ Cl

The columns of the linear program (Rgen) correspond to all subsets of the consideration set of a
single segment at a time, and if the premise is that consideration sets are not large, one can even
enumerate all the possible subsets.

Now, define the following concave programming problem over the capacity vectors:

V SDCP = max T

L∑
l=1

G∗
l (�yl, λl) (5)

(SDCP ) s.t.

L∑
l=1

�yl ≤ 1

T
�c0

�yl ≥ �0

(SDCP ) is a compact formulation, and can be solved by any number of standard concave-programming
methods generating the objective function values by solving (Rgen). So the critical computation
lies in (Rgen).

For simplicity, in the formulation of SDCP and RCP , we assumed a uniform arrival rate λl

throughout the time horizon. If the arrival rates change over time, say according to a piece-wise
linear function, we would need to have variables that correspond to each of the linear parts.

SDCP can be formulated as a single mathematical program, but we chose a bi-level formulation,
decomposing the capacity by segment and using subproblems Rgen for each segment l to define the
objective function. Our reasons for this modeling are as follows: (i) The bi-level formulation can
accommodate slightly larger problems in memory. As Rgen takes subsets of consideration sets, one
can fit larger problems by solving it on the fly for each segment, one at a time (ii) As we shall see in
§4, the bi-level formulation brings out the essential reason why MNL with non-overlapping segments
is solvable and why generalizations are likely to be difficult—by reducing solvability to the ability to
do a separation efficiently (iii) It becomes easier to present a randomized version of SDCP in §2.4
and prove that it gives a tighter bound than SDCP .

6



Notice that the objective value of (Rgen), G∗
l (�yl, λl) is a function of both �yl and λl. In §2.4 we

randomize over λl and we need to use the following (which simply follows from that fact that both
�yl and λl are on the right-hand side of the constraints of G∗

l (�yl, λl) ):

Lemma 1. G∗
l (�yl, λl) is a concave function of �yl and λl.

Lemma 2. V SDCP is a concave function of λl.

The idea of decomposing the problem as in SDCP is quite classical (§6.4.2 of Bertsekas [3];
Maglaras and Meissner [15] in a related context). We differ from the standard right-hand-side
allocation as we reduce the total number of variables in the decomposed problems.

2.3 Relationship between (SDCP ) and (CDLP )

We show that V SDCP ≥ V CDLP in general and V SDCP = V CDLP for the case of non-overlapping
segments. SDCP can be considered as a relaxation of CDLP where we allow customization of offer
sets by segment.

First formulate CDLP as follows:

max T
∑

l λl

∑
Sl⊆Cl

Rl(Sl)w
l
Sl

(6)

(CDLP ′)
∑

l λl

∑
Sl⊆Cl

�Ql(Sl)w
l
Sl

≤ 1
T �c0 (7)

wl
Sl

∈ Proj(W), (8)

where W is a polytope representing probability distributions w over all subsets S and Proj(W) is the
projection of W onto the space of wl

Sl
’s. That is, wl

Sl
∈ Proj(W) if there exists a feasible solution

to the following system (recall BSlS = 1 if subset Sl = S ∩ Cl and 0 otherwise):∑
S⊆J

BSlSwS = wl
Sl

∀l, ∀Sl ⊆ Cl (9)

(W([wl]))
∑
S⊆J

wS = 1 (10)

wS ≥ 0, ∀S ⊆ J

The wl
Sl
’s in the above formulation can be thought of as the marginal distribution on subsets of Cl

for a distribution of w on S ⊆ C.

Proposition 1. CDLP ′ = CDLP .

Proof
For a feasible wl

Sl
of (CDLP ′), wl

Sl
∈ Proj(W) implies, there exists a wS satisfying (9). Now notice

that ∑
l

λl

∑
Sl⊆Cl

�Ql(Sl)
∑
S

BSlSwS =
∑
S⊆J

λwS
�Q(S), (11)

and therefore these wS satisfy (CDLP ) with the same objective value (the objective value is the
same by a calculation identical to that of (11)).

Likewise, equation (11) also shows that if wS is a feasible solution to (CDLP ) we derive a feasible
solution wl

Sl
for (CDLP ′) by wl

Sl
= BSlSwS and this has the same objective value.
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�

The difficulty of solving (CDLP ) for overlapping segment considerations sets lies in solving (W([wl]))
as its columns are indexed by all subsets S and the matrix B has almost no structure when the
segment consideration sets overlap.

Theorem 1. V SDCP ≥ V CDLP .

Proof
The matrix B has the property that every column, corresponding to a set S, has at most one element
equal to 1 amongst the rows corresponding to the subsets of Cl. This implies that a feasible solution
to (CDLP ′) satisfies

∑
Sl
wl

Sl
≤ 1 as

∑
wS = 1. Hence we add these redundant constraints and

relax constraints (9) to obtain SDCP as in the formulation (5) using (3).
�

Theorem 2. For the non-overlapping segments model, V SDCP = V CDLP .

Proof
When we have non-overlapping segment consideration sets, the structure of B simplifies. Arrange
the rows of B such that the segments are in order (that is all subsets of segment 1 precede those
of 2, etc.). Arrange the columns of B so that the initial columns correspond to the subsets Sl

representing the rows and in exactly the same order. When the segment consideration sets do not

overlap, the matrix B then looks like B = [I
. . .]. Now if wl

Sl
is feasible in (SDCP ), we can con-

struct an equivalent feasible solution in (CDLP ′) by setting wSl
= wl

Sl
for all subsets Sl ⊆ Cl, ∀l

and wS = 0 otherwise. This is a feasible solution to (CDLP ′) from the structure of B. This shows
V SDCP ≤ V CDLP and from Theorem 1 we conclude that V SDCP = V CDLP for non-overlapping
segments.

�

2.4 Randomized Concave Program (RCP )

We next tighten (SDCP ) by randomization, that we call Randomized Concave Program, RCP .
Assume we draw a categorical random variable that takes value l with probability λl or no arrival
(0) with probability 1−∑l λl. Let the realization of segment l demand in period t for the kth sample
path be represented by the indicator function �

k
[lt] equal to 1 if there is a l segment arrival and 0

otherwise.

For the kth instance, we define the concave program

V RCPk

= max

T∑
t=1

L∑
l=1

G∗
l (�ylt,�

k
[lt]
�1) (12)

(RCP k) s.t.

T∑
t=1

L∑
l=1

�ylt ≤ �c0

�ylt ≥ �0
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Next, we define the value of RCP as the average of the K concave programs:

V RCP (K) =

∑K
k=1 V

RCPk

K

As in the RLP method of Talluri and van Ryzin [22], we can take an average of the marginal values
of (RCP k) as the controlling bid-price.

2.5 DP , SDCP and RCP

The dynamic program (1) maximizes the expected value over two sets of random variables: the
(categorical) random variable of arrival types Λt which can take values 0 (the no-purchase option)
and 1, . . . , L representing the L segments; and conditioned on a l segment arrival, and for a given
set S, the (categorical) purchase random variable XS |Λt = l which take the value j = 0, . . . , J
with probability Plj(S) (j = 0 represents the no-purchase option). We represent XS |Λt = l as
distributions over J + 1-dimensional unit vectors �ej (vector with 1 in the jth position and 0’s
elsewhere).

We define V RCP (�c) as the expected value over {Λt} of the function defined as below:

f({Λt},�c) = max

T∑
t=1

L∑
l=1

G∗
l (�ylt,�[Λt=l]

�1) (13)

s.t.
T∑

t=1

L∑
l=1

�ylt ≤ �c

�ylt ≥ �0

So V RCP (�c) = E{Λt}[f({Λt},�c)]. As K → ∞, V RCP (K)(�c) → V RCP (�c) by the Strong Law of

Large Numbers as we are taking independent samples to estimate V RCP . While V RCP (K) is an
approximation to V RCP we assume from now on that we take sufficient samples so the difference is
negligible, and, heuristically, use V RCP and V RCP (K) interchangeably. We show first the relation
between RCP and SDCP .

Theorem 3. V RCP ≤ V SDCP .

Proof
Notice that f(·) is a non-negative concave function, and E[�[Λt=l]

�1] = λl
�1. So by Jensen’s inequality

and Lemma 2, the result follows.
�

Recall V DP is the optimal value of (1) for the initial capacity vector �c0 at time t = 0.

Theorem 4. V DP ≤ V RCP .

Proof
Note that at time t, Vt+1(·) is a constant independent of the period t random variables. Let �Vt+1

be a J + 1-dimension vector whose jth element is (rj + Vt+1(�ct − Aj)) (r0 = 0 and A0 = �0). The
dynamic program (1) can be represented as

Vt(�ct) = max
S⊆J

EΛt [EXS |Λt
[(XS |Λt)

��Vt+1]] (14)
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Now maximum of expected value is always less than or equal to the expected value of the maximum,
so

Vt(�ct) ≤ Rt(�ct) = EΛt [max
S⊆J

[EXS |Λt
[(XS |Λt)

� �Rt+1]] (15)

where �Rt+1 is the recursively defined J+1-dimension vector whose jth element is (rj+Rt+1(�ct−Aj)).
Now observe that the mathematical program of RCP , (13) can be written recursively as

E{Λt}[f({Λt},�ct)] = EΛt [ft(Λt,�ct)]

where
ft(Λt,�ct) = max

{�ylt≥0}
{
∑
l

G∗
l (�ylt,�[Λt=l]) + EΛt+1 [ft+1(Λt+1, [�ct −

∑
l

�ylt)]]}

For any given realization of Λt = l, consider the optimal solution of the right hand side of (15),
S∗
Λt=l, and the corresponding capacity that the solution occupies: �ylt =

∑
j∈S∗

Λt=l
Plj(S

∗
Λt=l)Aj ,

that is the expected capacity with respect to the random choices (XS |Λt). G∗
l (�ylt,�[Λt=l]) ≥∑

j∈S∗
Λt=l

rjPlj(S
∗
Λt=l). So assume by induction that

E[ft+1(Λt+1,�ct+1)] ≥ Vt+1(�ct+1), ∀�ct+1

(which is trivially true for the last period T ), and, from the concavity of G∗
l (·, ·) with respect to �ylt

(from Lemma 1), we obtain Rt(�ct) ≤ EΛt [ft(Λt,�ct)] and therefore, V DP (�c0) ≤ V RCP (�c0).
�

From the results of this section and §2.3, V RCP then gives a tighter upper bound to the DP
than V CDLP for non-overlapping segments, so we can write:

Corollary 1. For the non-overlapping segments model, V DP ≤ V RCP ≤ V CDLP .

2.6 Solution Procedure

The concave programs SDCP and (RCP k) can be solved by subgradient optimization, but here we
show that they in fact can be considered linear programs; this allows us to solve it with a general
purpose linear program solver. It is a well known fact, that the duals of (Rgen) are subgradients to
G∗(·).

We can write (SDCP ) as follows:

V SDCP = max

L∑
l=1

zl (16)

(SDCP ′) s.t.
L∑

l=1

�yl ≤ �c0

zl −G∗
l (�yl, λl) ≤ 0 ∀l (17)

�yl ≥ �0

We replace the constraints (17) by linear constraints, adding them dynamically. If at the kth itera-
tion, �ykl is the capacity vector assigned to segment l, and zkl the value of variable zl, we solve (Rgen)
for this segment and obtain the dual vector corresponding to this �ykl ,

[
�πk
l wk

]
, and the optimal

value G∗
l (�y

k
l , λl).
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If zkl > G∗
l (�y

k
l , λl), we have found a violated inequality, and we add the following subgradient cut

zl − (�πk
l )

��yl ≤ λlTw
k

This procedures terminates after a finite number of steps as (Rgen) is a piecewise linear concave
function of y—indeed as the separation can be done in polynomial time, the algorithm actually runs
in polynomial time. As a starting point, we solve (SDCP ) using the dual vectors generated for an
assignment of capacities �yl = min(λlT�1,

�c0
L ) with the minimum taken component-wise.

The same procedure can be applied to solve RCP substituting
∑T

t=1 �
k
[lt] for λlT in both (Rgen)

for segment l as well as in (RCP ).

3 Solution procedures for MNL

In this section we show how the SDCP formulation can be strengthened for the case of MNL demand
based on a recent compact formulation of SDCP for the MNL model due to Gallego et al. [9].

3.1 Compact formulation for MNL

In a recent paper Gallego et al. [9] gave a compact formulation of SDCP for the case of MNL
model of demand. The formulation has at most LJ variables (number of products multiplied by
number of segments) and just I + L + LJ constraints (I is the number of resources). This is very
appealing indeed, as it means, at least for MNL, we have a very fast procedure for solving SDCP .
The formulation is given as below (following [9] we label it as sales-based linear program (SBLP)
but simplify it for MNL rather than the slightly more general attraction model called GAM that
they use):

V SBLP = max

L∑
l=1

∑
j∈Cl

rjxlj (18)

(SBLP ) s.t.
L∑

l=1

∑
j∈Cl

Ajxlj ≤ �c0

xl0 +
∑
j∈Cl

xlj = λlT ∀l

xlj

vlj
− xl0

vl0
≤ 0 ∀l, ∀j ∈ Cl

xlj ≥ 0

The constants vlj is the weight of product j and vl0 the weight of the outside option in the MNL
formula, Plj(Sl) =

vlj
vl0+

∑
j∈Sl

vlj
. Gallego et al. [9] show that (18) it is equivalent to SDCP when

the segment consideration sets do not overlap. The connection between the two formulations is the
interpretation

xlk = λlT
∑

{Sl⊆Cl|k∈Sl}
Plkw

l
Sl

= λlT
∑

{Sl⊆Cl|k∈Sl}

vlk
vl0 +

∑
j∈Sl

vlj
wl

Sl
(19)

in (7) ([9]; see also Topaloglu [25]). Note that the formulation (18) is specific to the MNL model of
choice and does not hold for any other choice model.

11



While (SBLP ) is very appealing because of its compact size, it is equivalent to CDLP only for
the case of non-overlapping segments. In the next section we investigate methods for tightening the
formulation when the consideration sets overlap.

First, call a set of constraints valid if adding them to an upper bound on the dynamic program
(1) still results in an upper bound. Meissner et al. [17] develop a set of valid inequalities for SDCP
called product cuts (PC-cuts). They are of the following form:∑

{Sl⊆Cl|Sl⊇Slm}
wl

Sl
=

∑
{Sm⊆Cm|Sm⊇Slm}

wm
Sm

, ∀Slm ⊆ Cl ∩Cm. (20)

which are added to SDCP directly or through the generating linear program (Rgen). Now the
limiting factor is that (20) can be applied only when the size of the consideration sets is small as it
sums over all subsets of Cl that contain a given subset Slm. This limits its applicability to situations
where the considerations sets are at most of size 20 or so.

It would be very appealing indeed if one can tighten the formulation SBLP by adding valid
inequalities with at most LJ variables. Gallego et al. [9] mention that SBLP can be tightened
but do not give any hint about the nature of such cuts, and the problem is open. In this section
we give valid inequalities in an expanded space that, while not as small as LJ , is of the order of
the number of subsets in the intersections of consideration sets. So we remove the limitation on
the size of consideration sets of (20) and replace it with the less restrictive limitation on the size
of intersections of consideration sets. On the other hand, the cuts are limited to the MNL model.
From our numerical studies (§5) the cuts appear to have the same power as (20) which almost always
obtain the CDLP value ([17]).

3.2 Valid inequalities

We restrict ourselves to the MNL model of choice, so Plj =
vlj

vl0+
∑

j∈Cl
vlj

. Let vlSl
=
∑

j∈Sl
vlj . The

algebra is significantly reduced if we first make a change of variables as follows:

w̄l
Sl

=
wl

Sl

vl0 + vlSl

(21)

So the variables xlk in (19) become

xlk

vlk
= λlT

∑
{Sl⊆Cl|Sl	k}

w̄l
Sl

(22)

The cuts (20) then become, ∀Slm ⊆ Cl ∩ Cm∑
{Sl⊆Cl|Sl⊇Slm}

vl0w̄
l
Sl
+

∑
{Sl⊆Cl|Sl⊇Slm}

vlSl
w̄l

Sl
=

∑
{Sm⊆Cm|Sm⊇Slm}

vm0w̄
m
Sm

+
∑

{Sm⊆Cm|Sm⊇Slm}
vmSm

w̄m
Sm

(23)
These are valid inequalities for SDCP as shown in [17]. We will just reduce the number of variables
by replacing appropriate summations by new variables as done in (22)—so validity of the resulting
inequalities follows from [17] and a simple feasibility check.

For every Slm ⊆ Cl ∩Cm and each product k ∈ Cl \Cm (i.e., k ∈ Cl, k �∈ Cm) define the variable

xlm
Slm,k =

∑
{Sl⊆Cl|Sl	k,Sl∩(Cl∩Cm)=Slm}

w̄l
Sl

(24)
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and for every Slm ⊆ Cl ∩ Cm, let

xlm
Slm

=
∑

{Sl⊆Cl|Sl∩(Cl∩Cm)=Slm}
w̄l

Sl
(25)

Notice that the total number of new variables we are defining is proportional to the number of subsets
in the intersections of the consideration sets. Observe now that, (we are adding 0 = (vlSlm

−vlSlm
)w̄l

Slm

to the right hand side)∑
k∈Cl\Cm

vlkx
lm
Slm,k =

∑
{Sl⊆Cl|Sl∩(Cl∩Cm)=Slm}

(vlSl
− vlSlm

)w̄l
Sl

(26)

obtaining ∑
{Sl⊆Cl|Sl∩(Cl∩Cm)=Slm}

vlSl
w̄l

Sl
=

∑
k∈Cl\Cm

vlkx
lm
Slm,k + vlSlm

xlm
Slm

(27)

So, the PC-cuts (23) of [17], written in terms of the new variables are, ∀Slm ⊆ Cl ∩ Cm

∑
{Sl⊆(Cl∩Cm)|Sl⊇Slm}

⎧⎨
⎩

∑
k∈Cl\Cm

vlkx
lm
Sl,k

+ (vl0 + vlSl
)xlm

Sl

⎫⎬
⎭ =

∑
{Sm⊆(Cl∩Cm)|Sm⊇Slm}

⎧⎨
⎩

∑
k∈Cm\Cl

vmkx
ml
Sm,k + (vm0 + vmSm

)xml
Sm

⎫⎬
⎭ (28)

The relationship with the variables xlk is given by

xlk

λlTvlk
=

∑
{Slm⊆(Cl∩Cm)|Slm	k}

xlm
Slm

, ∀k ∈ Cl ∩ Cm (29)

because of the fact that ∀k ∈ Cl ∩ Cm all Sl � k intersect with Cl ∩ Cm.

Finally we have the relationship between xlm
Slm,k and xlm

Slm
: xlm

Slm,k ≤ xlm
Slm

.

Putting it all together, the tightened formulation for MNL when segment consideration sets
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overlap can be written as (l,m index the segments):

V SBLP+ = max

L∑
l=1

∑
j∈Cl

rjxlj (30)

s.t.

(SBLP+)

L∑
l=1

∑
j∈Cl

Ajxlj ≤ �c0

xl0 +
∑
j∈Cl

xlj = λlT ∀l

xlj

vlj
− xl0

vl0
≤ 0 ∀l, ∀j ∈ Cl

xlk

λlTvlk
=

∑
{Slm⊆(Cl∩Cm)|Slm	k}

xlm
Slm

, ∀k ∈ Cl ∩Cm

xlm
Slm,k ≤ xlm

Slm
, ∀Slm ⊆ Cl ∩ Cm, k ∈ Cl \ Cm

∑
{Sl⊆(Cl∩Cm)|Sl⊇Slm}

⎧⎨
⎩

∑
k∈Cl\Cm

vlkx
lm
Sl,k + (vl0 + vlSl

)xlm
Sl

⎫⎬
⎭ =

∑
{Sm⊆(Cl∩Cm)|Sm⊇Slm}

⎧⎨
⎩

∑
k∈Cm\Cl

vmkx
ml
Sm,k + (vm0 + vmSm

)xml
Sm

⎫⎬
⎭ , ∀Slm ⊆ Cl ∩ Cm

xlj , x
lm
Slm,k, x

lm
Slm

≥ 0

Proposition 2. Inequalities (28) are valid for (SBLP ); or in other words, V DP ≤ V SBLP+ for
the MNL model of choice.

Proof
We show V CDLP ≤ V SBLP+. Consider SDCP with equations (20). From Meissner et al. [17]
this is a relaxation of CDLP , and therefore has an objective value ≥ V CDLP . Consider therefore
a solution that satisfies the SDCP constraints as well as equations (20). Based on this solution,
define the variables w̄l

Sl
, xlk, x

lm
Slm,k, x

lm
Slm

as in (21), (22), (24), (25) respectively. Feasibility of xlk

in (SBLP+) in the first three constraint classes of (30) follows from the proof in Gallego et al. [9]
of the equivalence of SDCP and SBLP for MNL; that xlm

Slm,k, x
lm
Slm

satisfy the last three constraint
classes of (30) follows from the derivation of (26), (27), (28), (29).

�

3.3 Complexity

The valid inequalities (28) and (29) were defined in an expanded space, and the resulting formulation
(SBLP+) can no longer be considered compact. However, we argue that the size of the problem is
still reasonable for most applications in assortment optimization and network revenue management.
Define

κ = max
{l,m|l �=m}

|Cl ∩Cm|.

Then the number of new variables is at most L2(J + 1)2κ. Likewise the number of PC-cuts are at
most L22κ. So the deciding factor for solvability is κ; the Barrier method for linear programming in
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commercial solvers such as Gurobi or CPLEX is parallelized and extremely powerful, and can easily
solve models with κ up to 20 on any modern workstation. We believe this covers most industrial
applications. Note that solving CDLP is NP-hard in general, so one cannot expect a polynomial-
time solution. Section §5.2.1 shows computational times for a mid-size network and SBLP+ runs
under a second.

4 Rgen oracle for different choice models

The mathematical programs SDCP and RCP are compact (non-differentiable) concave programs,
and one can use any standard algorithm to solve them. The complexity however rests on the function
evaluation done by (Rgen).

If the number of elements in a consideration set is not very large, then one can generate all the
subsets by brute force. For instance with 10 elements, one needs to generate only 210 − 1, or 1027,
columns. It is rather unlikely that a customer evaluates more than 10 or 15 alternatives so this is
quite plausible. The great advantage of generating all subsets is that the solution methodology can be
applied to any choice model whatsoever, expanding the models well beyond tractable-but-restrictive
ones such as multinomial-logit.

Notice that generating all subsets is not feasible in CDLP in general—when segments overlap,
we need to generate subsets over the full ground set J rather than subsets of segment consideration
sets Cl. We believe this and the ability to deal with general choice models is the most attractive
aspect of SDCP and RCP .

If for some reason we cannot generate all subsets of the consideration sets, say because the
consideration sets are large, then we need to rely on column generation, and we have to assure
ourselves that this generation can be done efficiently for at least some choice probability systems.
This is in general difficult (NP-hard) as shown in Bront et al. [5] and Rusmevichientong et al. [20].

In the following we intend to throw some light on the column generation procedures and argue
that perhaps one cannot really generate the columns efficiently for any but the multinomial-logit
model of customer choice.

4.1 Column generation or separation

Let �π ≥ 0 and w be the dual variables for (Rgen). Polynomial-time solvability of (Rgen) comes
down to the solvability of the separation problem of the dual (Grötschel, Lovász, and Schrijver [10]):
Given a �π ≥ 0 and w, is there a set Sl ⊆ Cl such that

w + λl
�Ql(Sl)

��π < λlRl(Sl)

or alternately, find Sl ⊆ Cl such that

Rl(Sl)− �Ql(Sl)
��π >

w

λl
(31)

that we call the separation problem. Letting w′ = w
λl

and expanding �Ql(Sl), Rl(Sl),

∑
j∈Sl

[rjPlj(Sl)− Plj(Sl)(

I∑
i=1

aijπi)] > w′ (32)
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Using the fact that
∑

j∈Sl
Plj(Sl) + Pl0(Sl) = 1,

∑
j∈Sl

[rjPlj(Sl)− Plj(Sl)(

I∑
i=1

aijπi)] > w′(
∑
j∈Sl

Plj(Sl) + Pl0(Sl)) (33)

which can be rewritten as ∑
j∈Sl

Plj(Sl)

Pl0(Sl)
[rj − w′ −

I∑
i=1

aijπi] > w′ (34)

4.2 MNL

The separation problem (34) provides an alternate explanation why (CDLP ) for the MNL with
disjoint segments model, as well as (RCP ) for segment choice probabilities given by MNL (possibly

with overlapping segments) can be solved efficiently. The ratio
Plj(Sl)
Pl0(Sl)

is independent of Sl for

the MNL model, being the weight of product j divided by the weight of the no-purchase option,
and therefore the separation problem (34) is trivial—pick all the products with positive values of

[rj −w′ −∑I
i=1 aijπi] and check whether the weighted sum is greater than w′. In short, the greedy

algorithm solves the separation problem.

4.3 Supermodular

Can we expand the scope of choice models of consumer behavior, while still maintaining tractability?
From the form of (34) it should be clear that we are trying to find a subset that maximizes a weighted
cost function. If one looks for set functions that are somewhat tractable, what immediately comes
to mind is the class of submodular and supermodular functions (Grötschel et al. [10]). Indeed, this
is the only class that we are aware of that can be solved efficiently.

The functions Rl(Sl) and �Ql(Sl) in fact have a special form: they are weighted sums of Plj(Sl)
with non-negative weights. A set function φ : 2N →  is supermodular if

φ(S ∪ T ) + φ(S ∩ T ) ≥ φ(S) + φ(T ). (35)

and called submodular if the inequality is reversed.

The function φ is intersecting supermodular if the inequality (35) holds whenever S ∩ T �=
∅, S \ T �= ∅, T \ S �= ∅. Consider a J-dimensional vector function �φ(S) : 2J → J

+ that maps

subsets of J to a real vector, with the jth component �φj(S) = 0 if j �∈ S. Call the function
(vector)-supermodular if it is component-wise supermodular.

Consider the class of choice probability models for which P (S)
P0(S) is (vector)-supermodular. Clearly

the MNL model is one such1.

We wish to find a set Sl that maximizes the left-hand side of (34). The main difficulty now is if

for some of the j’s, rj − w′ −∑I
i=1 aijπi ≤ 0. The problem of minimizing supermodular functions

is NP-hard again, so we would really like
Plj(Sl)
Pl0(Sl)

to be submodular functions for all such j’s with

1We were able to uncover only a handful of articles (Fujishige [7] Benati [1], Berman and Krass [2]) that link choice
systems and submodularity, despite both concepts being used in an immense variety of applications.
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negative coefficients. As the coefficients can be positive or negative, it could well be that only
modular set functions (i.e., both super and sub modular, such as the MNL of §4.2) can be separated
efficiently.

We believe that this is some evidence that there are very few choice functions for which the
separation can be done efficiently.

4.4 Nested MNL and Generalized Extreme Value (GEV) models

Generalized Extreme Value (GEV ) models generalize the MNL choice function and the nested logit
model, a generalization of MNL that avoids some of the consistency problems of MNL.

In GEV models, the probabilities for an offer set S are given by

Pj(S) =
eVj+lnGj(S)∑
i∈S eVi+lnGi(S)

(36)

where the functions Gj(S) =
∂G(S)
∂xj

and the function G(S) = G({xj , j ∈ S}), xj ≥ 0 is a non-negative

differentiable function satisfying some additional properties (see Daly and Bierlaire [6]). Consider
now the ground set J . When G(x1, . . . , xJ ) =

∑
j∈J xμ

j , μ ≥ 0, we get the MNL (that has the

form described in §4.2), and when G(x1, . . . , xJ ) =
∑K

k=1

(∑
j∈Nk

xμ1

j

) µ
µ1

, μ, μ1 ≥ 0, where Nk, k =

1, . . . ,K are mutually exclusive exhaustive subsets of S (“nests” of alternatives) we get the so-called
nested MNL model (with a tree of depth two). If the offer set is S, we restrict the nests to be Nk∩S.
We investigate tractability of separation of (31) this nested MNL model—the problem appears to be
intractable even for this specialization, but suggests one can use standard approximation algorithms
for maximization of submodular functions to do the separation approximately.

For a subset S ⊆ J , we define G(S) =
∑K

k=1

(∑
j∈Nk∩S xμ1

j

) µ
µ1
. For this case, letting k(j) be

the index k such that Nk � j,

Gj(S) =
∂G(S)

∂xj
= μxμ1−1

j

⎛
⎝ ∑

i∈Nk(j)∩S

xμ1

i

⎞
⎠

( µ
µ1

−1)

Recall that all the attributes and parameters are fixed and we are only interested in finding a subset
S that satisfies (34) for a segment l. We assume xi > 0. The form of (36) then implies that
Plj(Sl)
Pl0(Sl)

in (34) can be expressed as cjak(j)(S), where, to simplify the algebra, we use some terms

cj ≥ 0, ai = xμ1

i , ak(S) =
(∑

i∈Nk∩S ai
)( µ

µ1
−1)

. By our assumption xi > 0, ai > 0, ∀i. Likewise, to

simplify notation, let bj = cj(rj − w′ −∑I
i=1 aijπi). Note that bj can be negative.

The separation problem then is to find a subset Sl that maximizes
∑

j∈Sl
ak(j)(Sl)bj. One can

observe that this breaks up by nest; i.e., for each k, we find the subset

S∗
k = arg max

S⊆Nk

∑
j∈S

ak(S)bj (37)

and compose Sl = ∪K
k=1S

∗
k.

So we fix a nest k and consider subsets S ⊆ Nk from now on. The objective function in (37)
can be rewritten as ak(S)

∑
j∈S bj . Now notice that if bj ≥ 0, then j belongs to the optimal set—if
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j is excluded, we can add it to the optimal set and it increases the value of both ak(S) as well as∑
j∈S bj contradicting optimality. So let J+ = {i|bi ≥ 0} and J− = {i|bi < 0}, A =

∑
i∈J+ ai,

B =
∑

i∈J+ bi, and notice that A,B ≥ 0. The objective function then can be written as

max
S⊆J−

(
A+

∑
i∈Nk∩S

ai

)( µ
µ1

−1)(
B +

∑
i∈S

bi

)
(38)

We change the objective function by taking logarithms

max
S⊆J−

(
μ

μ1
− 1

)
log

(
A+

∑
i∈Nk∩S

ai

)
+ log

(
B +

∑
i∈S

bi

)
(39)

defining log(x) = −∞ whenever x ≤ 0.

Now notice that functions of the form log
(
B +

∑
i∈S bi

)
in (39) are intersecting submodular

whenever either bi > 0, ∀i or bi < 0, ∀i: From the definition (35), we need to show(
B +

∑
i∈S∪T

bi

)(
B +

∑
i∈S∩T

bi

)
≤
(
B +

∑
i∈S

bi

)(
B +

∑
i∈T

bi

)

which after canceling common terms on both sides, becomes( ∑
i∈S∪T

bi

)( ∑
i∈S∩T

bi

)
≤
(∑

i∈S

bi

)(∑
i∈T

bi

)

which holds whenever bi > 0, ∀i or bi < 0, ∀i, as bibi′ > 0 for all pairs i, i′ in the product expansions,
and every such pair in the left-hand side is present in the right-hand side.

If ( μ
μ1

− 1) < 0, we then have a problem of maximizing the difference of two supermodular

functions (NP-hard) and if ( μ
μ1

− 1) > 0, maximizing a submodular function (again NP-hard).
However, both problems are quite well studied and one can use approximation algorithms and
heuristics to approximately separate the inequalities (Narasimhan and Bilmes [18], Nemhauser and
Wolsey [19]).

5 Numerical Results

In the following we solve the compact formulations of SDCP and RCP and SBLP and SBLP+
assuming uniform arrival rates over all the time periods. We use the examples in the literature and
compare against CDLP which we solve exactly generating all the columns by enumeration. We first
compare the upper bounds generated by the methods and their run-times and then report results
of simulations that test their revenue performance.

5.1 Test Networks

We wish to compare against past computational studies, so we take the exact same networks as
used in Liu and van Ryzin [14] and in Bront et al. [5] as we are able to reconstruct the data from
the papers. We perform revenue simulations on two benchmark networks, calling them as in their
original papers:
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1. Parallel Flights/Overlapping (Bront et al. [5]): 2 flights, 6 products, 2 overlapping segments

2. Small Network (overlapping) (Bront et al. [5]): 7 flights, 22 products, 2 overlapping segments

and use another larger example called the Hub-and-Spoke Network (overlapping) (Bront et al. [5])
with 8 flights, 80 products, 40 overlapping segments for testing computational running time.

5.1.1 Parallel flights example

The first network example consists of three parallel flight legs as depicted in Figure 1 with initial
leg capacity 30, 50 and 40, respectively. On each flight there is a low and a high fare class L and H,
respectively, with fares as specified in Table 1. We define four customer segments in Table 2; note
that we do not give the preference values for the no-purchase option at this point. This is because
we consider various scenarios of this network by varying both the vector of no-purchase preferences
and the network capacity. The sales horizon consists of 300 time periods.

A B

Leg 1 (morning)

Leg 2 (afternoon)

Leg 3 (evening)

Figure 1: Parallel Flights Example.

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1,000
5 3 L 300
6 3 H 600

Table 1: Product definitions for Parallel Flights Example.

Segment Consideration set Pref. vector λl Description
1 {2,4,6} [5,10,1] 0.1 Price insensitive, afternoon preference
2 {1,3,5} [5,1,10] 0.15 Price sensitive, evening preference
3 {1,2,3,4,5,6} [10,8,6,4,3,1] 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} [8,10,4,6,1,3] 0.05 Price insensitive, early preference

Table 2: Segment definitions for Parallel Flights Example.
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5.1.2 Small network example

Next, we test the policies on a network with seven flight legs as depicted in Figure 2. In total,
22 products are defined in Table 3 and the network capacity is �c0 = [100, 150, 150, 150, 150, 80, 80],
where c0i is the initial seat capacity of flight leg i. In Table 4, we summarize the segment definitions
according to desired origin-destination (O-D), price sensitivity and preference for earlier flights. The
booking horizon has τ = 1000 time periods.

A H

B

C

Leg 2 (morning)

Leg 1 (morning)

Leg 3 (afternoon)

Leg 4 (morning)

Leg 5 (afternoon)

Leg 6 (morning)

Leg 7 (afternoon)

Figure 2: Small Network example.

Class = H Class = L
Product Legs Fare Product Legs Fare

1 1 1,000 12 1 500
2 2 400 13 2 200
3 3 400 14 3 200
4 4 300 15 4 150
5 5 300 16 5 150
6 6 500 17 6 250
7 7 500 18 7 250
8 2,4 600 19 2,4 300
9 3,5 600 20 3,5 300
10 2,6 700 21 2,6 350
11 3,7 700 22 3,7 350

Table 3: Product definitions for Small Network Example
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Segment O-D Consideration set Pref. vector λl Description
1 A→B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08 less price sensitive, early pref.
2 A→B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2 price sensitive
3 A→H {2,3,13,14} (10,10,5,5) 0.05 less price sensitive
4 A→H {2,3,13,14} (2,2,10,10) 0.2 price sensitive
5 H→B {4,5,15,16} (10,10,5,5) 0.1 less price sensitive
6 H→B {4,5,15,16} (2,2,10,8) 0.15 price sensitive, slight early pref.
7 H→C {6,7,17,18} (10,8,5,5) 0.02 less price sensitive, slight early pref.
8 H→C {6,7,17,18} (2,2,10,8) 0.05 price sensitive
9 A→C {10,11,21,22} (10,8,5,5) 0.02 less price sensitive, slight early pref.
10 A→C {10,11,21,22} (2,2,10,10) 0.04 price sensitive

Table 4: Segment definitions for Small Network Example

5.2 Value functions

We scale the capacities as in Liu and van Ryzin [14] and Bront et al. [5], multiplying the capacities
by a factor α. We also test with different no-purchase weights, using the same choices as in Liu and
van Ryzin [14] and Bront et al. [5]. SDCP is quite close to CDLP for this example with overlapping

α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5,5,1] 56,884 58,755 58,313 58,755 56,912
[1,10,5,1] 56,848 58,755 58,313 58,755 56,884
[5,20,10,5] 53,819 54,684 54,523 54,684 53,842

0.8 [1,5,5,1] 71,936 73,870 73,720 73,870 72,031
[1,10,5,1] 71,794 73,870 73,672 73,870 71,936
[5,20,10,5] 61,868 63,439 63,401 63,439 61,996

1 [1,5,5,1] 79,155 85,424 84,978 85,424 80,078
[1,10,5,1] 76,866 83,376 83,071 83,376 77,605
[5,20,10,5] 63,255 65,847 65,794 65,847 63,274

1.2 [1,5,5,1] 80,371 88,331 88,110 88,331 81,003
[1,10,5,1] 78,045 86,332 86,054 86,332 78,385
[5,20,10,5] 63,296 66,647 66,647 66,647 63,321

Table 5: Upper bounds for Parallel Flights/overlapping segments example (Bront et al. [5]).

segments at high load factors (low α), but loses out by a large margin at low load-factors. RCP
improves over SDCP but perhaps not by as much as one expects (say, compared to the improvement
of RLP compared to DLP for the independent demand model). The upper bound given by SBLP+
is quite close to CDLP value in all the configurations.

The computational times for all of the above problems were negligible (SDCP for instance runs
under one CPU second). We believe SDCP scales to industrial-size problems; moreover, as we
mentioned earlier, if the size of the consideration sets are reasonable (10 to 15), can be applied to
any choice model whatsoever.
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α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5] 215,793 216,672 216,347 216,672 215,793
[5,10] 200,515 206,457 205,628 206,457 200,515
[10,20] 170,137 173,959 173,958 173,959 170,137

0.8 [1,5] 266,934 272,670 272,393 272,670 266,934
[5,10] 223,173 230,500 230,417 230,500 223,173
[10,20] 188,574 193,629 193,501 193,629 188,574

1 [1,5] 281,967 296,523 296,301 296,523 281,967
[5,10] 235,284 245,402 245,225 245,402 235,284
[10,20] 192,038 198,872 198,746 198,872 192,038

1.2 [1,5] 284,772 301,477 301,475 301,477 284,772
[5,10] 238,562 248,816 248,810 248,816 235,862
[10,20] 192,373 198,994 198,994 198,994 192,373

Table 6: Upper bounds for Small Network example (Bront et al. [5]). SBLP+ achieves the CDLP
value in all cases.

5.2.1 Computational Time

We report computational times on the Hub-and-Spoke Network (overlapping) of Bront et al. [5]) (8
flights, 80 products, 40 overlapping segments). We use CPLEX 12.2 and the machine has a Core i7
980 processor. The CPU time reported for RCP includes the time for the generation of the sample
paths (300). As the consideration sets for each segment are relatively small (up to 4 in each set),
we generate all possible subsets of the consideration set. The problem is too large (80 products)
for solving CDLP by subset generation so we do not report its running times. The running times
reported for CDLP in Liu and van Ryzin [14] and Bront et al. [5] are on entirely different machines
with a different version of CPLEX and using column-generation techniques so they are rather hard
to recreate or compare. But to get an idea, the computational times reported for this network in
[5], using column generation, is as high as 3000 seconds.

α v0 SDCP RCP SBLP SBLP+

0.6 [1,5] 0.5760 39.7800 0.0160 0.0620
[5,10] 0.6870 52.165 0.0010 0.0620
[10,20] 0.6879 59.7280 0.0140 0.0620

0.8 [1,5] 0.5462 29.4800 0.0010 0.0010
[5,10] 0.6400 36.0200 0.0010 0.0010
[10,20] 0.7219 41.2500 0.0030 0.0010

1 [1,5] 0.1870 51.4700 0.0150 0.0149
[5,10] 0.2650 68.8580 0.0010 0.0010
[10,20] 0.2300 66.2500 0.0030 0.0160

1.2 [1,5] 0.4220 90.4800 0.0010 0.0010
[5,10] 0.5150 101.4600 0.0010 0.0010
[10,20] 0.4680 94.2400 0.0020 0.0010

Table 7: CPU time (in Seconds) for the different methods on a large hub-and-spoke network with
capacity of 180 for all legs of the network.
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α v0 SDCP RCP SBLP SBLP+

0.6 [1,5] 167,569 167,458 167,569 158,040
[5,10] 136,498 136,455 136,498 126,720
[10,20] 116,307 116,294 116,307 106,399

0.8 [1,5] 188,551 187,938 188,551 171,121
[5,10] 154,324 153,910 154,324 132,976
[10,20] 131,270 130,550 131,270 117,327

1 [1,5] 206,432 206,409 206,432 181,559
[5,10] 170,500 170,109 170,500 149,955
[10,20] 136,203 136,153 136,203 122,064

1.2 [1,5] 223,637 223,040 223,637 190,548
[5,10] 178,213 177,908 178,213 154,624
[10,20] 136,203 136,222 136,203 122,401

Table 8: The value functions of the different approximations for this large example. SBLP+ gives
a 5 to 10% tighter bound than the other methods with a negligible running time (Table 7).

5.3 Revenue simulations

In this section we perform revenue simulations to test the revenue performance of the various meth-
ods.

5.3.1 Description of the simulations and policy

Our simulation procedure generates arrival streams with each arrival stream representing the booking
requests for one instance of demand for the network. For the parallel flights examples we generate
2000 streams and for the small network 250 streams (we reduce the number of instances due to
CDLP solution times—we solve CDLP by generating all the subsets).

The simulations in [5], [14], [16] and [17] use the dual solution of CDLP and a decomposition
procedure to obtain a control policy. In contrast we follow a simple randomization procedure: We
interpret the variables wS as giving the parameter of a Bernoulli random variable for offering set S
with probability wS . For the segment-level formulations we randomize over the offer sets for each
segment wl

Sl
and compose the offer set as the union of the segment-level offer sets. For RCP we

averaged the values across all the randomized solutions and then took the union.

For the formulations SBLP and SBLP+ we follow a similar policy calculating the probability
of offering product k for segment l as follows. Following our interpretation of the variables xlk as

xlk = λlT
∑

{Sl⊆Cl|k∈Sl}

vlk
vl0 +

∑
j∈Sl

vlj
wl

Sl

we independently draw a Bernoulli random variable with probability plk for including k in the offer
set, where

plk =
xlkvl0
xl0vlk

.
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The offer set is then composed of all the products that are drawn (that is union of the offer sets for the
segments as for the other methods). While distinct from the bid-price/decomposition approaches,
we find that this policy gives good revenues for all the methods (except perhaps RCP ). For instance,
the revenue results we report for the methods are comparable to the results in Table A1 reported in
the electronic companion of [5].

We also report the standard deviations of the observed revenue to give an idea of the level of
confidence.

5.3.2 Simulation results for the Parallel-Flights example

We report in Table 9 the average revenues obtained in our simulations experiments at various capac-
ity scalings and parameter choices for the Parallel-Flights example of §5.1.1. Somewhat surprisingly

α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5,5,1] 54,435 56,220 55,891 56,068 55,540
[1,10,5,1] 54,502 56,162 55,673 56,000 55,460
[5,20,10,5] 50,737 52,355 51,806 52,169 52,037

0.8 [1,5,5,1] 68,993 70,120 69,520 69,899 69,654
[1,10,5,1] 68,624 69,707 68,804 69,470 69,230
[5,20,10,5] 59,720 59,719 58,873 59,593 59,997

1 [1,5,5,1] 76,883 76,973 76,125 76,884 76,829
[1,10,5,1] 75,173 74,669 73,801 74,694 75,195
[5,20,10,5] 62,366 60,861 60,512 60,843 62,185

1.2 [1,5,5,1] 79,588 77,772 77,163 77,841 79,390
[1,10,5,1] 77,309 75,413 74,478 75,452 77,519
[5,20,10,5] 62,677 61,543 61,325 61,573 62,700

Table 9: Average revenue results for the overlapping segment Parallel Flights example [5] with 2000
demand sample paths.

SDCP,RCP and SBLP give much better revenue results than CDLP when capacity is highly con-
strained, but all three do badly at higher capacities. As one would expect, SDCP and SBLP show
similar characteristics, as they coincide for MNL. SBLP+ is the most robust, beating CDLP at low
capacities and equaling CDLP at the higher capacities. Table 10 gives the percentage comparison
with CDLP and Table 11 the standard deviations of the revenues to determine confidence levels.

5.3.3 Simulation results for the Small-Network example

Table 12 gives the average revenues obtained in our simulations experiments at various capacity
scalings and parameter choices for the Small-Network example of §5.1.2. Here, the performance
of all the methods is nearly identical to that of CDLP at the low capacity points, but at higher
capacity only SBLP+ holds its own against CDLP , while all the other methods show markedly
poor revenue with the first configuration. So, once again SBLP+ is the most robust, with good
performance at all capacity scalings. Table 13 shows the percentage comparison with respect to
CDLP . The standard deviations of the revenues are given in Table 14.
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α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5,5,1] 0.00 3.28 2.68 3.00 2.03
[1,10,5,1] 0.00 3.04 2.15 2.75 1.76
[5,20,10,5] 0.00 3.19 2.11 2.82 2.56

0.8 [1,5,5,1] 0.00 1.63 0.76 1.31 0.96
[1,10,5,1] 0.00 1.58 0.26 1.23 0.88
[5,20,10,5] 0.00 0.00 -1.42 -0.21 0.46

1 [1,5,5,1] 0.00 0.12 -0.99 0.00 -0.07
[1,10,5,1] 0.00 -0.67 -1.83 -0.64 0.03
[5,20,10,5] 0.00 -2.41 -2.97 -2.44 -0.29

1.2 [1,5,5,1] 0.00 -2.28 -3.05 -2.19 -0.25
[1,10,5,1] 0.00 -2.45 -3.66 -2.40 0.27
[5,20,10,5] 0.00 -1.81 -2.16 -1.76 0.04

Table 10: Percentage average revenue improvement over CDLP for the overlapping segment Parallel
Flights example.

α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5,5,1] 1,990 1,422 1,500 1,583 1,831
[1,10,5,1] 2,003 1,459 1,651 1,563 1,569
[5,20,10,5] 3,657 2,253 2,362 2,369 2,268

0.8 [1,5,5,1] 3,076 3,141 3,310 3,267 3,054
[1,10,5,1] 3,331 3,422 3,712 3,454 3,277
[5,20,10,5] 4,615 4,613 4,532 4,689 4,529

1 [1,5,5,1] 5,295 5,861 5,846 5,815 5,217
[1,10,5,1] 5,698 5,906 6,085 5,871 5,650
[5,20,10,5] 6,019 5,888 5,840 5,825 6,176

1.2 [1,5,5,1] 6,934 6,950 6,916 6,941 6,841
[1,10,5,1] 6,981 6,954 7,005 6,939 6,932
[5,20,10,5] 6,301 6,153 6,051 6,169 6,406

Table 11: Standard deviations of revenue simulations with 2000 sample paths for the Parallel Flights
Example.
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α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5] 212,816 212,979 211,447 212,058 212,730
[5,10] 195,559 196,226 194,330 196,607 195,496
[10,20] 167,553 167,744 166,038 167,885 167,269

0.8 [1,5] 262,579 260,059 258,855 259,868 261,233
[5,10] 220,665 219,116 216,640 218,925 220,773
[10,20] 186,807 187,408 185,429 186,758 186,784

1 [1,5] 280,882 272,733 272,192 273,357 278,520
[5,10] 233,607 233,234 231,847 233,668 234,156
[10,20] 192,286 192,201 190,105 192,216 191,131

1.2 [1,5] 285,251 277,366 276,580 277,004 283,220
[5,10] 238,858 239,049 236,394 238,578 239,665
[10,20] 193,298 193,244 190,992 193,177 192,809

Table 12: Average revenue results for the Small Network example [5] with 250 demand sample paths.

α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5] 0.00 0.08 -0.64 -0.36 -0.04
[5,10] 0.00 0.34 -0.63 0.54 -0.03
[10,20] 0.00 0.11 -0.90 0.20 -0.17

0.8 [1,5] 0.00 -0.96 -1.42 -1.03 -0.51
[5,10] 0.00 -0.70 -1.82 -0.79 0.05
[10,20] 0.00 0.32 -0.74 -0.03 -0.01

1 [1,5] 0.00 -2.90 -3.09 -2.68 -0.84
[5,10] 0.00 -0.16 -0.75 0.03 0.24
[10,20] 0.00 -0.04 -1.13 -0.04 -0.60

1.2 [1,5] 0.00 -2.76 -3.04 -2.89 -0.71
[5,10] 0.00 0.08 -1.03 -0.12 0.34
[10,20] 0.00 -0.03 -1.19 -0.06 -0.25

Table 13: Percentage average revenue improvement over CDLP for the Small Network example [5].
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α v0 CDLP SDCP RCP SBLP SBLP+

0.6 [1,5] 4,129 3,284 3,845 3,645 4,094
[5,10] 5,261 5,594 6,140 5,889 5,560
[10,20] 5,151 5,719 5,707 5,491 5,058

0.8 [1,5] 6,612 7,500 7,251 7,714 7,335
[5,10] 7,454 6,621 6,552 6,909 6,080
[10,20] 6,494 6,595 7,022 6,786 6,913

1 [1,5] 8,995 9,542 9,511 9,448 9,715
[5,10] 9,219 8,044 7,816 8,321 7,911
[10,20] 9,117 8,498 8,931 8,672 8,623

1.2 [1,5] 10,360 10,483 9,859 10,658 10,896
[5,10] 9,524 9,781 9,259 10,238 10,102
[10,20] 8,738 8,733 8,315 9,296 8,790

Table 14: Standard deviations of revenue simulations with 250 sample paths for the Small Network
example.

6 Conclusions and further research

We gave a new segment-based deterministic concave-program (SDCP ) upper bound to the choice
network RM dynamic program, that coincides with the CDLP upper-bound of Gallego et al. [8] and
Liu and van Ryzin [14] for non-overlapping segments. We then showed how this can be tightened in
the randomized concave programming (RCP ) method, similar to the RLP for the independent-class
model, and by adding valid inequalities. Our cuts are a specialization of the ones developed in [17]
to the compact formulation of [9] for the MNL choice model. The advantage of these cuts is that
the space of the resulting program is exponential only in the number of products in the intersection
of two segments’ consideration sets, rather than the size of the consideration sets as in [17].

If the number of elements in a consideration set for a segment is not very large, both (SDCP ) and
(RCP ) can be applied to any choice model whatsoever, expanding the set of models well beyond the
multinomial-logit. We have given some evidence to show that the assortment optimization appears
to be difficult for almost all choice models except the MNL, so this approach defining segments to
have small consideration sets (and justified by applications and empirical research as in Talluri [21],
Hauser and Wernerfelt [11]) is a tractable way to approach the problem for general discrete-choice
models.
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