
RATIONAL CUBIC BALL INTERPOLANTS FOR 

SHAPE PRESERVING CURVES AND SURFACES

AYSER NASIR HASSAN TAHAT

UNIVERSITI SAINS MALAYSIA 

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/153211649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RATIONAL CUBIC BALL INTERPOLANTS FOR 
SHAPE PRESERVING CURVES AND SURFACES

by

AYSER NASIR HASSAN TAHAT

Thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosphy

May 2017



ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and the most Merciful

All the thanks be to Allah, the lord of the world for giving me the energy and the talent 

to finish my research.

This thesis, while an individual work benefited from the insights and direction of 

several people. I wish to convey my deepest appreciation to my supervisor, Professor 

Dr. Abd Rahni bin Mt Piah for the continuous support during my PhD research, for 

his patience, motivation, and enthusiasm. His guidance helped me in all the time of 

research and writing of this thesis. Also I would like to express my sincerest gratitude 

to my field supervisor Dr.Zainor Ridzuan Bin Yahya for his support and guidance 

throughout my PhD study.

Many thanks to the School of Mathematical Sciences for the financial support provided 

for my publications.

I would also express my deepest gratitude to my parents for providing encouragement 

and support all the time. Many thanks also go to my wife and my son for their presence 

with me, which encouraged me to go on. I would also like to express my sincere thanks 

and appreciation to my brothers and sisters in my home country and my friends in 

Malaysia who were all the time encouraging and supporting me.

ii



TABLE OF CONTENTS

Acknowledgements ii

Table of Contents iii

List of Tables vi

List of Figures viii

Abstrak xvi

Abstract xviii

CHAPTER 1 – INTRODUCTION

1.1 Introduction 1

1.2 Thesis Objective 12

1.3 Thesis Outline 12

CHAPTER 2 – BACKGROUND

2.1 Introduction 14

2.2 Ball Curves 15

2.3 Generalized Ball Curves 19

2.3.1 Said-Ball Curve 19

2.3.2 Wang-Ball Curve 20

2.4 Relationship between Bézier and Ball Curves 21

2.4.1 Weights Effect on the Curve Shape 23

2.5 Derivatives Determination 25

2.5.1 Arithmetic Mean Method for 2D Data 25

2.5.2 Arithmetic Mean Method for 3D Data on Rectangular Grid 26

CHAPTER 3 – RATIONAL CUBIC BALL INTERPOLANT

3.1 Introduction 27

iii



3.2 Rational Cubic Ball Function 28

3.3 C1 Shape Preserving Data Interpolation 29

3.3.1 C1 Positive Curve Data Interpolation 29

3.3.2 C1 Constrained Curve Data Interpolation 31

3.3.3 C1 Monotone Curve Data Interpolation 33

3.3.4 C1 Convex Curve Data Interpolation 36

3.4 Examples and Discussion 39

3.5 Conclusion 50

CHAPTER 4 – RATIONAL BI-CUBIC BALL INTERPOLANT

4.1 Introduction 52

4.2 Rational Bi-Cubic Function 53

4.3 Positive Surface Data Interpolation 55

4.3.1 Positive Surface Data Interpolation Demonstration 59

4.4 Constrained Surface Data Interpolation 65

4.4.1 Constrained Surface Data Interpolation Demonstration 70

4.5 Monotone Surface Data Interpolation 76

4.5.1 Monotone Surface Data Interpolation Demonstration 81

4.6 conclusion 87

CHAPTER 5 – BI-CUBIC PARTIALLY BLENDED RATIONAL
INTERPOLANT

5.1 Introduction 88

5.2 Bi-Cubic Partially Blended Rational Function 88

5.3 Positive Surface Data Interpolation 91

5.3.1 Positive Surface Data Interpolation Demonstration 94

5.4 Constrained Surface Data Interpolation 100

5.4.1 Constrained Surface Data Interpolation Demonstration 106

iv



112

117

123

127

  131

5.5 Monotone Surface Data Interpolation

5.5.1 Monotone Surface Data Interpolation Demonstration 

5.6 Conclusion

CHAPTER 6 – CONCLUSION

REFERENCES

APPENDICES      

LIST OF PUBLICATION 143

v



LIST OF TABLES

Page

Table 2.1 Conversion formula of Bézier and Ball control points of degree 3 21

Table 2.2 Conversion formula of (rational Bézier and rational Ball
weights and control points of degree 3) 23

Table 3.1 Positive data set taken from Sarfraz et al. (2012) 40

Table 3.2 Numerical results for Figure 3.1(d) 40

Table 3.3 Positive data set taken from Sarfraz et al. (2001) 42

Table 3.4 Numerical results for Figure 3.2(d) 42

Table 3.5 Positive data set lies above the straight line y = 0.5x−1 42

Table 3.6 Numerical results for Figure 3.3(d) 43

Table 3.7 Positive data set lies above the straight line y = 0.06x+0.02 45

Table 3.8 Numerical results for Figure 3.4(d) 45

Table 3.9 Monotone data set taken from Piah and Unsworth (2011) 45

Table 3.10 Numerical results for Figure 3.5(d) 45

Table 3.11 Monotone data set taken from Hussain and Sarfraz (2009) 47

Table 3.12 Numerical results for Figure 3.6(b) 47

Table 3.13 Convex data set taken from Tahat et al. (2015b) 49

Table 3.14 Numerical results for Figure 3.7(b) 49

Table 3.15 Convex data set taken from Abbas et al. (2012a) 49

Table 3.16 Numerical results for Figure 3.8(b) 49

Table 4.1 Positive 3D data set generated from F(x,y) = e(sin(x2−5/y2)) 59

Table 4.2 Positive 3D data set generated from F(x,y) = 4
((x2+y2)2−1) 62

Table 4.3 Constrained 3D data set lies above the plane Z =
(
1− x

6 −
y
6

)
. 70

Table 4.4 Data from the plane Z =
(
1− x

6 −
y
6

)
72

Table 4.5 Constrained 3D data set lies above the plane Z(x,y) = 1.888. 73

vi



Table 4.6 A monotone 3D data set taken from (Hussain et al., 2012) 83

Table 4.7 A monotone 3D data set produced from
F(x,y) = x2(x10 +1)+ y2(y10 +1) 84

Table 5.1 Positive 3D data set generated from
F(x,y) = sin(x)cos(y)+0.95. 94

Table 5.2 Positive 3D data set generated from
F(x,y) = e−x2

+ e−2y2
+0.04. 97

Table 5.3 Constrained 3D data set lie above the plane Z(x,y) = 1. 106

Table 5.4 Constrained 3D data set lies above the plane Z =
(
1− x

6 −
y
6

)
109

Table 5.5 Data from the plane Z =
(
1− x

6 −
y
6

)
111

Table 5.6 A monotone 3D data set taken from (Abbas et al., 2012b) 117

Table 5.7 Monotone 3D data set generated from F(x,y) = e(x
0.05+y0.05) 120

vii



LIST OF FIGURES

Page

Figure 2.1 Cubic Ball basis functions 16

Figure 2.2 Cubic Ball curve 18

Figure 2.3 Quadratic curve obtained when b1 = b2 18

Figure 2.4 A cubic Bézier curve and a cubic Ball curve with the same
control points 22

Figure 2.5 A cubic Bézier curve and a cubic Ball curve with different
control points 22

Figure 2.6 Weight influence on the curve 24

Figure 2.7 Control point influence on the curve 24

Figure 3.1 Positivity preserving curve using rational cubic Ball function 40

Figure 3.1(a) Cubic Ball curve 40

Figure 3.1(b) Rational cubic Ball curve with αi = ai = bi = βi = 0.5 40

Figure 3.1(c) Positivity preserving interpolation curve with αi = βi = 1 40

Figure 3.1(d) Positivity preserving interpolation curve with αi = βi = 2.5 40

Figure 3.2 Positivity preserving curve using rational cubic Ball function 41

Figure 3.2(a) Cubic Ball curve 41

Figure 3.2(b) Rational cubic Ball curve with αi = βi = 0.5,ai = bi = 2.0 41

Figure 3.2(c) Positivity preserving interpolation curve with αi = βi = 1 41

Figure 3.2(d) Positivity preserving interpolation curve with αi = βi = 0.25 41

Figure 3.3 Constrained curve using rational cubic Ball function 43

Figure 3.3(a) Cubic Ball curve 43

Figure 3.3(b) Rational cubic Ball curve with αi = βi = 0.3,ai = bi = 1.5 43

Figure 3.3(c) Constrained data interpolation curve with αi = βi = 1 43

Figure 3.3(d) Constrained data interpolation curve with αi = βi = 0.5 43

Figure 3.4 Constrained curve using rational cubic Ball function 44

viii



Figure 3.4(a) Cubic Ball curve 44

Figure 3.4(b) Rational cubic Ball curve with αi = βi = 0.75,ai = bi = 0.25 44

Figure 3.4(c) Constrained data interpolation curve with αi = βi = 1 44

Figure 3.4(d) Constrained data interpolation curve with αi = βi = 3 44

Figure 3.5 Monotonicity preserving curve by rational cubic Ball function 46

Figure 3.5(a) Rational cubic Ball curve 46

Figure 3.5(b) Monotonicity preserving interpolation curve with
αi = βi = 0.5,ai = 2,bi = 1 46

Figure 3.5(c) Monotonicity preserving interpolation curve with αi = βi = 1 46

Figure 3.5(d) Monotonicity preserving interpolation curve with αi = βi = 2.5 46

Figure 3.6 Monotonicity preserving curve by rational cubic Ball function 47

Figure 3.6(a) Rational cubic Ball curve 47

Figure 3.6(b) Monotonicity preserving interpolation curve with
αi = βi = 1.5,ai = bi = 2.5 47

Figure 3.6(c) Monotonicity preserving interpolation curve with αi = βi = 1 47

Figure 3.6(d) Monotonicity preserving interpolation curve with αi = βi = 1.5 47

Figure 3.7 Convexity preserving curve by rational cubic Ball function 48

Figure 3.7(a) Cubic Ball curve 48

Figure 3.7(b) Rational cubic Ball curve with with αi = βi = 0.5,ai = bi = 0.50 48

Figure 3.7(c) Convexity preserving interpolation curve with αi = βi = 1 48

Figure 3.7(d) Convexity preserving interpolation curve with αi = 12 βi = 0.25 48

Figure 3.8 Convexity preserving curve by rational cubic Ball function 50

Figure 3.8(a) Cubic Ball curve 50

Figure 3.8(b) Rational cubic Ball curve with with αi = βi = ai = bi = 0.30 50

Figure 3.8(c) Convexity preserving interpolation curve with αi = βi = 1 50

Figure 3.8(d) Convexity preserving interpolation curve with αi = 10 βi = 0.5 50

Figure 4.1 Bi-cubic Ball interpolation for data in Table 4.1 60

ix



Figure 4.1(a) Bi-cubic Ball interpolation 60

Figure 4.1(b) yz-view of Figure 4.1(a) 60

Figure 4.1(c) Rational bi-cubic Ball interpolation with
αi, j = ai, j = bi, j = βi, j = α̂i, j = âi, j = b̂i, j = β̂i, j = 0.5 60
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Figure 4.3(d) yz-view of Figure 4.3(c) 63

Figure 4.4 Positivity preserving interpolation for data in Table 4.4 64

Figure 4.4(a) Positive rational bi-cubic Ball interpolation
αi, j = βi, j = α̂i, j = β̂i, j = 1 64

Figure 4.4(b) yz-view of Figure 4.2(a) 64

Figure 4.4(c) Positive rational bi-cubic Ball interpolation
αi, j = βi, j = α̂i, j = β̂i, j = 0.1 64

Figure 4.4(d) yz-view of Figure 4.4(c) 64

Figure 4.5 Rational bi-cubic Ball interpolation to the constrained data in
Table 4.3 71

Figure 4.5(a) Bi-cubic Ball interpolation 71

Figure 4.5(b) xz-view of Figure 4.5(a) 71

x



Figure 4.5(c) Rational bi-cubic Ball interpolation with
αi, j = ai, j = bi, j = βi, j = α̂i, j = âi, j = b̂i, j = β̂i, j = 10 71
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Figure 4.9(d) yz-view of Figure 4.9(c) 82

xi



Figure 4.10 Monotone data interpolation to the data in Table 4.6 83

Figure 4.10(a) Monotone rational bi-cubic Ball interpolation
αi, j = βi, j = α̂i, j = β̂i, j = 1 83

Figure 4.10(b) yz-view of Figure 4.10(a) 83

Figure 4.10(c) Monotone rational bi-cubic Ball interpolation
αi, j = βi, j = α̂i, j = β̂i, j = 0.03 83

Figure 4.10(d) yz-view of Figure 4.10(c) 83

Figure 4.11 Rational bi-cubic Ball interpolation to the Monotone data in
Table 4.7 85

Figure 4.11(a) Bi-cubic Ball interpolation 85

Figure 4.11(b) xz-view of Figure 4.11(a) 85

Figure 4.11(c) Rational bi-cubic Ball interpolation with
αi, j = ai, j = bi, j = βi, j = 5, α̂i, j = âi, j = b̂i, j = β̂i, j = 25 85
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INTERPOLAN BALL KUBIK NISBAH UNTUK LENGKUNG DAN 

PERMUKAAN YANG MENGEKALKAN BENTUK

ABSTRAK

Interpolan pengekalan bentuk adalah satu teknik rekabentuk lengkung/ permuka-

an yang sangat penting dalam CAD/-CAM dan rekabentuk geometrik. Ia mempunyai 

banyak kepentingannya di dalam pelbagai bidang kejuruteraan seperti rekabentuk dan 

pembuatan kapal, rekabentuk dan pembuatan rangka luar kereta, industri angkasa le-

pas, dan industri kejenteraan ketelitian, juga memainkan peranan yang sangat penting 

dalam aerografi , animasi dan permainan, dan juga di dalam bidang penyelidikan ba-ru 

seperti analisis data moden, matematik kewangan, pemprosesan imej, visualisasi dan 

teknik tera air digital. Interpolan pengekalan bentuk ditakrifkan untuk membentuk 

lengkung(permukaan) yang menginterpolasi titik data yang diberi dan mengekalkan 

bentuk yang tersirat dari titik data. Tujuan tesis ini dijalankan adalah untuk membi-na 

satu skema interpolasi alternatif yang mengekalkan ciri bentuk yang wujud untuk data 

lengkung dan permukaan. Untuk membina interpolasi pengekalan kepositifan, 

berekanada, kecembungan dan data kekangan (apabila data berada di atas garis lurus , 

lengkungan perlu berada di atas garis lurus) untuk data lengkung yang mana kebiasa-

annya menggunakan ciri yang menjumlahkan bentuk sifat dalam titik data rational C1, 

gambaran Ball kubik nisbah telah dihuraikan dengan empat bentuk parameter. Syarat-

syarat pada dua parameter bentuk diperolehi untuk memelihara sifat-sifat bentuk yang 

wujud dari data, manakala dua parameter bentuk lagi kekal bebas bagi membolehkan
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pengguna mengubah bentuk lengkung seperti yang mereka kehendaki dan membolehk-

an pengguna mengawal bentuk lengkung. Suatu fungsi dwi-kubik nisbah dengan dua

belas parameter bentuk dan satu fungsi campuran separa bi-kubik nisbah dengan enam

belas parameter bentuk telah dilanjutkan dari fungsi Ball kubik nisbah untuk menge-

kalkan sifat positif, berekanada , dan data dengan kekangan (apabila data berada di atas

satu satah, permukaannya perlu berada di atas satu satah yang sama) dari permukaan

data yang diberi yang telah disusun di atas grid segi empat tepat dengan mengambil ki-

ra syarat-syarat yang cukup pada beberapa parameter bentuk. Skema yang dibina telah

diimplimentast dengan jayanya terhadap beberapa set data berjarak seragan dan tidak

seragam dan keputusan menunjukkan yang ianya berfungsi dengan baik untuk set data

yang diuji dan menghasilkan lengkung dan permukaan yang menyenangkan. Skema

yang telah terhasil telah berjaya diimplementasikan ke atas beberapa bilangan data set

sekata dan tidak sekata, dan keputusan adalah efisyen ke atas data dan lengkung dan

permukaan yang terhasil memuaskan secara visual.

xvii



RATIONAL CUBIC BALL INTERPOLANTS FOR SHAPE PRESERVING 

CURVES AND SURFACES

ABSTRACT

Shape preserving interpolation is an essential curve/surface design technique in 

CAD/CAM and geometric design. It has a great significance in various areas of en-

gineering such as ship design and manufacture, car body design and manufacture, 

aerospace industry, and precision mechanism industry. Furthermore, it plays a cru-

cial role in aerography, animation and games, some emerging research fields, such as 

modern data analysis, mathematical finance, image processing, visualization, and dig-

ital watermarking technique. Shape preserving interpolation is defined as the method 

of constructing a curve (surface) to interpolate the given data points and preserve the 

shape implied by the data points. The focus of this thesis is to develop an alternative in-

terpolating scheme that preserves the inherent shape features for curves and surfaces 

data. In order to develop the positivity, monotonicity, convexity and constrained data 

(when the data lies above a straight line the curve is required to lie above that straight 

line) preserving interpolant for curve data, which are the most often, used property to 

quantify the shape inherent in the data points a C1 rational cubic Ball representation 

has been used with four shape parameters in its description. Conditions in two shape 

parameters are derived in such a way to preserve the shape properties inherent in the 

data, whereas the other two parameters remain free to enable the user to modify the 

shape of the curve as desired and to control the shape of the curves. A rational bi-cubic
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function with twelve shape parameters and a rational bi-cubic partially blended func-

tion with sixteen shape parameters have been extended from the rational cubic Ball 

functions to maintain positivity, monotonicity and constrained data (when the data  lies 

above a plane, the surface is required to lie above the same plane) of a given surface 

data arranged on rectangular grid by deriving sufficient conditions on some of the 

shape parameters. The developed schemes have been implemented successfully on a 

number of regular equally and unequally spaced data sets and the results show that it is 

efficient for the tested data sets and gives visually pleasant curves and surfaces.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Computer aided geometric design (CAGD) is concerned with the approximation 

and representation of curves and surfaces when they are subjected to computer pro-

cessing. CAGD is a relatively new field. The work in this field was started in the 

mid-1960s. Barnhill and Riesenfeld have established the field of CAGD in 1974 when 

they organized a conference on the topic at the University of Utah in the United States 

of America (USA). The conference is considered as the founding event of the field. 

The first textbook of CAGD was "Computational Geometry for Design and 

Manufacture" by Faux and Pratt appeared in 1979. The first journal of "Computer 

Aided Geometric Design" was founded in 1984 by Barnhill and Boehm. Another early 

conference was held in Paris in 1971, which focused on automotive design. The 

conference  was organized by Bézier. There was also a series of workshop started in 

1982 at the Math-ematics Research Institute at Oberwolfach, which was organized by 

Barnhill (Farin, 2002).

A significant element is embodied by the design of curves and surfaces within the 

building of various items like vehicle bodies, wings and fuselages for aircraft, ship 

hulls, in addition to the definition of physical, geological and medical occurrences. In-

novative aspects of CAGD use encompass computer vision and scrutiny of produced 

items, the film industry, and image evaluation for medical research. Spline functions
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in their simplest and most useful form are nothing more than pieces of polynomials 

joined together smoothly at certain knots, were first introduced into CAGD by Fergu-

son (1964) from Boeing in 1963. At about the same time de Boor and Gordon studied 

these curves at General Motors (Böhm et al., 1984).

In the efforts of engineers and scientists, spline functions comprise an essential and 

common elements. They comprise the key instrument in CAGD, which is essential to 

build curves and surfaces comprising particular shape features for most of CAGD 

applications. Splines remain very important tools in a multitude of applications involv-

ing curve fitting and design. The main reason for this is their excellent approximation 

properties. Also they are easy to manipulate, store, and evaluate on a computer.

Polynomial splines do not retain the shape properties of the data. This problem 

is known as the problem of shape preserving. During the last two decades, different 

authors have developed various algorithms of spline approximation with both local 

and global shape control. Based on spline functions, such methods are usually called 

methods of shape preserving spline approximation.

One of the main applications of shape preserving spline approximation is CAGD. 

The idea in CAGD is to find representations of curves and surfaces which are easy to 

treat on a computer, and to render on a graphical device such as a computer screen. 

To be of most use, these representations should have convenient handles consisting of 

a set of parameters which can be varied by the user to make well-defined changes in 

the curve or surface. Hence the main challenge is to develop algorithms that select 

these parameters automatically. Very strong requirements must be met in industrial
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design. Usually, a designer provides the envelopes of a car body, ship hull, airplane 

fuselage, engine details of complex shape as a discrete set of points. Hence to produce 

the body we need to describe these points as lying on some curves or some surfaces. 

Any discontinuities of the first and even second derivative may lead to flow separation 

that is to an increase in friction. By this reason, the designer is often interested in a 

very smooth approximation which preserves the shape of the data (Kvasov, 2000).

Preservation of shape features, inherent in the data, by an interpolant is one of 

important research subjects in CAGD. In particularly, when data from some scientific 

observation are considered, a user may be interested to visualize it graphically. There 

are splines which can produce smooth curves but unable to preserve the inherent shape 

of a given data.

In many interpolation problems, the solution that preserves some shape properties, 

such as positivity, monotonicity, and convexity is important. Numerous physical cases 

have entities that get meaning only when their values appear in a positive, a monotone, 

or a convex shape. Therefore, discussing shape preserving interpolation problems is 

important to provide a visually pleasing and computationally economical solution to 

various scientific events.

Positivity is an important property of the data that occurs in visualizing a physical 

quantity that cannot have a negative value, which may arise if the data is taken from 

some scientific, social or business environments, furthermore stability of radioactive 

substance and chemical reactions, solvability of solute in solvent, population statistics, 

observation of gas discharge when certain chemical experiment is in process (Hussain
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and Sarfraz, 2008), depreciation of the price of computers in the market (Abbas et al.,

2014), monthly rainfall amounts, resistance offered by an electric circuit, probability

distribution, volume and density (Hussain and Hussain, 2006b), dissemination rate of

drugs in the blood, and half-life of a radioactive substance(Tahat et al., 2015a), are few

examples of entities which are always positive. Therefor the negative graphical display

of these physical quantities is meaningless.

Monotonicity is another important shape property that is applied in many scientific

applications such as physical situations and engineering problems, where entities only

have a meaning when their values are monotone. Data generated from stress of a ma-

terial, uric acid level in patients suffering from gout (Tahat et al., 2015b), erythrocyte

sedimentation rate (E.S.R.) in cancer patients, rate of dissemination of drug in blood

(Hussain and Hussain, 2007), dose-response curves and surfaces in biochemistry and

pharmacology, design of aggregation operators in multi criteria decision making and

fuzzy logic, approximation of copulas and quasi-copulas in statistics, empirical option

pricing models in finance, approximation of potential functions in physical and chemi-

cal systems (Beliakov, 2005) are few examples of entities which are always monotone.

Convexity is another important shape property and plays a major role in various

applications including telecommunication systems designing, nonlinear programming,

engineering, optimal control, optimization, parameter estimation, approximation the-

ory and others (Sarfraz et al., 2012).

Many researchers have addressed the problem of data visualization. Schumaker

(1983) used piecewise quadratic polynomial to preserve the shape of monotone data
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by introducing an additional knot in each subinterval where the shape of the data is not 

preserved. Brodlie and Butt (1991) developed a C1 piecewise cubic interpolation to 

preserve the shape of convex data. They divided the interval where convexity was lost 

into two subintervals by inserting extra knots in that interval. Butt and Brodlie (1993) 

used the same technique to develop a C1 positivity preserving scheme for 2D data. 

Goodman et al. (1991) developed two interpolating methods to maintain the shape of 

constrained data utilizing a rational cubic interpolant. Firstly they preserved the shape 

of the data by scaling the weights by some scale factors. Secondly they introduced a 

new data point to retain the shape of the data. Unlike Brodlie and Butt (1991), Butt 

and Brodlie (1993), and Goodman et al. (1991), the data visualization scheme for 

shape preserving curve developed in this thesis neither requires the specification of the 

interval in which the shape of data is lost nor scaling of weights. The schemes 

developed in this thesis, assure an automated selection of parameters in each 

subinterval.

Hussain et al. (2010) introduced a rational interpolant (cubic/linear) with one shape 

parameter to visualize the shape of positive, constrained and monotone data by impos-

ing data dependent constraints on the shape parameter. Sarfraz et al. (2000, 2001), 

Sarfraz (2002) and Sarfraz and Hussain (2006) presented a C1 rational cubic function 

with two shape parameters to maintain the shape properties of the shaped data. Data 

dependent conditions were derived on shape parameters to preserve the positivity of 

positive data (Sarfraz et al., 2000), positivity and monotonicity of shaped data (Sar-

fraz et al., 2001), positivity and convexity of 2D data (Sarfraz, 2002) and positivity, 

monotonicity and convexity (Sarfraz and Hussain, 2006).

The rational functions used in (Sarfraz, 2003) and (Hussain and Hussain, 2007)
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have also two parameters which are constrained to visualize the shape of data. How-

ever, no flexibility is provided for the user to refine the curves further if needed, 

whereas the schemes developed in this thesis have four parameters, where two of the 

parameters are constrained to visualize the data and the other two parameters provide 

the user with a degree of freedom to adjust the shape of the generated curve which is 

more suitable for interactive curve design.

Hussain and Sarfraz (2008, 2009) used a rational cubic function in its most gen-

eralized form (four shape parameters) to preserve the shape of positive and monotone 

data in (Hussain and Sarfraz, 2008) and (Hussain and Sarfraz, 2009) respectively. Sar-

fraz et al. (2012) proposed a piecewise rational function in a cubic/cubic form, which 

involves four shape parameters in each interval in its construction. Two of these shape 

parameters are constrained to preserve the shape of convex, monotone, and positive 

data while the other two parameters are used to modify positive, monotone and convex 

curves to obtain a visually pleasing curve.

A rational cubic Ball interpolant was developed by Piah and Unsworth (2013) with 

two shape parameters that can be used to generate the desired monotone curves from 

monotone data. However, no flexibility was provided for the user to refine the curves 

further if needed, so it is unsuitable for interactive curve design.

Shape preserving interpolation problem for visualization of 3D data is one of the 

basic problem in computer graphics, CAGD, data visualization and engineering. It also 

arises frequently in many fields including military, education, art, medicine, advertis-

ing, transport military, art and many other fields. Data are noticed from mathematical
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description, scientific phenomenon and real sciences, and one of the main interests for

the designer in data visualization environment is to convert this data into any graphical

representation that makes the content easier to understand and provides an insight into

the noticed data. These data may have some special shape properties such as positivity,

monotonicity and convexity.

In many shape preserving interpolation problems, it is required that the function ex-

hibits the shape features ingrained in the data and the problem become critical when it

fails to retain this shape property. Furthermore, smoothness is also required to demon-

strate the data in a visual pleasant display. Ordinary spline methods usually ignore

these characteristics thus exhibiting undesirable inflections or oscillations in resulting

curves and surfaces. Due to this reason a good amount of work has been published that

focuses on surfaces shape preserving.

Piah et al. (2005) have discussed the problem of positivity preserving for scattered

data interpolation. Sufficient conditions are derived on the ordinates of the Bézier

control points in each triangle to preserve the positivity of data. Hussain and Sarfraz

(2008) utilized a C1 rational cubic function to preserve the shape of positive data,

then they extended it to an interpolating rational bi-cubic form, involving eight shape

parameters. Constraints were derived on four shape parameters in the description of the

rational bi-cubic function to visualize the shape of positive data in the view of positive

surfaces and the remaining four shape parameters were left to the user to refine the

shape of the surfaces.

The problem of visualization of constrained data which is a generalized case of
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problem of positive data visualization considered by few authors. This problem usu-

ally arises in the comparative study of data (Hussain et al., 2008). Brodlie et al. (2005) 

proposed the method of visualizing constrained data. They modified the quadratic 

Shepard method, which interpolates scattered data of any dimensionality to preserve 

positivity. Brodlie et al. (1995) discussed the problem of surface data interpolation sub-

ject to simple linear constraints. They developed a piecewise bi-cubic function from 

data on a rectangular grid. The problem of positivity was generalized to the case of 

linearly constrained interpolation, where it was required that the function lies between 

bounds which were linear functions.

Chan and Ong (2001) constructed a range restricted C1 interpolant to scattered data, 

sufficient non-negativity conditions derived on the Bézier ordinates to ensure the non-

negativity of a cubic Bézier triangular patch. Constraints are derived on derivatives 

and the gradients modified at the data points if needed to guarantee the achievement of 

non-negativity conditions. Carlson and Fritsch (1985) developed a bi-cubic polynomial 

interpolation scheme to preserve the shape of monotone data. Necessary and sufficient 

conditions were derived on derivatives, such that the resulting bi-cubic polynomial is 

monotone. Beatson and Ziegler (1985) presented a visualization of monotone data 

arranged over a rectangular grid by C1 monotone quadratic spline.

In (Brodlie et al., 1995), (Chan and Ong, 2001), (Carlson and Fritsch, 1985), and 

(Beatson and Ziegler, 1985) the necessary and sufficient conditions were derived on 

derivatives values at grid points to preserve the shape of the 3D data. Thus the deriva-

tive values at the data sites were fixed and the proposed schemes were not applicable 

to data with derivatives at the data points. Hussain and Hussain (2006b) developed
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a rational bi-cubic interpolant to preserve the shape of positive surface data and the 

surface data that lies above a plane. Simple data dependent conditions were derived on 

shape parameters to conserve the shape of surface data. Hussain and Hussain (2006a) 

preserved the shape of monotonic surface data by utilizing a rational bi-cubic function 

with four shape parameters in it is description. Simple constraints are derived on shape 

parameters to preserve the shape of data. A smooth surface interpolation scheme for 

positive and convex data has been developed in (Hussain et al., 2011). The scheme 

has been extended from the rational quadratic spline function of Sarfraz to a ratio-

nal bi-quadratic spline function. Simple data dependent constraints are derived on the 

shape parameters in the description of rational bi-quadratic spline function to preserve 

the shape of 3D positive and convex data.

Hussain and Hussain (2006b) extended the rational cubic function developed by 

Hussain and Ali (2006) to a rational bi-cubic partially blended function (Coons patches). 

Simple constraints are developed on the shape parameters in the description of rational 

bi-cubic function to visualize positive data and data that lies above the plane. Sarfraz 

et al. (2010) developed a C1 piecewise rational cubic interpolant, with two shape pa-

rameters. Data dependent shape conditions are imposed on the shape parameters to 

preserve the shape of data. The rational cubic spline has been extended to a rational 

bi-cubic partially blended surface (Coons-patches) and derived constraints on param-

eters to visualize the shape of positive surface data. Shaikh et al. (2011) extended the 

rational cubic function developed by Hussain et al. (2011) to a rational bi-cubic par-

tially blended function. Data dependent constraints are derived on shape parameters 

to visualize surface lies above the plane. Hussain and Hussain (2007) used piecewise 

rational cubic function to visualize monotone data in the view of monotone curves by
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making constraints on shape parameters in the description of rational cubic function. 

The rational cubic function is extended to rational bi-cubic partially blended func-

tion, simple constraints were derived on the parameters in the description of rational 

bi-cubic partially blended patches to visualize the monotone data in the view of mono-

tone surfaces. Hussain et al. (2010) extended the piecewise rational cubic function for 

monotone curve design developed by Hussain and Sarfraz (2009) to rational bi-cubic 

partially blended function to preserve the shape of 3D monotone data. The rational 

cubic function presented in Sarfraz and Hussain (2006) has been extended to rational 

bi-cubic partially blended function to visualize the shape of 3D positive data by Hus-

sain et al. (2011). Hussain et al. (2012) utilized the same rational bi-cubic function to 

preserve the shape of monotone and convex data. Simple data dependent constraints 

were developed on shape parameters in each rectangular patch to assure the 

preservation of the shape of data.

Hussain and Bashir (2011) presented surface data visualization scheme for the visu-

alization of positive, constrained and monotone data using rational bi-cubic functions 

with linear denominator. To visualize surface data arranged over a rectangular mesh, 

a rational bi-cubic function has been developed which is an extension of the rational 

cubic function in Hussain et al. (2010). Data dependent conditions have been derived 

on shape parameters to preserve the shape of data. Hussain et al. (2015) extended a 

piecewise rational cubic function presented in (Sarfraz et al., 2012) to a bi-cubic par-

tially blended rational function with eight shape parameters to preserve the inherent 

shape features of the shaped data. Data dependent sufficient constraints were 

developed on four of the parameters to preserve the shape of data while the remaining 

left free to refine the shape of data at user choice.
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The C1 rational cubic spline interpolant of Karim and Kong (2014) has been ex-

tended to a partially blended bi-cubic rational spline with 12 shape parameters in the 

descriptions by Karim et al. (2015). Sufficient conditions are derived on four shape pa-

rameters and the remaining 8 of them were free parameters which were used to change 

the shape of the final surfaces of the positive data.

From the previous discussion, positivity, monotonicity, and convexity are important 

shapes. They are independent shapes which are found inherited in data. Previous 

studies had discussed these shapes independently using different mathematical models 

and methodologies.

This thesis intends to discuss the three shapes within one mathematical model. It 

proposes a rational cubic Ball interpolant with four parameters in its description. The 

data dependent constraints have been developed on two parameters to introduce in-

dependent curve schemes to visualize positive, monotone and convex data. However, 

the other two parameters have been left as free parameter. It can assume any posi-tive 

value to further refine the curve schemes if needed, to obtain a visually pleasing curve. 

The problem of visualization constrained data is also addressed. When data is lying 

above a straight line the curve is required to lie on the same side of the line. A rational 

bi-cubic function and a rational bi-cubic partially blended function have been extended 

from the rational cubic Ball functions to maintain positivity, monotonicity and 

constrained data (when the data is lying above a plane the surface is required to lie 

above the plane) of a given surface data arranged on rectangular grid by deriving the 

sufficient conditions on some of the shape parameters. The developed schemes have 

been implemented successfully on a number of regular equally and unequally spaced
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data sets and the results shows that it works well for the tested data sets and obtain

visually pleasant curves and surfaces.

1.2 Thesis Objective

The aim of this thesis is to develop an alternative interpolating method that pre-

serves the inherent shape features for curves and surfaces data. In order to develop the

positivity, monotonicity and convexity preserving interpolants for regular data, which

are the most often used properties to quantify the shape rational cubic Ball interpolant,

rational bi-cubic Ball interpolant and rational bi-cubic partially blended interpolant

have been used. The parameters will be used to control the unwanted change in the

shape of the curves and surfaces and to preserve the inherent shape properties of the

data also to refine the shape of the curve and surfaces to obtain smooth and visually

pleasing results according to the designer choice.

1.3 Thesis Outline

The layout of this thesis is organized in the following manner. Chapter 1 gives a

brief introduction to the problem of shape preserving visualization and a comprehen-

sive review of the literature. In Chapter 2, a review of the background of the study is

given. In Chapter 3 algorithms based on rational cubic Ball basis function to visualize

positive, constrained, monotone and convex curve data are developed. Numerical ex-

amples are presented to verify proposed algorithms. The rational cubic Ball interpolant

developed in Chapter 3 is extended to rational bi-cubic Ball function and used for vi-

sualization of positive, monotone and constrained data in Chapter 4. Data dependent

constraints are derived on shape parameters in the description of bi-cubic function in
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order to retain the shape of surface data. In Chapter 5 rational bi-cubic partially blended 

function, which is an extension of rational cubic Ball function in Chapter 3 is utilized 

to preserve the shape of positive, constrained and monotone surfaces of regular surface 

data by imposing sufficient data dependent conditions on shape parameters. Further-

more, the developed surface schemes are tested through different numerical examples, 

and finally Chapter 6 summarizes the major findings and concludes the work done in 

this thesis. Appendices A and B include some calculations introduced in Chapter 4.
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CHAPTER 2

BACKGROUND

2.1 Introduction

One of the well-known mathematical representations for curves and surfaces used 

in computer graphics and computer-aided design are the Bézier curves and surfaces. 

Bézier methods were first developed by de Casteljau around 1959 and Bézier around 

1962 independently. They developed their work as part of car manufacturers systems 

in French car companies, Renault and Citroen based on the Bernstein basis function. 

Many publications described The Renault system, UNISURF (by Bézier) this is why 

the entire field bears Bézier’s name.

Bézier curves are deemed as the mathematical foundation of many computer-aided 

design (CAD) systems, they have also become the basis of the field of computer aided 

geometric design (CAGD) (Böhm et al., 1984). Bézier curves are used extensively be-

cause they have a particular mathematical representation. Their popularity is due to the 

fact that they possess a number of mathematical properties which facilitate their manip-

ulation and analysis such as end-point interpolation, tangency to the control polygon 

at two end-points, and lying inside the convex hull (Tien, 1999).

In 1974 Alan Ball, a British mathematician used the cubic Ball basis to define his loft-

ing surface program CONSURF at the British Aircraft Corporation using a method 

analogous to that of Bézier. Although the Ball basis functions are not the same as the 

Bernstein polynomials, they furnish the same shape-preserving features as Bernstein
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polynomials. Later the basis was generalized for a polynomial of higher degree by

Wang (1987) and Said (1989) respectively. These generalizations lead to the Wang-

Ball curves (surfaces) and Said-Ball curves (surfaces). Goodman and Said pointed

out the advantages of Said-Ball curves and surfaces in (Goodman and Said, 1991a).

The shape preserving properties of the generalized Ball basis were discussed by Good-

man and Said (1991b). Although Bézier curves have been used in shape preserving

interpolation, Ball curves and surfaces have been found to be more suitable in some

circumstances (Tien, 1999).

2.2 Ball Curves

Bézier’s UNISURF utilized Bernstein polynomials as basis functions. These basis

functions provide the shape-preserving features that are desired in free form curves and

surfaces designing. Ball (1974, 1975, 1977) uses different basis functions to define his

lofting surface program CONSURF at the British Aircraft Corporation.

The method is analogous to the Bézier method. The basis functions employed are

cubic polynomials, and they are slightly different from the Bernstein polynomials used

in the Bézier method. However, they inherit the same shape-preserving properties and

the Bernstein polynomials (Goodman and Said, 1991b). One of the advantages of the

Ball cubic method is that, if interior control points coalesce, then the method reduces

to a quadratic.

A cubic curve is defined by Ball (1974) as

B3(t) = ∑3
i=0 β 3

i (t)bi, 0 ≤ t ≤ 1, (2.1)
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where bi, i = 0,1,2,3, are called the control points and β 3
i (t) the cubic basis functions

which are defined as follows :

β 3
0
(t) = (1− t)2,

β 3
1
(t) = 2t(1− t)2,

β 3
2 (t) = 2t2(1− t),

β 3
3 (t) = t2.

(2.2)

Figure 2.1 shows cubic Ball basis functions

Figure 2.1: Cubic Ball basis functions

These basis functions have the following properties:

1. Non-negative: Since 0 ≤ t ≤ 1, β 3
i
(t)≥ 0, i = 0,1,2,3.

2. Partition of unity: An important property of the cubic Ball basis functions is the

partition of unity. This means the sum of the functions is always one, for all

values of 0 ≤ t ≤ 1.
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3

∑
i=0

β 3
i (t) = (1− t)2 +2t(1− t)2 +2t2(1− t)+ t2

= 1−2t + t2 +2t −4t2 +2t3 +2t2 −2t3 + t2

= 1.

Hence Ball curve possesses the following properties:

1. Convex hull property: Since Ball basis functions are non-negative and the sum

of the functions are always one, for all values of 0 ≤ t ≤ 1 so Ball curve lies

completely in the convex hull of its control points.

2. End-point interpolation: The Ball curve interpolates the first and last points

b0 and b3. B(0) = b0 and B(1) = b3. This property derived from the Ball

basis functions, since at the endpoints it is equal to zero except at b0, β 3
0 =

1,and atb3, β 3
3 = 1.

3. Variation diminishing: Ball curve is variation diminishing. This means that no

straight line intersects the curve more than its control polygon.

4. An interesting feature of the Ball curve is obtained by coalescing two interior

control points, the cubic curve degenerates to quadratic if b1 = b2 as follows

B3(t) = b0(1− t)2 +2b1t(1− t)2 +2b2t2(1− t)+b3t2

= b0(1− t)2 +2b1t(1− t)2 +2b1t2(1− t)+b3t2

= b0(1− t)2 +2b1t(1− t)[(1− t)+ t]+b3t2

= b0(1− t)2 +2b1t(1− t)+b3t2
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Figure 2.2 shows a cubic Ball curve, and Figure 2.3 shows a quadratic curve obtained

by coalescing the interior control points of the cubic curve.

b1 b2

b3
b0

Figure 2.2: Cubic Ball curve

�

b0

b1 = b2

b3

Figure 2.3: Quadratic curve obtained when b1 = b2
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2.3 Generalized Ball Curves

2.3.1 Said-Ball Curve

The generalization by Said (1989) resulted in the Said-Ball curve, which can be

expressed as

Bn(t) =
n

∑
i=0

biSn
i (t), 0 ≤ t ≤ 1 (2.3)

where bi are its control points, and Sn
i (t) are the Said-Ball basis functions, which can

be defined for both odd and even values of n as:

Sn
i (t) =




⌊n

2

⌋
+1

i

 t i(1− t)⌊
n
2⌋+1,0 ≤ i ≤

⌈n
2

⌉
−1

n

n
2

 t
n
2 (1− t)

n
2 , i = n

2

Sn
n−i(1− t),

⌊n
2

⌋
+1 ≤ i ≤ n

(2.4)

where

⌊x⌋= the greatest integer less than or equal to x

and

⌈x⌉= the least integer greater than or equal to x

A rational Said-Ball curve of degree n can be defined by the following equation:

p(t) =
∑n

i=0 Sn
i (t)wibi

∑n
i=0 Sn

i (t)wi
(2.5)

where wi are called the weights.
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2.3.2 Wang-Ball Curve

Another generalization of the cubic Ball curve was provided by Wang (1987), a

Wang-Ball curve of degree n with control points can be expressed as

W (t) =
n

∑
i=0

biAn
i (t); 0 ≤ t ≤ 1 (2.6)

where bi are the control points and An
i (t) are the Wang-Ball basis functions, which are

defined as:

An
i (t) =



(2t)i(1− t)i+2,0 ≤ i ≤ ⌊n/2 ⌋−1

2t⌊n/2 ⌋(1− t)⌈
n/2 ⌉, i = ⌊n/2 ⌋

(2(1− t))⌊n/2 ⌋t⌈
n/2 ⌉, i = ⌈n/2 ⌉

An
n−i(1− t),⌈n/2 ⌉+1 ≤ i ≤ n.

(2.7)

Rational curves are becoming standard curves description in CAGD, CAD and com-

puter graphics.

A rational Wang-Ball curve of degree n can be described by the following equation:

p(t) =
∑n

i=0 An
i (t)wibi

∑n
i=0 An

i (t)wi
(2.8)

Remark: When all of the weights wi are equal one, the denominator is identically

equal to one and the standard non-rational Said-Ball curve and Wang-Ball curve will

be obtained, and when n = 3, the Said-Ball curve and Wang-Ball curve reduce to the

cubic Ball curve. (Dejdumrong et al., 2001).
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