
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

González Vasco, M. I., & Steinwandt, R. (2006). 
Pitfalls in public key cryptosystems based on free 
partially commutative monoids and groups. Applied 
Mathematics Letters, 19(10), 1037-1041.

DOI: 10.1016/j.aml.2005.11.014

© 2005 Elsevier Ltd.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aml.2005.11.014


Pitfalls in public key cryptosystems based on free

partially commutative monoids and groups

Maŕıa Isabel González Vasco
1

and Rainer Steinwandt
2

1 Área de Matemática Aplicada, Universidad Rey Juan Carlos

C/ Tulipán s/n. 28933, Móstoles, Madrid, Spain

migonzalez@escet.urjc.es

2IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth

Fakultät für Informatik, Universität Karlsruhe,

Am Fasanengarten 5, 76 131 Karlsruhe, Germany

steinwan@ira.uka.de

Abstract

At INDOCRYPT 2003 Abisha, Thomas, and Subramanian proposed two pub-
lic key schemes based on word problems in free partially commutative monoids
and groups. We show that both proposals are vulnerable to chosen ciphertext
attacks, and thus in the present form must be considered as insecure.

Keywords: word problem, finitely presented group, public key cryptography

1 Introduction

The identification of mathematical problems that can serve as sound foundation
for the construction of public key schemes is a rather active area of research. It
has turned out to be quite hard to come up with practical and secure proposals
that are not variants of proposals based on factoring large integers or computing
discrete logarithms in suitable represented finite cyclic groups. One line of research
in this context focuses on the use of word problems originating in group or language
theory (see [4] for an introduction).

Unfortunately, some proposals in this direction turn out to be susceptible to
annoyingly simple attacks that circumvent the underlying (difficult) theoretical
problem (cf. [2, 3]). Up until now, it remains an interesting challenge to build
practical cryptographic schemes originating in word problems.

1



At INDOCRYPT 2003 Abisha, Thomas, and Subramanian proposed two public
key cryptosystems based on free partially commutative monoids and groups [1].
In this contribution we show that in the present form these proposals do not
offer acceptable cryptographic security, as they succumb to quite efficient chosen
ciphertext attacks. Recall that chosen ciphertext attacks are those carried out
with “restricted” access to the decryption device: that is, the adversary gains
knowledge about the target ciphertext (or the secret key) by selecting different
ciphertexts for which he is given the corresponding plaintexts. The strongest type
of cryptanalysis consists of ciphertext only attacks, where the adversary’s only
source of information is ciphertext (and the public key). We will see that against
one of the examples presented in [1], a very efficient ciphertext only attack can be
mounted that enables an attacker to decrypt arbitrary ciphertexts.

2 A proposal based on free partially commutative mo-

noids

In this section we shortly recall the basic set-up of the first public key cryptosystem
proposed by Abisha et al. at INDOCRYPT 2003—for further details we refer to the
original paper [1]. We denote by Σ some (finite) alphabet, and θ ⊆ Σ×Σ specifies
a so-called concurrency relation, i. e., (a, b) ∈ θ means that each occurrence of ab
in a word u ∈ Σ∗ can be replaced by ba and vice-versa. If v ∈ Σ∗ is derived
from a word u ∈ Σ∗ by repeatedly applying such replacements, we write u ≡θ v.
In particular, ≡θ is a congruence relation, and it is pointed out in [1] that the
word problem in the free partially commutative monoid Σ∗/ ≡θ can be decided
efficiently.

Let ∆ denote a finite alphabet whose cardinality is “sufficiently greater than
that of Σ” ([1] provides no further details here).

The secret data consists of Σ, θ along with two words x0, x1 ∈ Σ∗ such that
x0 6≡θ x1. Further on, the secret key contains a monoid homomorphism g : ∆∗ −→
Σ∗ which obeys the following conditions:

• For δ ∈ ∆ we either have g(δ) = λ (the empty word) or g(δ) ∈ Σ.

• At least for one letter δ ∈ ∆ we have g(δ) 6= λ.

The public data consists of two words y0 ∈ g−1(x0) and y1 ∈ g−1(x1). Further
on, a Thue system T ⊆ ∆∗×∆∗ is specified such that for (u, v) ∈ T we either have
(g(u), g(v)) ∈ {(ab, ba), (ba, ab)} with (a, b) ∈ θ or we have g(u) = g(v). Thus,
repeatedly applying rules in T to yi yields another element in g−1(xi) (i ∈ {0, 1}).

2



Here applying a rule (u, v) ∈ T to a word w ∈ ∆∗ is to be understood as replacing
an occurrence of u in w with v (or an occurrence of v in w with u).

To encrypt a bit b ∈ {0, 1} we start with the corresponding public word yb and
repeatedly apply rewrite rules specified in T (no details of this process are specified
in [1]). The resulting word c ∈ ∆∗ forms the ciphertext.

To decrypt a ciphertext c ∈ ∆∗ the word g(c) ∈ Σ∗ is computed. In case
of g(c) ≡θ x0 the plaintext is 0, otherwise it is 1. (Note that according to this
specification a ciphertext is never considered as invalid.)

3 Security problems in the proposal based on free par-

tially commutative monoids

In the proposed form, the above scheme does not address several issues that are
crucial for the security of a practical scheme. In particular, it is unclear how
exactly the parameters are to be chosen and how the encryption process is to be
performed: E. g., how do we decide which rule is to be applied next, and how
many “rounds” of rewriting are to be performed? Moreover, even when deciding
equivalence of words in ∆∗ with respect to T is hard, there can be annoyingly
trivial ways for an attacker to bypass this problem. As a (drastic) demonstration
of the relevance of this issue we can use the simple example from [1]:

Example 1 In the simple example put forward in [1], the public Thue system over
the alphabet ∆ = {d1, . . . , d9} reads

T = {(d1d3, d3d1), (d1d4, d4d1), (d2d3, d3d2), (d2d4, d4d2), (d5d3d1, d3d5),

(d5d4d2, d4d5), (d3d3d1, d3d3d1d5), (d6d7, d7d6), (d6d8, d8d6),

(d7d9, d9d7), (d8d9, d9d8)},

and the public words used for encrypting 0 and 1, respectively, are

y0 = d1d2d2d4d3d3d1d6d7d5d7d9d1d2d8d3d4d8d3d9

y1 = d1d2d2d4d6d3d4d6d7d5d1d5d8d4d3d8d9.

This Thue system T is designed to have an undecidable word problem. Never-
theless an attacker can easily decrypt arbitrary plaintexts encrypted under such a
public key: All rewrite rules in T leave the number of occurrences of the letter d9

invariant. Consequently, each encryption of 0 contains the same number of d9’s

3



as y0 does (namely 2), whereas each encryption of 1 results in a ciphertext with a
single d9. In exactly the same way, unauthorized decryption of a bit can be carried
out by counting the number of d3’s, d4’s, d6’s, or d7’s in the ciphertext, as the
number of occurrences of these letters in y0 and y1 is different and is not altered
by the rewriting rules.

Unfortunately, even when the system parameters are chosen in such a way that
ciphertext only attacks can be excluded, the following chosen ciphertext attack
can still apply:

1. For each δ ∈ ∆ (more precisely, for each letter δ occurring in the public data),
the attacker sends the concatenation y0δ to the owner of the secret key. If
the resulting ciphertext does not decrypt to 0, we know that g(δ) 6= λ. On
the other hand, if the resulting plaintext is 0, we may assume g(δ) = λ (to
increase the plausibility of this assumption, one may send another ciphertext
formed by inserting δ at several randomly chosen positions in y0.)

Thus, assuming a realistic public key size, we must assume that an attacker
can determine the set {δ ∈ ∆ : g(δ) 6= λ}. Let ∆′, T ′, y′

0
, y′

1
denote the

values obtained from ∆, T , y0, y1 through removal of these “superfluous”
letters.

2. Next, we want to check which letters have identical images under g: Let
η0 be the first letter of y′

0
, and replace some occurrence(s) of η0 in y′

0
by a

letter ξ0 ∈ ∆′ \ {η0}. If the obtained word no longer decrypts to 0, we know
that g(η0) 6= g(ξ0); on the other hand if the ciphertext obtained by such a
replacement still decrypts to 0, it is plausible to assume g(η0) = g(ξ0). After
knowing (or at least having plausible candidates for) the elements ξ ∈ ∆′

with g(ξ) = g(η0), we can proceed in the same manner with another letter of
y′
0
. In this way, we learn which letters in y′

0
(probably) have identical images

under g.

Next, we apply the same technique to some encryption of y′
0

under T ′ in order
to get information about letters not contained in y′

0
. Note that—provided

the decryption procedure does not detect invalid ciphertexts (which in the
original specification from [1] is the case)—we are limited to those rules in
T ′ that can be applied when encrypting y0: As invalid ciphertexts always
decrypt to 1, modifying encryptions of 1 is not that helpful. Nevertheless, we
must assume that the described approach allows to reveal much information
on “redundant” letters in ∆ by means of O(∆′2) (fake) chosen ciphertexts.

3. After the previous step we can select a subset ∆′′ ⊆ ∆′ which contains
exactly one letter of many (possibly all) preimages g−1(σ) (σ ∈ Σ). Let T ′′,

4



y′′
0
, y′′

1
be the variants of T ′, y′

0
, y′

1
obtained by replacing each letter with its

representative in ∆′′. In order to learn which letters in g(∆′′) commute, we
proceed analogously as in the previous step: By applying rewrite rules in T ′′

to y′′
0
, we try for each pair (δ, π) ∈ ∆′′ × ∆′′ (δ 6= π) to find encryptions of

0 which contain the letter sequence δπ or πδ. Then we replace δπ with πδ
(resp. πδ with δπ), and check whether this “partially commuted” ciphertext
still decrypts to 0.

Thus, with O(∆′′2) (fake) ciphertexts we can get a plausible candidate for
the set {(δ, π) ∈ ∆′′ × ∆′′ : g(δ)g(π) = g(π)g(δ)}.

After having completed these steps (requiring O(∆2) chosen ciphertexts), an at-
tacker is in a situation comparable to the legitimate owner of the secret key: Given
a ciphertext, letters δ ∈ ∆ with g(δ) = λ can be removed, and different represen-
tatives of the same σ ∈ Σ can be replaced with a unique representative in ∆′′.
Further on, due to Step 3 above, we know (or at least have a plausible guess for)
which pairs (g(δ), g(π)) belong to the secret concurrency relation θ, so recogniz-
ing ciphertexts c with g(c) ≡θ g(y0) can be considered as feasible. As our attack
above always began with an encryption of 0, it may well happen that sometimes
we fail in checking the condition g(c) ≡θ g(y1)—e. g., such a ciphertext c could
involve a letter δ ∈ ∆ which did not occur in any encryption of 0 that we used for
our attack. But this is not really a concern: We have good chances to correctly
identify all ciphertexts c with g(c) ≡θ g(y0) and all ciphertexts not satisfying this
condition decrypt to 1 anyway. Thus, in summary an attacker has good chances
to successfully decrypt a non-negligible part (possibly all) ciphertexts encrypted
under the public key.

4 Security problems in the proposal based on free par-

tially commutative groups

The authors of [1] put forward another public key scheme which is essentially
a particular case of the one already discussed, where the free partially commu-
tative monoid is actually a group. Adapting the above attack to this proposal is
straightforward, and we omit a detailed description of the scheme. One issue which
is different from the above setting, and which simplifies the attack, is the following:
The second proposal of Abisha et al. makes use of the word problem in finitely
presented groups. A consequence of this is the fact, that for each letter δ ∈ ∆ a
“formal inverse” δ−1(∈ ∆−1) is available whose image under g is determined by
g(δ) already.

5



By making use of these formal inverses we can easily form (fake) ciphertexts
that help to check for arbitrary u, v ∈ (∆±1)∗ whether g(u) and g(v) represent
equivalent words in the secret finitely presented group. For doing so we start with
a word u0 encrypting 0 and insert uv−1 at random positions in u0. By construction
of the scheme, g maps all ciphertexts encrypting 0 to the empty word, and if
after insertion of uv−1 we still obtain a decryption of 0, it is plausible to assume
that g(uv−1) maps to λ, too. In other words we may assume that g(u) and g(v)
represent equivalent words in the secret group. Similarly as in the first scheme,
the secret finitely presented group is determined by commutativity relations, and
by making use of the formal inverses as just sketched, one can check comparatively
easy which generators of the secret group (probably) commute.

In summary, this second scheme is vulnerable to an attack which is quite similar
to the one above (and to the reaction attack described in [3]).

5 Conclusion

The above discussion illustrates that in the present form both public key encryption
schemes proposed in [1] do not offer acceptable cryptographic security. Besides
leaving open crucial details of the key generation and encryption procedure, a
chosen ciphertext attack can enable an attacker to decrypt a non-negligible part
(possible all) of the ciphertexts.

References

[1] P.J. Abisha, D.G. Thomas, and K.G. Subramanian. PUBLIC KEY CRYP-
TOSYSTEMS BASED on FREE PARTIALLY COMMUTATIVE MONOIDS
and GROUPS. In INDOCRYPT 2003, Lecture Notes in Computer Science.
Springer, 2003.

[2] M.I. González Vasco and R. Steinwandt. Clouds over a Public Key Cryptosys-
tem Based on Lyndon Words. Information Processing Letters, 80:239–242,
2001.

[3] M.I. González Vasco and R. Steinwandt. A Reaction Attack on a Public Key
Cryptosystem Based on the Word Problem. Applicable Algebra in Engineer-
ing, Communication and Computing, to appear. See also Cryptology ePrint
Archive: Report 2002/139.

[4] A. Salomaa. Public-Key Cryptography, volume 23 of EATCS Monographs on
Theoretical Computer Science. Springer, 1990.

6

View publication stats

https://www.researchgate.net/publication/2920110



