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Numerical simulation of boundary layers 


Part 3. Turbulence and relaminarization in sink flows


By PHILIPPE R. SPALART


NASA Ames Research Center, Moffett Field, California 94035 

Direct numerical simulations of sink-flow boundary layers, with acceleration parame-
ters K between 1.5 x 10-6 and 3.0 x 10_6, are presented. The three-dimensional, time-
dependent Navier-Stokes equations are solved numerically using a spectral method, with 
about 106 degrees of freedom. The flow is assumed to be statistically steady, and self- 
similar. A multiple-scale approximation and periodic conditions are applied to the fluc-
tuations. The turbulence is studied using instantaneous and statistical results. Good 
agreement with the experiments of Jones & Launder is observed. Two effects of the favor-
able pressure gradient are to extend the logarithmic layer, and to alter the energy balance 
of the turbulence near the edge of the boundary layer. At very low Reynolds number the 
logarithmic layer is shortened and slightly displaced, but wall-layer streaks are present 
even at the lowest values of R 9 for which turbulence can be sustained. Large quiescent 
patches appear in the flow. Relaminarization occurs at K = 3.0 x 10_6, corresponding to 
a Reynolds number R9 330. 

1. Introduction 

The flow in a two-dimensional convergent channel, or sink flow, is of special interest both 
in its laminar and turbulent versions. The laminar sink flow is one of the few known exact 
solutions of the Navier-Stokes equations (Schlichting 1979). At high Reynolds numbers 
it reveals a potential core and viscous boundary layers along the walls. The solution to 
the boundary-layer equations is also known exactly; all these solutions are self-similar. 
The turbulent sink-flow boundary layer also deserves special interest. Again, a solution 
in which the statistical quantities are self-similar is possible (Clauser 1954, Coles 1957, 
Bradshaw 1967) and experiments show it to be reached asymptotically as one approaches 
the sink (Jones & Launder 1972). In such a solutkn all the nondimensional quantities like 
the acceleration parameter K v/U 0 (dU4dz), friction coefficient c1 , shape factor H, 
and thickness Reynolds numbers R6. and R9 are independent of the streamwise coordinate 
x. The entrainment is zero, in the sense that the edge of the boundary layer is a streamline. 
Flows with zero and negative entrainment were considered by Head & Bradshaw (1971).



The sink-flow boundary layer is the purest example of an "equilibrium" turbulent bound-
ary layer, a boundary layer with a shape that is invariant in the streamwise direction. The 
zero-pressure-gradient boundary layer was discovered, experimentally, to have invariance 
properties expressed as the "law of the wall" and "defect law" (Coles 1956). However, 
this flow still contains two independent scales so that full similarity may be impossible. 
Matching the law of the wall and the defect law for the mean velocity is possible in a 
logarithmic layer, but matching an inner law and an outer law for the Reynolds stresses 
requires a layer with constant stresses. Such a behavior is not strongly supported either 
by experiments or by numerical simulations. The mean velocity may have a self-similar 
behavior because it is a less sensitive quantity than the second-order moments. 

The theory of equilibrium boundary layers with pressure gradient is even farther from 
being complete; it is not known which pressure distributions will produce such a boundary 
layer (Clauser 1954, Coles 1957, Bradshaw 1967). Boundary layers that satisfy the defect 
law have been obtained experimentally by carefully tailoring the pressure distribution. 
The law of the wall is presumed to be well satisfied as long as the pressure distribution 
is smooth (values of the pressure gradient less than about 0.005 x pu/L1). Self-similarity 
seems to be more easily obtained with favorable pressure gradients, including in sink flows 
(Clauser 1954, Herring & Norbury 1967, Jones & Launder 1972). The sink flow is the only 
pressure-gradient case in which the pressure distribution can be specified a priori, and the 
required wind tunnel shape is very simple. 

The sink-flow boundary layer was the subject of experiments by Jones & Launder (1972, 
see also Launder & Jones 1969) and Loyd et al. (1970). The asymptotic self-similar state 
may not have been reached in Loyd ët al.'s experiments. In these experiments some cases 
had accelerations so strong (or Reynolds numbers so low) that the flows were on the verge 
of becoming laminar. One of the - objectives was to determine the highest value of the 
acceleration parameter K for which a turbulent flow can be maintained. This limiting 
value was found to be between 2.5 x 10-6 and 3.5 x 10-6 . The corresponding momentum-
thickness Reynolds number R9 is about 350. The agreement between different experiments 
is fair. Another feature of the flows is that the logarithmic layer, which is remarkably long 
at high Reynolds numbers (low values of K), progressively disappears and is significantly 
displaced at lower Reynolds numbers. 

This paper is Part 3 of an article on direct numerical simulations of boundary layers. 
Part 1 presented the numerical method, and Part 2 described a study of transition in 
Blasius boundary layers. Simulations of fully turbulent equilibrium boundary layers were 
presented by Spalart & Leonard (1985). A novel approach was adopted in which the 
velocity fluctuations, after an appropriate normalization, are treated as periodic along 
"similarity lines" in the streamwise direction. The short-scale variations, characteristic of 
turbulence, and the long-scale variations of the boundary-layer thickness and edge velocity 
are separated. The flows are assumed to be statistically steady and self-similar. The 
normalization is based on this self-similarity of the statistical quantities, and boundary-
layer assumptions. The procedure introduces the effect of boundary-layer growth into the 
periodic system of equations. 

The results of Spalart & Leonard (1985) showed good general agreement with experi-
ments, at a displacement-thickness Reynolds number R5. = 1000 and for a wide range of 
pressure gradients. However, the effect of this low value of the Reynolds number, even 
on the mean velocity profile, is appreciable for the zero-pressure-gradient boundary layer, 
and strong for adverse-gradient cases. Attaining the Reynolds number necessary for the 
defect law to be satisfied in a zero pressure gradient or, a fortiori, an adverse-gradient 
boundary layer is not presently possible. One would need at least R9 5000. With an 
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adverse gradient it is difficult to separate the low-Reynolds-number effects, the errors due 
to the periodic approximation and the large growth angle of the boundary layer, and the 
numerical errors. 

In contrast, the mean velocity and the turbulence energy in the favorable-gradient cases. 
of Herring & Norbury (1967) and the K = 1.5 x 10-6 case of Jones & Launder (1972) 
were well predicted. Spalart & Leonard's study indicated that sink-flow cases, for R9 up 
to about 700, can be treated accurately. The sink flow is especially attractive because of 
its well-established self-similarity, because it satisfies the boundary-layer assumptions well, 
and because the availability of low Reynolds-number but fully developed experimental flows 
makes a direct comparison of numerical and experimental results possible. Low-Reynolds-
number turbulent boundary layers (R9 sz 600) on a flat plate, for instance, are measured a 
short distance downstream of the tripping devices. This makes comparisons less reliable. 

The study of "minimum Reynolds number" turbulence may give indications about which 
features, or structures, are necessary for a wall-bounded turbulent flow to exist. It could 
suggest a "skeleton" for turbulence. It is already clear that a logarithmic layer is not 
part of that skeleton. Another noteworthy feature of the flows is that the turbulence is 
subcritical; it will be shown that for the same pressure distributions (K > 1.5 x 106) the 
laminar flow is stable to small disturbances. 

One specific objective of the present study is to determine the value of K for relaminar-
ization. Since the flows will be simulated under the assumption that they are statistically 
steady, the process of relaminarization cannot, strictly speaking, be observed. One can 
only ask the question: does the flow settle down to a laminar or a turbulent state? In the 
sink flow, all the proposed criteria for relaminarization (K, dp+/dz+, etc.) are functions 
of each other, so that one cannot offer any conclusion as to which one is the best indi-
cator. Relaminarization depends on a single number, not a whole pressure distribution 
as it would in a more general flow; it is valuable to establish accurate limiting values for 
each of the indicators in such a well-defined situation. Simulating relaminarization is a 
demanding test in terms of numerical accuracy; it requires a tight control of the energy, 
which depends on the energy cascade and the viscous dissipation. 

2. Governing equations 

The governing equations are based on the incompressible Navier-Stokes equations and 
the method of multiple scales. The equations used here are a special case from the ones 
used by Spalart & Leonard (1985). They are somewhat simpler because the sink flow 
obeys a single similarity law across the entire boundary layer, while general equilibrium 
boundary layers contain a "wall" layer and an "outer" or "defect" layer. 

2.1. Motivation 

The objective is to simulate the self-similar state of the boundary layer along the wall of 
a sink flow. In the laboratory the self-similar state is achieved by setting up a long enough 
straight-wall contraction, with turbulent boundary layers at the inlet. The sustained pres-
sure gradient eventually leads the boundary layers to the self-similar state. This relaxation 
can be accelerated by a proper choice of the initial thickness (Jones & Launder 1972). In 
a simulation the constraints are different. Satisfactory turbulent inflow conditions are not 
easy to generate. Treating long boundary layers is costly. It was decided to consider only 
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the self-similar region and to use the similarity to reduce the computational difficulties. 
The desired state of equilibrium is then reached by integration in time; the transient regime 
is "unphysical," and the relaxation will be accelerated whenever possible. 

The general procedure, outlined by Spalart & Leonard (1985), is to derive a set of equa-' 
tions which, in conjunction with streamwise periodic conditions, will generate solutions 
that are good approximations to the self-similar state of the boundary layer. In a numer-
ical study the incentive to use periodic conditions when appropriate is very strong, 
because they allow the use of Fourier series. In addition, the possibility of "reintroduc-
ing" the turbulence that leaves the downstream boundary, possibly in a somewhat modified 
form, is attractive because it removes the need for inflow conditions. Finally, the statistical 
sample is greatly improved by having more periodic directions. 

Periodic conditions are not applicable directly to the usual variables, because the flow 
is not homogeneous in the streamwise direction. However this nonhomogeneity is weak, 
which leads to the idea that by switching to slightly different variables one may cancel the 
effect of these "slightly inadequate" boundary conditions, at least to a good approximation. 
To that approximation, one is simulating a section of the boundary layer, of short but finite 
length A. This length is chosen large enough to allow the formation of the large turbulent 
structures, and is about ten boundary-layer thicknesses. 

2.2. Similarity assumptions 

The similarity assumptions will be outlined first, for they motivate the rest of the pro-
cedure. Let the boundary layer flow in the positive x direction toward x = x 1 , where the 
sink itself is. Let X denote (x 1 - x), q be the angle between the walls and ciQ be the total 
mass flux. The edge velocity of the boundary layer is 

Uoo(X) = .	 (1) 

The Navier-Stokes equations and the boundary condition (1) of the sink flow are invari-
ant if expressed in terms of nondimensional independent variables (x , y', z t ) such that 
dx* = dx/X, dy* = dy/X, dz' = dz/X, dt* = dtQ/X2 and the dependent variables 
(uX/Q, vX/Q, wX/Q, pX 2 /Q 2). The only remaining parameter is the acceleration pa-
rameter K_voo_V 2 

U dx	 Q'	
() 

which is the inverse of the Reynolds number based on U and X. The invariance of 
the equations suggests the existence of a one-dimensional family of self-similar sink-flow 
boundary layers, with K as the parameter. This conjecture is supported by experimental 
results: in Jones & Launder's (1972) experiments, boundary layers with the same value 
of K (same edge velocity) but different upstream conditions showed a tendency to reach 
the same asymptotic state (same thickness, shape factor, etc.). In such a flow the mean 
velocity components are proportional to U(X) and the Reynolds stresses are proportional 
to U, (X) 2 if one follows a "similarity line," a line along which y/X is constant. This is 
the property that will be used.

2.3. Similarity coordinates 

The first step in deriving approximate equations that accomodate periodic conditions 
is to switch from Cartesian coordinates to coordinates that are better adapted to the 
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streamwise evolution of the boundary layer. The ideal choice, (x*, y , z , t ), cannot be 
made within our framework because there is no provision for a downstream variation in 
the time scale. In a boundary layer, the variation of the turbulent length and time scales 
with X is presumed to have a weak effect. This variation will be neglected. On the other 
hand, the variation of the boundary-layer thickness and of the turbulence intensities with 
X directly affects the momentum and energy equations, and will be included. In other 
flows, for instance a mixing layer, the length and time scales vary rapidly in the streamwise 
direction and neglecting their variation would be a poor approximation. 

The variation of the boundary-layer thickness is taken into account by substituting 
yXo/X, where X0 is a constant, for y as the normal coordinate. This is equivalent to 

using y* The other independent variables, (z, z, t), are left unchanged. The contravariant 
velocity components (u, i, t2) corresponding to the coordinates (z, t, z) will be used to 
preserve the form of the transport terms, and are given by 

fu\ (i 0 o'\ (u'\ 

II=I (3) 

\ti) (\ 0 0 1) W)

The Navier-Stokes equations are written in terms of the new variables. The partial deriva-
tives are now taken with respect to (z, , z). The continuity condition becomes 

	

uz+i,n+ti,z—=o.	 (4) 

The i-momentum equation becomes 

qp, 	 X + r12	 2tiü,7 2t7ü, +
	 (5) U t +• Uu + eu,, +	 = Pz - -y 

+ V IIE ZZ + (	 2 )u,, +	 + x2 

Similar terms appear in the other components of the momentum equation. 

2.4. Normalization of the velocity 

The normalized velocity components u , v , and w * are defined by 

U	 V	 y- y' 
*	 U	 •	 xi;	 *	 ti:'	

(6). 

These definitions will be justified later. U, is a known function, and one can now write 
and solve the equations in terms of (u* , v* , w*) . The i-derivatives will contain two terms. 
For instance	

t9u• (7) 

The continuity condition becomes 

U(u*x + v + Wz) = 0.	 (8) 
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The extra terms introduced in (4) and (7) cancelled each other. The x-momentum equation 
becomes

X0* *	 * yip,, 
U	 U 

2u	 2u'	 X + yi2 *	 L'7 *	 u	 2tlu*,, 

2 
)u ,,,,+(u ,,+)+ 

X2 

+u * zz] . (9) . 
lu	

X	 Y2_

2.5. MuItiple-8cale procedure 

The formal manipulations leading to (8) and (9) provide the setting for the approxima-
tions that will be presented in this section and lead to the use of periodic conditions. In a 
high-Reynolds-number sink flow the boundary-layer thickness, 5, is small compared with 
X. The turbulent fluctuations to have length scales of the order of 6, while the statistical 
quantities (mean velocity, Reynolds stresses, etc.) vary on the "long" scale X. The flow 
exhibits two widely different scales. According to the formalism of the method of multiple 
scales, the quantity of interest is considered as a function of a "fast" variable x and of a 
"slow" variable X separately, and only the leading terms in its X-dependence are retained. 
For instance a repeated application of (7) yields: fi r ., = U(u + 2u/X + 2u */X2) . The 
second term appears as a small correction of order X' and will be retained, while the 
third term is of order X 2 and will be neglected. 

In the self-similar region of the boundary layer, all the velocity scales are proportional 
to U". (X). The normalization of (u*, v, w') was chosen to remove that scaling so that 
the local mean values and rms of the normalized velocity components, along a similarity 
line (i = constant), are independent of X. When a turbulent flow is homogeneous in a 
given direction, Fourier analysis is a very useful tool to describe the flow and to simulate 
it numerically. Periodic conditions are justified provided that the period is large enough 
compared with the macroscales of the flow. The turbulent functions we are considering, 
(u* , v, w*), are not fully homogeneous in the x direction, because their length and time 
scales depend on x. However, the variation of these scales is slow compared with the 
macroscale S of the flow. Thus periodic conditions in the x direction, while not fully 
justified, are a good approximation for (u I , v* , w*) provided that they are applied along 
the proper set of similarity lines and the normalization is adequate. Periodic conditions 
are also applied in the z direction; in that direction the turbulence is truly homogeneous. 

The choice of periodic streamwise conditions is the first of a set of approximations, all 
of them based on the assumption that X is large compared with S and A, the period in 
the z direction. The equation of conservation of momentum across the boundary layer is 

U 2 9) dU 
ro	 +U6	 ,	 (10) 

dx	 dx 

where ro is the wall shear stress and 0 and S * are the momentum and displacement thick-
nesses, respectively. Both terms on the right-hand side are small, of the order of X-', 
since they involve derivatives of the global quantities U and U( 0 Therefore r0 is at 
most of order X'. Define c X 05 . The Reynolds stresses are of the order of r0 , and 
the velocity fluctuations of the order of Ur E ,J, so of order c. 

The functions (u* , v* , w*) are split into mean and fluctuating parts; 

= U(yi) + u'(x,yi,z,t), v = V(yi) + v'(x,q,z,t), w = W(yi) + w'(x,t,z,t). (11) 
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The orders of magnitude are the following. U is of order 1; W is 0 because the mean 
flow is two-dimensional; V is 0 because of (8). u', v' and w' are of order e. The pressure 
fluctuations p' are of order €2; 'i and 5 are of order 1 and of course X' = € 2 . We shall 
consider the vicinity of the X = Xo station, so that (X - X0) is of order 1. 

The continuity equation (8) can be retained without further approximation. The z-
momentum equation (9) is expanded up to order € to yield 

U I U2 00 
U00u + U[(U + u')u + -(U + 2u') + v'(U + u') + w'u'] 

-y- - 
+ 

2u	 2itt 
vU00 [u +	 + (U +u'),1 +	

0 
+uJ.	 (12) 

X0	 X 

The extra viscous terms will be neglected. One can make the equations more readable 
near X = X0 by identifying ti -derivatives and y-derivatives (since t7(X0 , y) = y identically), 
and setting U00 (X0) to 1. The final set of equations is 

uc + V i + W = 0 

U	 1 
u j +(U+u)u z +v(U+u)y+w ,u , +_(U+2U)=_Pz+ —.+vV2(U+u') 

xo 	 xo 

V 
I
+ (U + u')v + v'v 1 + w'v = —pt, + i'V2v' 

-

	

	 ,	 U 
wt+(U+tL)W+V'Wy+W'wz+rw=Pz+vVw. 

These equations can be regarded as the usual Navier-Stokes equations, applied to a 
velocity field (U + ul, v', w') which, is parallel and one-dimensional in the mean, but incor-
porating some small correction or "growth" terms, which are underbraced in (13). Such 
terms were mentioned in Part 1 of this article. The interpretation of the growth terms 
is the following. The terms U 2 /Xo and 11Xo represent mean momentum transport and 
mean pressure gradient. The two terms Uu'/Xo represent transport and straining of the 
turbulence by the mean flow respectively. In the v' equation, transport and straining 
cancelled each other. In the w' equation there is only transport: Uw'/Xo. Without the 
growth terms, the set of equations (13), (with periodic conditions) would not have statis-
tically steady solutions, and the kinetic energy of the flow would decay in time. The mean 
growth terms supply energy and allow the flow to maintain a statistically steady state. 
The fluctuating growth terms actually remove some of that energy; they also have more 
subtle effects, for instance on the anisotropy of the turbulence. 

By averaging the results of a simulation, one can estimate the effect of the growth terms. 
The effect on the mean momentum is of course strong; the growth term balances the y-
derivative of the shear stress. On the other hand, the effect on the turbulence is rather 
small in the outer part of the boundary layer, and insignificant in the wall region. 

The set of equations (13) is attractive for turbulence-modeling studies as well as for 
direct simulations, because the Reynolds-averaged flow is only a function of y. Thus, new 
turbulence models can be tested at a low computational cost and with high numerical 
accuracy. Finally, note that in a turbulent flow the mean part of (13) is equivalent to 
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equation (1) of Launder & Jones (1969). In a laminar flow the equation reduces to 
U 2 = 1 + KXoU, the equation derived by Schlichting (1979). Its solution is 

Uz(X, y, K) = Uoo(X)13tanh2 [_ + tanh_'(J)1 - 2}.	 (14) 

2.6. Numerical resolution, initial conditions, etc. 

The numerical resolution in all the simulations is (170 x 30 x 85) spectral modes in the 
(x, y, z) directions. Thus there are 8.7 x 10 degrees of freedom. As mentioned in Part 
1, these are the "true" degrees of freedom that remain after the continuity constraint has 
been applied, and do not include the pressure. The number of collocation points is 3/2 
times the number of modes in each direction. The periods A r and A are 125 x 5' and 
25 x V; they were chosen large enough for the velocity two-point correlations to be close to 
o at a separation distance of about half a period. The spacing between collocation points 
in a typical case (K = 2.5 x 10-6) is about 16 and-6 wall units (u/u,.) in the x and z 
directions, respectively. In the y direction the first three collocation points are at 0.09, 
0.45, and 1.1 wall units from the wall. The validity of the multiple-scale argument can be 
estimated from the values of the ratios S/Xo and A/Xo, which are about 0.012 and 0.18, 
respectively (5 is the boundary-layer thickness). 

Since only the large-time equilibrium state of the flow is of interest the initial condition 
is of little importance and is chosen to minimize the cost of computing transient regimes. 
Most often the final state of a simulation at another value of K is taken as the initial state 
for a new simulation. The first boundary layer was started with large-amplitude random 
disturbances. The transient regime is not included in the statistical sample used for the 
results presented here. Averages are taken over the x and z directions, and over time. 
The spatial sample is sufficient for the mean quantities and the Reynolds stresses, but for 
higher-order moments, correlations, and spectra, averaging in time is necessary to reduce 
the statistical jitter. 

3. Comparison with experimental results 

Simulations were conducted at four values of K: 1.5 x 10_6, 2.5 x 10_6, 2.75 x 10-6, 
and 3.0 x 10_6. Jones & Launder (1972) reported experimental results at K = 1.5 x 10_6, 

2.5 x 106 and 3.0 x 106. All the quantities they measured were computed. For the three 
lower values of K, turbulent solutions could be generated and followed for long times. On 
the other hand, with K = 3.0 x 106 no long-time turbulent solutions could be generated. 
Jones & Launder were confident that their first two cases had reached the asymptotic state, 
but there was some uncertainty about the third case. For now, results will be presented 
only up to K = 2.75 x 10_6, the highest value of K for which turbulence was sustained. 
The details of the relaminarization study will be discussed later. 

The momentum-thickness Reynolds number R8 and the shape factor H 5/9 are plot-
ted versus K in figures 1 and 2, and are compared with experimental results obtained by 
Jones & Launder and other data reported by them. The laminar values R9 = 0.375/V'k 
and H = 2.07 are also shown. In both cases the numerical results are within the exper-
imental scatter and are close to Jones & Launder's results. The agreement is especially 
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good at K = 1.5 x 10-6. The wall shear stress is also in very good agreement, which not 
surprising since it is a function of 9 and H through (10). The product KR9, which is equal 
to O/X, is essentially independent of K with a value of 10. For higher values of K the 
computed values of R9 and H do not approach the laminar values as much as Jones &.. 
Launder's did. Curiously, their results show a lower friction coefficient for the interme-
diate value of K, 2.5 x 10_6, than for the lower and higher values. The disagreement at 
K = 2.5 x 10_6 is difficult to explain, considering the good agreement at K = 1.5 x 10_6 
and the fact that the simulations are better resolved at 2.5 x 10_6, since the Reynolds 
number is lower. 

In figure 3 the experimental and numerical results for the mean velocity profiles are 
plotted, as are the laminar profiles at the same values of K. Again the agreement is very 
good at K = 1.5 x 10_6. At K = 2.5 x 10_6 the agreement worsens as expected, since R9 
and H do not agree very well. In figure 4 the velocity profiles are plotted in wall variables 
and semilogarithmic coordinates. For K = 1.5 x 10_6 the logarithmic layer is quite long. 
A fit to it (U log(y)/0.40 + 5.2) is shown. It appears that the log layer is slightly 
displaced upward, compared with the conventional "log law" (U = log(y)/0.41 + 5). 
Jones & Launder predicted a larger displacement. For higher values of K the curve is 
significantly displaced and the log layer has disappeared (the curve does not show any 
straight part on the semilogarithmic plot). 

Figure 5 shows the computed Reynolds stress and total shear stress at 
K = 1.5 x 10_6, and the Reynolds stress computed by Jones & Launder using their 
measurements of the velocity profile, the similarity law, and the mean momentum equa-
tion. The agreement is good as one would expect, since the velocity profiles agreed well. In 
figure 6a the rms of the three velocity components are compared. The agreement is good 
in the lower half of the 'boundary layer, but worsens in the upper half; the measured values 
are higher. Note that when Jones & Launder measured the Reynolds stress with X-wires 
it disagreed rather strongly with the one they computed from the momentum equation, 
and was quite certainly too high in the upper part of the boundary layer (however, the u' 
intensity was measured with a different probe and may be more reliable). Figure 6b shows 
the comparison at K = 2.5 x 10_6,; curiously, the agreement is better. 

Figure 7 shows the correlation coefficient between u' and v' and the ratio of the-Reynolds 
stress to the turbulence kinetic energy, or "structure parameter." The agreement is rather 
poor, as a result of the disagreement in the turbulence intensities. The numerical results 
do not support Jones & Launder's conclusion that the correlation coefficient and structure 
parameter are lower in low-Reynolds-number sink flows than in the high-Reynolds-number 
constant pressure flow. The computed values of the plateaus are slightly over 0.5 and 0.3 
in both the K = 1.5 x 10_6 and K = 2.5 x 10_6 cases. 

Finally, the spectrum of u' in the x direction, at several levels in the K = 1.5 x 10_6 
boundary layer, is shown in figure 8 and compared with Jones & Launder's measurements. 
The measurements showed a collapse of the spectra, if each spectrum is normalized by 
its total energy. The agreement is satisfactory for values of vk.IUO,, between about 10 
and i0, in the energy-containing range. For low wave numbers the numerical spectrum 
terminates while the experimental spectrum is still rising, which could indicate that the pe-
riod A is not long enough. This disagreement is, however, emphasized by the logarithmic 
coordinates; the energy contained in that part of the spectrum is small. One should also 
keep in mind that Jones & Launder measured time spectra, and applied Taylor's hypoth-
esis using the local mean velocity to obtain spatial spectra. This hypothesis is probably 
less reliable for low wave numbers, since the translation of large structures is not closely 
related to the local mean velocity.
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The disagreement in the high-wave-number range, vk/U> iø- , is more significant. 
The computed spectra do not collapse. The numerical spectrum is of course limited, but 
the drop from its peak to its tail is more than three orders of magnitude. Thus the 
resolution seems adequate. Physically, one would not expect the spectra to collapse with. 
a y-independent normalization, because the length scales of the turbulence (for instance 
based on the energy or the dissipation, and the viscosity) increase away from the wall. 
Thus one would expect the normalized spectrum to be fuller near the wall, which is what 
the numerical results predict. 

4. Other observations

4.1. Effect of the pressure gradient 

The effect of the strong favorable pressure gradient can be estimated by comparing the 
sink-flow boundary layer with a zero-pressure gradient boundary layer (Spalart & Leonard 
1985). The two flows were simulated using the same multiple-scale approximation, the same 
Reynolds number R8 ., the same program, and essentially the same numerical resolution. 

The strongest effect is that the shear stress decreases much more rapidly away from 
the wall. The effect on the mean flow is rather weak near the wall, but the logarithmic 
layer extends much farther from the wall: about 512 instead of 5/5. The thickness S is 

defined by U(5)/U = 0.995, and at K = 1.5 x 10_6, SU4v = 8850. The logarithmic 
layer extends much farther than the region in which the shear stress can be considered 
as approximately constant, or even approximately linear. Turbulent flows in channels 
have the same property. The influence of the stress gradient dr/dy (which would add a 
square root term to the logarithmic component, according to Townsend (1961)) seems to 
be completely dominated by the influence of the wall stress itself. 

Such a clearly defined and apparently universal behavior can often be explained by 
dimensional arguments, in particular by assuming that certain local length scale is pro- 
portional to the distance from the wall. The mixing length I where r is the 
Reynolds stress, is plotted in figure 9. Its behavior is similar to the zero gradient case, in 
that it rises rapidly up to y 0.155, then rises more slowly, with values of about 0.085. 
However it does not show a significant region of linear behavior and the ratio I/y is always 
significantly lower than the value of the Karman constant, ,c = 0.4, that was computed 
from the velocity profile. This is of course due to the fact that the local stress is lower 
than the wall stress. What is remarkable is that the logarithmic behavior of the velocity 
is preserved, and the linear behavior of the mixing length is not. The logarithmic layer 
seems to be more fundamental. Launder & Jones (1969) made the opposite assumption: 
they used ocy for the mixing length, and the velocity profile was not logarithmic. 

The dissipation length scale L r /2 /€ is also plotted in figure 9 (Bradshaw et al. 

1967). It follows the mixing length closely up to-y 0.35, showing that the production 
and dissipation are almost equal; then it is smaller. Again its distribution is very similar 
to what it is in a zero-pressure-gradient case (Bradshaw et al. 1967). It does not behave 
linearly. The length scale based on mean flow curvature, IUY /U, is proportional (in fact 
equal) to y in the logarithmic layer. However, this length scale does not directly involve 
the turbulence and its physical meaning is unclear. 
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The behavior of the turbulence near the edge of the boundary layer, in the absence of 
entrainment, is of interest (Head & and Bradshaw 1971). Note that there are no vertical-
transport terms (terms involving au'/ay, for instance) among the growth terms in (13), 
unlike in the general case (Spalart & and Leonard 1985). This is due to the fact that 
in the sink flow the streamlines and similarity lines coincide. The only growth terms, are 
proportional to u' itself and exist because the turbulence energy is increasing like U, in 
the z direction. This is consistent with Head & Bradshaw's (1971) discussion. The terms 
in the total turbulent-energy balance, near the edge of the boundary layer, are shown in 
figures lOa and lOb for the zero-pressure-gradient case and for the sink case, respectively. 
For intermediate values of y the production and dissipation dominate. Near the edge of the 
zero-gradient boundary layer the growth term, or "advection term," becomes significant 
and is balanced by an intensification of the turbulent diffusion term (Townsend 1976). 
In the sink flow a similar surge in the diffusion and advection terms is not observed. 
The diffusion does become stronger than the production, but its peak value about 20 
times smaller than in the zero-gradient flow. Advection never exceeds dissipation. The 
conclusion that the roles played by the various energy-balance terms near the boundary-
layer edge are altered in response to the absence of entrainment was also reached by Head 
& Bradshaw (1971), although their estimate of the balance terms was quite different (they 
still predicted a surge, but in the diffusion and.dissipation terms). 

This difference in the balance terms is reflected in differences in the energy levels. The 
turbulent energy distribution shows a "step" near y = 0.7 x 6 in the zero-pressure-gradient 
case (Klebanoff 1954, Spalart & Leonard 1985), but not in the sink case. This step is 
caused by the growth terms, which tend to move the turbulence toward the wall in the 
zero-gradient flow (because the streamlines point into the boundary layer) but not in the 
sink flow. 

Figure 11 shows contours of the magnitude of the vorticity vector in cross sections of 
the two flows. The displacement-thickness Reynolds numbers and friction velocities were 
very similar. The vorticity is normalized with U, and P. Both flows show an irregular 
irrotational-rotational interface. However the vortical region does not extend quite as far 
from the wall in the sink flow, and the intense-vorticity regions that protrude from the wall 
region are at a shallower angle. A detailed examination of the laminar-turbulent interface, 
which is thought to have a thickness of the order of the Kolmogorov length scale, would 
require a much finer numerical grid than can be used presently. 

One can examine the effect of the pressure gradient on other aspects of the turbulence. 
The growth terms were shown to include the effect of straining the turbulence by the ac-
celerating mean flow; this effect is much weaker (and in fact reversed) in the zero pressure 
gradient flow. In the sink flow one would expect a reduction of the streamwise velocity 
fluctuations, an enhancement of the spanwise fluctuations (see (13)), and an intensifica-
tion of the streamwise vorticity by stretching. Figure 6 showed the rms of the velocity 
components and figure 12 shows the vorticity components in the sink flow. Results for the 
velocity in zero gradient flows can be found in Klebanoff (1954) and in Spalart & Leonard 
(1985); the anisotropy of the velocity fluctuations is hardly changed. The vorticity inten-
sities are very close to isotropic for y/S above 0.1. The near-wall behavior is not affected 
either, which was expected since the growth terms are very weak in that region. 

The qualitative effect on other quantities in the wall region is also quite small. It was 
shown that the shear stress decreases rapidly; the other components of the Reynolds stress 
tensor, as well as the energy balance terms, show the same tendency to be lower than in 
the zero pressure gradient case. However, the relative strength of the various terms is not 
strongly affected.
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4.2. Effect of the low Reynolds number 

The effect of very low Reynolds number values is examined by comparing the flows at 
K = 1.5 x 10_6 and 2.5 x 10-6 . The Reynolds numbers R9 are 690 and 415. Figures 
1 to 4 showed that the turbulent velocity profile moves toward the laminar profile as K 
increases, but does not get arbitrarily close to it; the profile "jumps" to the laminar state 
when a further increase in K induces relaminarization. The logarithmic layer was seen to 
vanish (figure 4). The share of the Reynolds stress in the total shear stress is reduced; the 
peak value of the Reynolds stress decreases from 0.62u 2 to 0.44u. The peak value of the 
ratio of eddy viscosity (defined by r/U) to molecular viscosity decreases from 15 to 10. 
The other Reynolds stresses and their balance terms follow the same kind of evolution; 
they are smaller, but their relative strengths are not significantly affected. 

Figure 13 shows contours of streamwise velocity in a horizontal plane at y+ 11, with 
K = 2.5 x 10_6. The well-known "streaks," elongated regions of high and low velocity, 
are present. They were not suppressed either by the pressure gradient or by the high 
viscosity. Their spacing is about 110 wall units, very comparable to the accepted value in 
zero pressure gradient flows. It was found by Spalart & Leonard (1985) that the streaks 
were present in all cases except in the separating boundary layer, for which the wall shear 
stress is zero.- Thus streaks seem to be a universal feature of wall-bounded turbulent flows, 
provided that there is a mean shear. 

One notices in figure 13 a quieter region, marked by arrows. The examination of three-
dimensional plots of the vorticity field reveals, in that region, lower levels of wall stress 
and of vorticity all the way across the boundary layer, and a smoother state of the flow in 
general. The streak spacing is increased, which is consistent with a lower local value of UT. 
From the time of figure 13a to the time of figure 13b, this region traveled by about 1500 
wall units, while the free stream traveled by 2060 wall units. The quiet region appears 
to preserve itself and to travel roughly at 0.75 times the free-stream velocity. No such 
phenomenon was observed in the higher-Reynolds-number case (K = 1.5 x 10_6). 

4.3. Relaminorization 

Tests were conducted to document the behavior of the flow at values of K near 3.0x 10_6. 
The stability of the laminar solution to small disturbances was first examined by solving the 
Orr-Sommerfeld equation. The disturbances were treated as spatially periodic and growing 
in time, in the classical manner. The flow turns out to be stable for very low values of 
K, down to about 1.3 x 10 (R9 iOn ). This is of course due to the favorable pressure 
gradient, which gives the velocity profile a strong curvature all across the boundary layer 
(the Blasius boundary layer becomes unstable for R9 200). In the range of values of K 
considered here, the turbulent solution is metastable. The system of equations has a stable 
fixed point, the laminar solution, and presumably an attractor of more complex structure, 
which is the turbulent solution. As K approaches 3.0 x 10-6 the basin of attraction of 
this attractor shrinks. Thus the initial conditions must be chosen carefully if K is close 
to the limit. Starting from a laminar flow with small disturbances clearly cannot lead to 
turbulence. The best "guess" for an initial condition is. a well-developed turbulent flow, 
obtained at a slightly lower value of K. 

The first simulation at K = 3.0 x 10_6 was started from a simulation at 
K = 2.5 x 10_6 by suddenly increasing the viscosity to raise K, Q being kept approx-
imately constant. The turbulent energy started decaying quite rapidly and the flow be-
came laminar. Such a sudden change of conditions may have pushed the flow outside the 
basin of attraction. A second test was performed to check this hypothesis. A statistically 
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steady turbulent solution was first established at K = 2.75 x 10-6, starting from the flow 
at K = 2.5 x 10-6 . Then the viscosity was slowly raised until K reached 3.0 x 10_6. 
After that the flow maintained its energy for a long time, about 4006 */U then eventu-
ally became laminar too. The turbulence energy decayed and the momentum thickness 
Reynolds number R6 decreased from about 330 toward its laminar value, 216. In Jones 
& Launder's (1972) experiment at K = 3.0 x 10_6, the momentum thickness was falling 
almost steadily in the streamwise direction; they also report that the turbulence energy 
was decreasing. The time interval 4006 */U roughly corresponds to a velocity ratio of 
1.5 from the inlet to the outlet of the wind tunnel; in the experiment the velocity ratio 
through the constant-K region was somewhat larger, about 1.85. These results are not 
a rigorous proof that turbulent flow cannot exist for K larger than 3.0 x 10_6, but they 
strongly suggest that the limiting value is between 2.75 x 10_6 and 3.0 x 10_6, and is closer 
to 3.0 x 10_6. 

Several indicators, which are all nondimensional measures of the pressure gradient, have 
been proposed to predict relaminarization of a boundary layer in a favorable gradient 
(Launder & Jones 1969). The present results indicate that in a sink flow.the threshold 
values are the following: K = 3.0 x 10_6, dp/dz	 v(dP/dz)/u = —0.025 and 

6*(dP/dz)/u2 = —062. The third indicator, 3, may not be very useful because it is 
a weak function of K; its value is -.0.58 in the K 1.5 x 10_6 case, which is undoubtedly 
turbulent. The other indicators take into account both the pressure gradient and the 
viscosity. 

5. Conclusions 

The boundary layer in a sink flow at moderate Reynolds numbers was simulated nu-
merically. This flow lends itself well to a multiple-scale procedure that allows the use of 
periodic conditions in similarity coordinates. The study shows that the resulting system 
of equations is a good approximation to the full system and is much more tractable. It 
could be useful for other studies, including turbulence-model development. An extensive 
low-Reynolds-number boundary-layer data base was established, and the threshold values 
for several relaminarization indicators were computed. The results were compared with 
experiments conducted at the same Reynolds numbers, and the general agreement was 
satisfactory. The trend is for the numerical results to show less departure from "normal" 
turbulent boundary-layer behavior than the experimental results. The results suggest that 
the logarithmic behavior of the mean velocity is more universal than the linear behavior 
of the mixing length. 

The author had useful discussions with Drs. J. Kim, A. Leonard, P. Mom, R. Rogallo, 
and A. Wray at NASA Ames Research Center. He thanks Dr. Moin for reviewing the 
manuscript.
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