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I • FORMULATION 

NUMERICAL SIMULATION OF BOUNDARY-LAYER TRANSITION 

P. R. Spa1art 
NASA Ames Research Center 

Moffett Field, CA 94035 USA 

The transition to turbulence in boundary layers is investigated by direct numeri­

cal solution of the nonlinear, three-dimensional, incompressible Navier-Stokes equa­

tions in the half-infinite domain over a flat plate. Periodicity is imposed in the 

x-direction (streamwise) and in the z-direction (spanwise)j the y-coordinate extends 

from 0 to "". 

The simulation is periodic in the x-direction, unlike the experiments in which 

the boundary-layer thickness grows in the x-direction. A forcing term is added to 

the x-momentum equation that approximates the convection terms associated with this 

spatial growth. The approximation is based on boundary-layer assumptions (applied 

only to the mean flow) and the self-similarity of the mean-velocity profile. With 

this forcing applied, the laminar velocity profile, instead of becoming an error 

function and thickening without bounds, is a Blasius profile. Thus, the stability 

characteristics are very close to the experimental characteristics. Furthermore, the 

equation can be written in a moving reference frame, so that the boundary-layer 

thickens in time while retaining a Blasius profile. The procedure of adding a forc­

ing term allows the disturbances to extract energy from the mean flow, and is much 

preferable to a procedure in which the mean-velocity profile would be imposed. 

The spatial representation is spectral in all directions [1]. The basis func­

t10ns that are used represent divergence-free velocity f1e1ds and satisfy the bound­

ary conditions as suggested by Leonard and Wray [2]. Leonard and Wray app11ed a weak 

formu1at10n, wh1ch e1im1nates the pressure and allows an accurate and straightforward 

t1me-advance scheme. Leray's weak formulation 1S used here [3]. An advantage of 

th1s formulat10n over Leonard's is that 1t keeps the numer1cal Stokes operator real, 

symmetr1c, and negative-definite. On the other hand, Chebyshev polynom1als cannot be 

used. 

The x- and z-d1rections are treated by Four1er ser1es. In the y-d1rect10n, 

the veloc1ty f1eld 1S f1rst split 1nto "irrotat10nal" and "vort1cal" components 1n 

order to better accommodate two d1fferent length scales. The length scale of the 

vort1cal component 1S 6, the th1ckness of the boundary layer. The length scale of 

the ~rrotational components is A, the wavelength 1n the (x,z) plane, Wh1Ch 1S S1g­

n1ficantly larger than 6. Th1s irrotat~onal component can be represented by a 

s~ngle exponent1al funct~on for each horizontal wave-vector. To represent the vort1-

cal component, an exponent1a1 mapping 1S app11ed from [O,oo[ 1nto [0,1[, and sh1fted 

Jacob1 polynom1als are used in the transformed coord1nate. The vort1cal component ~s 

1nfin1tely d1fferent1able over the closed interval [0,1], so that the ~onvergence of 

the polynom1al method w111 be faster than algebra1c. The cost of the transforms from 



real space to Jacobi space is of the order of N2 • Figure 1 is a plot of the first 

few basis-functions versus y. All the functions decay exponentially as y ~ ~ but 

the first function, which includes the irrotational component, decays much more 

slowly than the other ones. 

The time-advance scheme is hybrid and second-order accurate. The convection 

terms are treated by a Runge-Kutta scheme which is explicit, third-order accurate, 

and conditionally stable; the Stokes terms are treated by the Crank-Nicolson scheme. 

II. RESULTS 

In order to check the convergence of the method, the Orr-Sommerfeld equation 

was solved for a Blasius profile and for a real wave-number. This problem is known 

to produce a few discrete eigenvalues and a continuous spectrum on the Cr = I, Ci < 0 

aX1S [4]. Figure 2 is a contour plot of the error in the principal discrete eigen­

value as a function of Yo, the length scale of mapping, and Ny, the number of points 

1n the y-direction. The convergence as Ny ~ ~ with Yo fixed is very fast. It is 

expected to be faster than algebraic, but not as fast as exponential [5]. The plot 

also indicates the optimum value of Yo: about 20*. Figure 3 shows that the numeri­

cal spectrum includes a string of eigenvalues that becomes denser and tends to the 

Cr = I, Ci < 0 aX1S. Its convergence is much slower than that for the d1screte 

eigenvalues; the reason is that the corresponding eigenfunctions behave like sine 

waves as y ~ ~, which makes them hard to approximate with the expansion functions 

in Fig. l. 

The early non11near stages of transition of a Blasius boundary layer, d1sturbed 

by a vibrating ribbon, were then s1mulated 1n three d1mensions. A two-dimensional 

Tollmein-Schlichting (TS) wave of f1n1te ampl1tude was 1ntroduced 1n the 1n1t1al 

field, as well as three-dimensional wh1te n01se of much lower energy. The streamwise 

per10d was tW1ce that of the TS wave; the spanw1se per10d was chosen much longer to 

av01d constra1n1ng the spectrum. Spanw1se lines of part1cles were 1ntroduced, near 

the cr1t1cal layer, to s1mulate the smoke l1nes used 1n exper1ments. 

F1gure 4 summar1zes the t1me-evolut10n of the flow. The energy of the funda­

mental TS wave and the energy carr1ed by all the other wave-vectors are plotted sep­

arately. The TS wave grows from branch I to branch II of the TS stab1lity d1agram, 

then starts decaY1ng. The energy of the other modes rema1ns small unt1l after the 

flow crosses branch II; then it grows very rap1dly, and non11near 1nteract10ns take 

place. The shape factor H of the boundary layer rema1ns at the Blas1us value of 

2.6 unt1l trans1tion occurs; then 1t rapidly decreases. The agreement w1th Kachanov's 

experiments is excellent [6]. 

S1mulat10ns were conducted w1th the same background n01se, but d1fferent values 

for the TS wave ampl1tude. F1gure 5 conta1ns top V1ews of the part1cles 1n the bound­

ary layer. If the maX1mum TS wave amplitude 1S less than 0.3%. trans1t1on does not 

occur. In Fig. 5(a), with an amp11tude of 0.9%, three-d1mens10nal breakdown occurs 

and 1S of the subharmon1c or "H" type (the lambda-shaped part1cle l1nes are staggered). 



In Fig. 5(b), with amplitude 5%, the lambda patterns are not staggered. indicating a 

Klebanoff-type breakdown. The patterns appear ''broken,'' a result of the randomness 

of the initial three-dimensional disturbance. The qualitative agreement with Saric's 

experiments is good [7]. 

Figure 6 is a plot of the spectrum in an (x,z) plane at the beginning of an 

H-type breakdown. The fundamental TS wave still dominates the spectrum; its higher 

harmonic is also present. The growing three-dimensional subharmonic component is 

obvious; the wave number and the broadband character of the instability agree very 

well with Herbert's small disturbance theory [8]. 
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Fig. 1 First four basis-functions. 
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Fig. 3 Numerical spectrum: Yo = 1.5. 
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Fig. 4 Time-evolut~on of the disturbance energy and of the shape factor. 
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(b) Amplitude = 5%. 

F~g, 5 Smoke l~nes 1n trans~tion~ng boundary layer. 
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