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Convolutional neural network architecture for geometric matching

Ignacio Rocco1,2 Relja Arandjelović 1,2,∗ Josef Sivic1,2,3
1DI ENS 2INRIA 3CIIRC

Abstract

We address the problem of determining correspondences
between two images in agreement with a geometric model
such as an affine or thin-plate spline transformation, and
estimating its parameters. The contributions of this work
are three-fold. First, we propose a convolutional neural net-
work architecture for geometric matching. The architecture
is based on three main components that mimic the standard
steps of feature extraction, matching and simultaneous in-
lier detection and model parameter estimation, while being
trainable end-to-end. Second, we demonstrate that the net-
work parameters can be trained from synthetically gener-
ated imagery without the need for manual annotation and
that our matching layer significantly increases generaliza-
tion capabilities to never seen before images. Finally, we
show that the same model can perform both instance-level
and category-level matching giving state-of-the-art results
on the challenging Proposal Flow dataset.

1. Introduction

Estimating correspondences between images is one of
the fundamental problems in computer vision [20, 26] with
applications ranging from large-scale 3D reconstruction [2]
to image manipulation [22] and semantic segmentation
[44]. Traditionally, correspondences consistent with a ge-
ometric model such as epipolar geometry or planar affine
transformation, are computed by detecting and matching
local features (such as SIFT [40] or HOG [12, 23]), fol-
lowed by pruning incorrect matches using local geometric
constraints [45, 49] and robust estimation of a global geo-
metric transformation using algorithms such as RANSAC
[19] or Hough transform [34, 36, 40]. This approach works
well in many cases but fails in situations that exhibit (i) large
changes of depicted appearance due to e.g. intra-class vari-
ation [23], or (ii) large changes of scene layout or non-rigid
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Figure 1: Our trained geometry estimation network automatically
aligns two images with substantial appearance differences. It is
able to estimate large deformable transformations robustly in the
presence of clutter.

deformations that require complex geometric models with
many parameters which are hard to estimate in a manner
robust to outliers.

In this work we build on the traditional approach and
develop a convolutional neural network (CNN) architecture
that mimics the standard matching process. First, we re-
place the standard local features with powerful trainable
convolutional neural network features [33, 48], which al-
lows us to handle large changes of appearance between
the matched images. Second, we develop trainable match-
ing and transformation estimation layers that can cope with
noisy and incorrect matches in a robust way, mimicking the
good practices in feature matching such as the second near-
est neighbor test [40], neighborhood consensus [45, 49] and
Hough transform-like estimation [34, 36, 40].

The outcome is a convolutional neural network archi-
tecture trainable for the end task of geometric matching,
which can handle large appearance changes, and is therefore
suitable for both instance-level and category-level matching
problems.

2. Related work
The classical approach for finding correspondences in-

volves identifying interest points and computing local de-
scriptors around these points [9, 10, 25, 39, 40, 41, 45].
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While this approach performs relatively well for instance-
level matching, the feature detectors and descriptors lack
the generalization ability for category-level matching.

Recently, convolutional neural networks have been used
to learn powerful feature descriptors which are more robust
to appearance changes than the classical descriptors [8, 24,
29, 47, 54]. However, these works still divide the image into
a set of local patches and extract a descriptor individually
from each patch. Extracted descriptors are then compared
with an appropriate distance measure [8, 29, 47], by directly
outputting a similarity score [24, 54], or even by directly
outputting a binary matching/non-matching decision [3].

In this work, we take a different approach, treating the
image as a whole, instead of a set of patches. Our approach
has the advantage of capturing the interaction of the differ-
ent parts of the image in a greater extent, which is not pos-
sible when the image is divided into a set of local regions.

Related are also network architectures for estimating
inter-frame motion in video [18, 50, 52] or instance-level
homography estimation [14], however their goal is very dif-
ferent from ours, targeting high-precision correspondence
with very limited appearance variation and background
clutter. Closer to us is the network architecture of [30]
which, however, tackles a different problem of fine-grained
category-level matching (different species of birds) with
limited background clutter and small translations and scale
changes, as their objects are largely centered in the image.
In addition, their architecture is based on a different match-
ing layer, which we show not to perform as well as the
matching layer used in our work.

Some works, such as [10, 15, 23, 31, 37, 38], have ad-
dressed the hard problem of category-level matching, but
rely on traditional non-trainable optimization for matching
[10, 15, 31, 37, 38], or guide the matching using object pro-
posals [23]. On the contrary, our approach is fully trainable
in an end-to-end manner and does not require any optimiza-
tion procedure at evaluation time, or guidance by object pro-
posals.

Others [35, 46, 55] have addressed the problems of in-
stance and category-level correspondence by performing
joint image alignment. However, these methods differ from
ours as they: (i) require class labels; (ii) don’t use CNN fea-
tures; (iii) jointly align a large set of images, while we align
image pairs; and (iv) don’t use a trainable CNN architecture
for alignment as we do.

3. Architecture for geometric matching
In this section, we introduce a new convolutional neu-

ral network architecture for estimating parameters of a ge-
ometric transformation between two input images. The ar-
chitecture is designed to mimic the classical computer vi-
sion pipeline (e.g. [42]), while using differentiable modules
so that it is trainable end-to-end for the geometry estima-

Feature extraction CNNIA fA

Feature extraction CNNIB fB

W Matching fAB
Regression

CNN
θ̂

Figure 2: Diagram of the proposed architecture. Images IA and
IB are passed through feature extraction networks which have tied
parameters W , followed by a matching network which matches
the descriptors. The output of the matching network is passed
through a regression network which outputs the parameters of the
geometric transformation.

tion task. The classical approach consists of the following
stages: (i) local descriptors (e.g. SIFT) are extracted from
both input images, (ii) the descriptors are matched across
images to form a set of tentative correspondences, which
are then used to (iii) robustly estimate the parameters of the
geometric model using RANSAC or Hough voting.

Our architecture, illustrated in Fig. 2, mimics this pro-
cess by: (i) passing input images IA and IB through a
siamese architecture consisting of convolutional layers, thus
extracting feature maps fA and fB which are analogous to
dense local descriptors, (ii) matching the feature maps (“de-
scriptors”) across images into a tentative correspondence
map fAB , followed by a (iii) regression network which di-
rectly outputs the parameters of the geometric model, θ̂, in
a robust manner. The inputs to the network are the two im-
ages, and the outputs are the parameters of the chosen geo-
metric model, e.g. a 6-D vector for an affine transformation.

In the following, we describe each of the three stages in
detail.

3.1. Feature extraction

The first stage of the pipeline is feature extraction, for
which we use a standard CNN architecture. A CNN with-
out fully connected layers takes an input image and pro-
duces a feature map f ∈ Rh×w×d, which can be interpreted
as a h × w dense spatial grid of d-dimensional local de-
scriptors. A similar interpretation has been used previously
in instance retrieval [4, 6, 7, 21] demonstrating high dis-
criminative power of CNN-based descriptors. Thus, for fea-
ture extraction we use the VGG-16 network [48], cropped
at the pool4 layer (before the ReLU unit), followed by
per-feature L2-normalization. We use a pre-trained model,
originally trained on ImageNet [13] for the task of image
classification. As shown in Fig. 2, the feature extraction net-
work is duplicated and arranged in a siamese configuration
such that the two input images are passed through two iden-
tical networks which share parameters.

3.2. Matching network

The image features produced by the feature extraction
networks should be combined into a single tensor as input to
the regressor network to estimate the geometric transforma-
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correlation
layer

Figure 3: Correlation map computation with CNN features.
The correlation map cAB contains all pairwise similarities be-
tween individual features fA ∈ fA and fB ∈ fB . At a particular
spatial location (i, j) the correlation map output cAB contains all
the similarities between fB(i, j) and all fA ∈ fA.

tion. We first describe the classical approach for generating
tentative correspondences, and then present our matching
layer which mimics this process.

Tentative matches in classical geometry estimation.
Classical methods start by computing similarities between
all pairs of descriptors across the two images. From this
point on, the original descriptors are discarded as all the
necessary information for geometry estimation is contained
in the pairwise descriptor similarities and their spatial loca-
tions. Secondly, the pairs are pruned by either thresholding
the similarity values, or, more commonly, only keeping the
matches which involve the nearest (most similar) neighbors.
Furthermore, the second nearest neighbor test [40] prunes
the matches further by requiring that the match strength is
significantly stronger than the second best match involving
the same descriptor, which is very effective at discarding
ambiguous matches.

Matching layer. Our matching layer applies a similar pro-
cedure. Analogously to the classical approach, only de-
scriptor similarities and their spatial locations should be
considered for geometry estimation, and not the original de-
scriptors themselves.

To achieve this, we propose to use a correlation layer
followed by normalization. Firstly, all pairs of similarities
between descriptors are computed in the correlation layer.
Secondly, similarity scores are processed and normalized
such that ambiguous matches are strongly down-weighted.

In more detail, given L2-normalized dense feature
maps fA, fB ∈ Rh×w×d, the correlation map cAB ∈
Rh×w×(h×w) outputted by the correlation layer contains at
each position the scalar product of a pair of individual de-
scriptors fA ∈ fA and fB ∈ fB , as detailed in Eq. (1).

cAB(i, j, k) = fB(i, j)
T fA(ik, jk) (1)

where (i, j) and (ik, jk) indicate the individual feature posi-
tions in the h×w dense feature maps, and k = h(jk−1)+ik
is an auxiliary indexing variable for (ik, jk).

A diagram of the correlation layer is presented in Fig. 3.
Note that at a particular position (i, j), the correlation map
cAB contains the similarities between fB at that position and
all the features of fA.

As is done in the classical methods for tentative cor-
respondence estimation, it is important to postprocess the
pairwise similarity scores to remove ambiguous matches.
To this end, we apply a channel-wise normalization of the
correlation map at each spatial location to produce the fi-
nal tentative correspondence map fAB . The normalization
is performed by ReLU, to zero out negative correlations,
followed by L2-normalization, which has two desirable ef-
fects. First, let us consider the case when descriptor fB cor-
relates well with only a single feature in fA. In this case,
the normalization will amplify the score of the match, akin
to the nearest neighbor matching in classical geometry esti-
mation. Second, in the case of the descriptor fB matching
multiple features in fA due to the existence of clutter or
repetitive patterns, matching scores will be down-weighted
similarly to the second nearest neighbor test [40]. However,
note that both the correlation and the normalization opera-
tions are differentiable with respect to the input descriptors,
which facilitates backpropagation thus enabling end-to-end
learning.

Discussion. The first step of our matching layer, namely
the correlation layer, is somewhat similar to layers used in
DeepMatching [52] and FlowNet [18]. However, Deep-
Matching [52] only uses deep RGB patches and no part
of their architecture is trainable. FlowNet [18] uses a spa-
tially constrained correlation layer such that similarities are
are only computed in a restricted spatial neighborhood thus
limiting the range of geometric transformations that can be
captured. This is acceptable for their task of learning to es-
timate optical flow, but is inappropriate for larger transfor-
mations that we consider in this work. Furthermore, neither
of these methods performs score normalization, which we
find to be crucial in dealing with cluttered scenes.

Previous works have used other matching layers to com-
bine descriptors across images, namely simple concatena-
tion of descriptors along the channel dimension [14] or sub-
traction [30]. However, these approaches suffer from two
problems. First, as following layers are typically convolu-
tional, these methods also struggle to handle large transfor-
mations as they are unable to detect long-range matches.
Second, when concatenating or subtracting descriptors, in-
stead of computing pairwise descriptor similarities as is
commonly done in classical geometry estimation and mim-
icked by the correlation layer, image content information
is directly outputted. To further illustrate why this can be
problematic, consider two pairs of images that are related
with the same geometric transformation – the concatenation
and subtraction strategies will produce different outputs for
the two cases, making it hard for the regressor to deduce the
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fAB θ^conv1 BN1 ReLU1 conv2 BN2 ReLU2 FC

7×7×225×128 5×5×128×64 5×5×64×P

Figure 4: Architecture of the regression network. It is composed
of two convolutional layers without padding and stride equal to 1,
followed by batch normalization and ReLU, and a final fully con-
nected layer which regresses to the P transformation parameters.

geometric transformation. In contrast, the correlation layer
output is likely to produce similar correlation maps for the
two cases, regardless of the image content, thus simplify-
ing the problem for the regressor. In line with this intuition,
in Sec. 5.5 we show that the concatenation and subtraction
methods indeed have difficulties generalizing beyond the
training set, while our correlation layer achieves general-
ization yielding superior results.

3.3. Regression network

The normalized correlation map is passed through a re-
gression network which directly estimates parameters of the
geometric transformation relating the two input images. In
classical geometry estimation, this step consists of robustly
estimating the transformation from the list of tentative cor-
respondences. Local geometric constraints are often used to
further prune the list of tentative matches [45, 49] by only
retaining matches which are consistent with other matches
in their spatial neighborhood. Final geometry estimation is
done by RANSAC [19] or Hough voting [34, 36, 40].

We again mimic the classical approach using a neural
network, where we stack two blocks of convolutional lay-
ers, followed by batch normalization [27] and the ReLU
non-linearity, and add a final fully connected layer which
regresses to the parameters of the transformation, as shown
in Fig. 4. The intuition behind this architecture is that the
estimation is performed in a bottom-up manner somewhat
like Hough voting, where early convolutional layers vote
for candidate transformations, and these are then processed
by the later layers to aggregate the votes. The first convolu-
tional layers can also enforce local neighborhood consensus
[45, 49] by learning filters which only fire if nearby descrip-
tors in image A are matched to nearby descriptors in image
B, and we show qualitative evidence in Sec. 5.5 that this in-
deed does happen.

Discussion. A potential alternative to a convolutional re-
gression network is to use fully connected layers. However,
as the input correlation map size is quadratic in the number
of image features, such a network would be hard to train
due to a large number of parameters that would need to be
learned, and it would not be scalable due to occupying too
much memory and being too slow to use. It should be noted
that even though the layers in our architecture are convolu-
tional, the regressor can learn to estimate large transforma-
tions. This is because one spatial location in the correlation

map contains similarity scores between the corresponding
feature in image B and all the features in image A (c.f. equa-
tion (1)), and not just the local neighborhood as in [18].

3.4. Hierarchy of transformations

Another commonly used approach when estimating im-
age to image transformations is to start by estimating a
simple transformation and then progressively increase the
model complexity, refining the estimates along the way
[10, 39, 42]. The motivation behind this method is that es-
timating a very complex transformation could be hard and
computationally inefficient in the presence of clutter, so a
robust and fast rough estimate of a simpler transformation
can be used as a starting point, also regularizing the subse-
quent estimation of the more complex transformation.

We follow the same good practice and start by estimat-
ing an affine transformation, which is a 6 degree of freedom
linear transformation capable of modeling translation, rota-
tion, non-isotropic scaling and shear. The estimated affine
transformation is then used to align image B to image A us-
ing an image resampling layer [28]. The aligned images are
then passed through a second geometry estimation network
which estimates 18 parameters of a thin-plate spline trans-
formation. The final estimate of the geometric transforma-
tion is then obtained by composing the two transformations,
which is also a thin-plate spline. The process is illustrated
in Fig. 5.

4. Training
In order to train the parameters of our geometric match-

ing CNN, it is necessary to design the appropriate loss func-
tion, and to use suitable training data. We address these two
important points next.

4.1. Loss function

We assume a fully supervised setting, where the train-
ing data consists of pairs of images and the desired outputs
in the form of the parameters θGT of the ground-truth ge-
ometric transformation. The loss function L is designed to
compare the estimated transformation θ̂ with the ground-
truth transformation θGT and, more importantly, compute
the gradient of the loss function with respect to the esti-
mates ∂L

∂θ̂
. This gradient is then used in a standard manner

to learn the network parameters which minimize the loss
function by using backpropagation and Stochastic Gradient
Descent.

It is desired for the loss to be general and not specific
to a particular type of geometric model, so that it can be
used for estimating affine, homography, thin-plate spline or
any other geometric transformation. Furthermore, the loss
should be independent of the parametrization of the trans-
formation and thus should not directly operate on the pa-
rameter values themselves. We address all these design con-
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IA Feature Extraction

Matching TPS Regression
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Figure 5: Estimating progressively more complex geometric transformations. Images A and B are passed through a network which
estimates an affine transformation with parameters θ̂Aff (see Fig. 2). Image A is then warped using this transformation to roughly align with
B, and passed along with B through a second network which estimates a thin-plate spline (TPS) transformation that refines the alignment.

straints by measuring loss on an imaginary grid of points
which is being deformed by the transformation. Namely,
we construct a grid of points in image A, transform it using
the ground truth and neural network estimated transforma-
tions TθGT

and Tθ̂ with parameters θGT and θ̂, respectively,
and measure the discrepancy between the two transformed
grids by summing the squared distances between the corre-
sponding grid points:

L(θ̂, θGT ) =
1

N

N∑
i=1

d(Tθ̂(gi), TθGT
(gi))

2 (2)

where G = {gi} = {(xi, yi)} is the uniform grid used,
and N = |G|. We define the grid as having xi, yi ∈ {s :
s = −1 + 0.1 × n, n ∈ {0, 1, . . . , 20}}, that is to say,
each coordinate belongs to a partition of [−1, 1] in equally
spaced subintervals of steps 0.1. Note that we construct
the coordinate system such that the center of the image is at
(0, 0) and that the width and height of the image are equal to
2, i.e. the bottom left and top right corners have coordinates
(−1,−1) and (1, 1), respectively.

The gradient of the loss function with respect to the
transformation parameters, needed to perform backpropa-
gation in order to learn network weights, can be computed
easily if the location of the transformed grid points Tθ̂(gi) is
differentiable with respect to θ̂. This is commonly the case,
for example, when T is an affine transformation, Tθ̂(gi) is
linear in parameters θ̂ and therefore the loss can be differ-
entiated in a straightforward manner.

4.2. Training from synthetic transformations

Our training procedure requires fully supervised training
data consisting of image pairs and a known geometric rela-
tion. Training CNNs usually requires a lot of data, and no
public datasets exist that contain many image pairs anno-
tated with their geometric transformation. Therefore, we
opt for training from synthetically generated data, which
gives us the flexibility to gather as many training examples
as needed, for any 2-D geometric transformation of interest.
We generate each training pair (IA, IB), by sampling IA

IA

Original image

Padded image

IB

Figure 6: Synthetic image generation. Symmetric padding is
added to the original image to enlarge the sampling region, its cen-
tral crop is used as image A, and image B is created by performing
a randomly sampled transformation TθGT .

from a public image dataset, and generating IB by applying
a random transformation TθGT

to IA. More precisely, IA
is created from the central crop of the original image, while
IB is created by transforming the original image with added
symmetrical padding in order to avoid border artifacts; the
procedure is shown in Fig. 6.

5. Experimental results
In this section we describe our datasets, give implemen-

tation details, and compare our method to baselines and the
state-of-the-art. We also provide further insights into the
components of our architecture.

5.1. Evaluation dataset and performance measure

Quantitative evaluation of our method is performed on
the Proposal Flow dataset of Ham et al. [23]. The dataset
contains 900 image pairs depicting different instances of the
same class, such as ducks and cars, but with large intra-
class variations, e.g. the cars are often of different make,
or the ducks can be of different subspecies. Furthermore,
the images contain significant background clutter, as can be
seen in Fig. 8. The task is to predict the locations of pre-
defined keypoints from image A in image B. We do so by
estimating a geometric transformation that warps image A
into image B, and applying the same transformation to the
keypoint locations. We follow the standard evaluation met-
ric used for this benchmark, i.e. the average probability of
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correct keypoint (PCK) [53], being the proportion of key-
points that are correctly matched. A keypoint is considered
to be matched correctly if its predicted location is within a
distance of α · max(h,w) of the target keypoint position,
where α = 0.1 and h and w are the height and width of the
object bounding box, respectively.

5.2. Training data

Two different training datasets for the affine and
thin-plate spline stages, dubbed StreetView-synth-aff and
StreetView-synth-tps respectively, were generated by apply-
ing synthetic transformations to images from the Tokyo
Time Machine dataset [4] which contains Google Street
View images of Tokyo.

Each synthetically generated dataset contains 40k im-
ages, divided into 20k for training and 20k for validation.
The ground truth transformation parameters were sampled
independently from reasonable ranges, e.g. for the affine
transformation we sample the relative scale change of up
to 2×, while for thin-plate spline we randomly jitter a 3× 3
grid of control points by independently translating each
point by up to one quarter of the image size in all directions.

In addition, a second training dataset for the affine stage
was generated, created from the training set of Pascal VOC
2011 [16] which we dubbed Pascal-synth-aff. In Sec. 5.5,
we compare the performance of networks trained with
StreetView-synth-aff and Pascal-synth-aff and demonstrate
the generalization capabilities of our approach.

5.3. Implementation details

We use the MatConvNet library [51] and train the net-
works with stochastic gradient descent, with learning rate
10−3, momentum 0.9, no weight decay and batch size of
16. There is no need for jittering as instead of data aug-
mentation we can simply generate more synthetic training
data. Input images are resized to 227 × 227 producing
15×15 feature maps that are passed into the matching layer.
The affine and thin-plate spline stages are trained indepen-
dently with the StreetView-synth-aff and StreetView-synth-
tps datasets, respectively. Both stages are trained until con-
vergence which typically occurs after 10 epochs, and takes
12 hours on a single GPU. Our final method for estimating
affine transformations uses an ensemble of two networks
that independently regress the parameters, which are then
averaged to produce the final affine estimate. The two net-
works were trained on different ranges of affine transfor-
mations. As in Fig. 5, the estimated affine transformation is
used to warp image A and pass it together with image B to a
second network which estimates the thin-plate spline trans-
formation. All training and evaluation code, as well as our
trained networks, are online at [1].

Methods PCK (%)

DeepFlow [43] 20
GMK [15] 27
SIFT Flow [37] 38
DSP [31] 29
Proposal Flow NAM [23] 53
Proposal Flow PHM [23] 55
Proposal Flow LOM [23] 56
RANSAC with our features (affine) 47
Ours (affine) 49
Ours (affine + thin-plate spline) 56
Ours (affine ensemble + thin-plate spline) 57

Table 1: Comparison to state-of-the-art and baselines. Match-
ing quality on the Proposal Flow dataset measured in terms of
PCK. The Proposal Flow methods have four different PCK values,
one for each of the four employed region proposal methods. All
the numbers apart from ours and RANSAC are taken from [23].

5.4. Comparison to state-of-the-art

We compare our method against SIFT Flow [37], Graph-
matching kernels (GMK) [15], Deformable spatial pyramid
matching (DSP) [31], DeepFlow [43], and all three variants
of Proposal Flow (NAM, PHM, LOM) [23]. As shown in
Tab. 1, our method outperforms all others and sets the new
state-of-the-art on this data. The best competing methods
are based on Proposal Flow and make use of object pro-
posals, which enables them to guide the matching towards
regions of images that contain objects. Their performance
varies significantly with the choice of the object proposal
method, illustrating the importance of this guided match-
ing. On the contrary, our method does not use any guiding,
but it still manages to outperform even the best Proposal
Flow and object proposal combination.

Furthermore, we also compare to affine transformations
estimated with RANSAC using the same descriptors as our
method (VGG-16 pool4). The parameters of this baseline
have been tuned extensively to obtain the best result by ad-
justing the thresholds for the second nearest neighbor test
and by pruning proposal transformations which are outside
of the range of likely transformations. Our affine estimator
outperforms the RANSAC baseline on this task with 49%
(ours) compared to 47% (RANSAC).

5.5. Discussions and ablation studies

In this section we examine the importance of various
components of our architecture. Apart from training on the
StreetView-synth-aff dataset, we also train on Pascal-synth-
aff which contains images that are more similar in nature to
the images in the Proposal Flow benchmark. The results of
these ablation studies are summarized in Tab. 2.

Correlation versus concatenation and subtraction. Re-
placing our correlation-based matching layer with feature
concatenation or subtraction, as proposed in [14] and [30],
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Figure 7: Filter visualization. Some convolutional filters from the first layer of the regressor, acting on the tentative correspondence
map, show preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local
neighborhood consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 8: Qualitative results on the Proposal Flow dataset. Each row shows one test example from the Proposal Flow dataset. Ground
truth matching keypoints, only used for alignment evaluation, are depicted as crosses and circles for images A and B, respectively. Key-
points of same color are supposed to match each other after image A is aligned to image B. To illustrate the matching error, we also overlay
keypoints of B onto different alignments of A so that lines that connect matching keypoints indicate the keypoint position error vector. Our
method manages to roughly align the images with an affine transformation (column 2), and then perform finer alignment using thin-plate
spline (TPS, column 3). It successfully handles background clutter, translations, rotations, and large changes in appearance and scale, as
well as non-rigid transformations and some perspective changes. Further examples are shown in appendix A.

Methods StreetView-synth-aff Pascal-synth-aff

Concatenation [14] 26 29
Subtraction [30] 18 21
Ours without normalization 44 –
Ours 49 45

Table 2: Ablation studies. Matching quality on the Proposal Flow
dataset measured in terms of PCK. All methods use the same fea-
tures (VGG-16 cropped at pool4). The networks were trained on
the StreetView-synth-aff and Pascal-synth-aff datasets. For these
experiments, only the affine transformation is estimated.

respectively, incurs a large performance drop. The behavior
is expected as we designed the matching layer to only keep

information on pairwise descriptor similarities rather than
the descriptors themselves, as is good practice in classical
geometry estimation methods, while concatenation and sub-
traction do not follow this principle.

Generalization. As seen in Tab. 2, our method is relatively
unaffected by the choice of training data as its performance
is similar regardless whether it was trained with StreetView
or Pascal images. We also attribute this to the design choice
of operating on pairwise descriptor similarities rather than
the raw descriptors.

Normalization. Tab. 2 also shows the importance of the
correlation map normalization step, where the normaliza-

7



(a) Image A (b) Image B (c) Aligned image A (d) Overlay of (b) and (c) (e) Difference map

Figure 9: Qualitative results on the Tokyo Time Machine dataset. Each row shows a pair of images from the Tokyo Time Machine
dataset, and our alignment along with a “difference map”, highlighting absolute differences between aligned images in the descriptor space.
Our method successfully aligns image A to image B despite of viewpoint and scene changes (highlighted in the difference map).

tion improves results from 44% to 49%. The step mimics
the second nearest neighbor test used in classical feature
matching [40], as discussed in Sec. 3.2. Note that [18] also
uses a correlation layer, but they do not normalize the map
in any way, which is clearly suboptimal.

What is being learned? We examine filters from the first
convolutional layer of the regressor, which operate directly
on the output of the matching layer, i.e. the tentative corre-
spondence map. Recall that each spatial location in the cor-
respondence map (see Fig. 3, in green) contains all similar-
ity scores between that feature in image B and all features in
image A. Thus, each single 1-D slice through the weights of
one convolutional filter at a particular spatial location can be
visualized as an image, showing filter’s preferences to fea-
tures in image B that match to specific locations in image A.
For example, if the central slice of a filter contains all zeros
apart from a peak at the top-left corner, this filter responds
positively to features in image B that match to the top-left
of image A. Similarly, if many spatial locations of the fil-
ter produce similar visualizations, then this filter is highly
sensitive to spatially co-located features in image B that all
match to the top-left of image A. For visualization, we pick
the peaks from all slices of filter weights and average them
together to produce a single image. Several filters shown
in Fig. 7 confirm our hypothesis that this layer has learned
to mimic local neighborhood consensus as some filters re-
spond strongly to spatially co-located features in image B
that match to spatially consistent locations in image A. Fur-
thermore, it can be observed that the size of the preferred
spatial neighborhood varies across filters, thus showing that
the filters are discriminative of the scale change.

5.6. Qualitative results

Fig. 8 illustrates the effectiveness of our method in
category-level matching, where challenging pairs of images

from the Proposal Flow dataset [23], containing large intra-
class variations, are aligned correctly. The method is able
to robustly, in the presence of clutter, estimate large transla-
tions, rotations, scale changes, as well as non-rigid transfor-
mations and some perspective changes. Further examples
are shown in appendix A.

Fig. 9 shows the quality of instance-level matching,
where different images of the same scene are aligned cor-
rectly. The images are taken from the Tokyo Time Machine
dataset [4] and are captured at different points in time which
are months or years apart. Note that, by automatically high-
lighting the differences (in the feature space) between the
aligned images, it is possible to detect changes in the scene,
such as occlusions, changes in vegetation, or structural dif-
ferences e.g. new buildings being built.

6. Conclusions

We have described a network architecture for geomet-
ric matching fully trainable from synthetic imagery with-
out the need for manual annotations. Thanks to our match-
ing layer, the network generalizes well to never seen be-
fore imagery, reaching state-of-the-art results on the chal-
lenging Proposal Flow dataset for category-level matching.
This opens-up the possibility of applying our architecture
to other difficult correspondence problems such as match-
ing across large changes in illumination (day/night) [4] or
depiction style [5].
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Appendices
In these appendices we show additional qualitative re-

sults on the Proposal Flow dataset (appendix A), results on
the Caltech-101 dataset [17] previously used for alignment
in [23] (appendix B), and details of our thin-plate spline
(TPS) transformation model (appendix C) used in the sec-
ond stage to refine the affine transformation estimated in the
first stage.

A. Additional results on Proposal Flow dataset
In figures 10, 11 and 12 we show additional results of

our method applied on image pairs from the Proposal Flow
dataset [23].

Each row shows one test pair, where ground truth match-
ing keypoints, only used for alignment evaluation, are de-
picted as crosses and circles for images A and B, respec-
tively. Keypoints of the same color correspond to the same
object parts and are supposed to match at the exact same
position after image A is aligned to image B. To illustrate
the alignment error we overlay keypoints of B onto differ-
ent transformations of A so that lines that connect matching
keypoints indicate the keypoint position error vector.

Our method roughly aligns the two input images with an
affine transformation (column 2), and then performs finer
alignment using a thin-plate spline transformation (column
3).

These results demonstrate the ability of our network
to successfully handle various challenging cases, such as
changes in object scale (Fig. 10), camera viewpoint changes
(Fig. 11), and background clutter (Fig. 12).
Limitations of the method. In Fig. 13 we show several
difficult examples where our method is able to only par-
tially align the two images. These cases tend to occur when
there is a significant change of viewpoint, pose or scale,
combined with a strong change in appearance (Fig. 13, ex-
amples 1-3). Furthermore, heavy clutter in both images can
still present a challenge for the method (Fig. 13, example
4).

B. Results on the Caltech-101 dataset
In addition to the Proposal Flow dataset, we evaluate our

method on the Caltech-101 dataset [17] using the same pro-
cedure as in [23]. The results shown here were obtained us-
ing the same model trained from synthetically transformed
StreetView images, which we used for evaluation on the
Proposal Flow dataset. No further training was done to tar-
get this particular dataset.

As no keypoint annotations are provided for the Caltech-
101 dataset, other metrics are needed to assess the matching
accuracy. As segmentations masks are provided, we fol-
low [32] and evaluate the following metrics: label transfer
accuracy (LT-ACC), intersection-over-union (IoU), and lo-
calization error (LOC-ERR).

For each of the 101 categories, 15 image pairs were cho-
sen randomly, resulting in 1515 evaluation pairs. These
pairs match those used in [23]. As can be seen in Tab. 3,
our approach outperforms the state-of-the-art by a signifi-
cant margin obtaining, for example, an IoU of 0.56 com-
pared to the previous best result of 0.50. In Fig. 14, we
present a qualitative comparison of the results obtained by
our method and other previous methods on images from this
dataset.

C. Thin-plate spline transformation
The thin-plate spline (TPS) transformation [11] is a para-

metric model, which allows to perform 2D interpolation
based on a set of known corresponding control points in the
two images. In this work we use a fixed uniform 3× 3 grid
of control points, which is defined over image B (as inverse
sampling is used) and their corresponding points in image
A. This is illustrated in Fig. 15. As the control points in im-
age B are fixed for all image pairs, the TPS transformation
is parametrized only by the control point positions in image
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Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 10: Example image pairs from the Proposal Flow dataset featuring a significant change in scale.
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Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 11: Example image pairs from the Proposal Flow dataset demonstrating changes in viewpoint. While the affine
stage can correct for the size and orientation of the object, the thin-plate spline stage is able to perform a non-rigid deformation
which can, to some extent, compensate for the change in viewpoint.

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 12: Example image pairs from the Proposal Flow dataset with significant amount of background clutter.
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Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 13: Difficult examples from the Proposal Flow dataset. Some examples with a combination of a significant change
in viewpoint, appearance variations and/or background clutter are still challenging for our method, leading to only partial
alignment (rows 1-3) or even a mis-alignment (row 4).

Methods LT-ACC IoU LOC-ERR
DeepFlow [43] 0.74 0.40 0.34
GMK [15] 0.77 0.42 0.34
SIFT Flow [37] 0.75 0.48 0.32
DSP [31] 0.77 0.47 0.35
Proposal Flow (RP, LOM) [23] 0.78 0.50 0.26
Proposal Flow (SS, LOM) [23] 0.78 0.50 0.25
Ours (affine) 0.79 0.51 0.25
Ours (affine + thin-plate spline) 0.82 0.56 0.25

Table 3: Evaluation on the Caltech-101 dataset. Matching quality is measured in terms of LT-ACC, IoU and LOC-ERR.
The best two Proposal Flow methods (RP, LOM and SS, LOM) are included here. All numbers apart from ours are taken
from [23].
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(a) Image pairs (b) DeepFlow (c) GMK (d) SIFT Flow (e) DSP (f) Proposal Flow (g) Our method

Figure 14: Qualitative examples from the Caltech-101 dataset. Each block of two rows corresponds to one example, where
column (a) shows the original images – image A in the first row and image B in the second row. The remaining columns
of the first row show image A aligned to image B using various methods. The second row shows image B overlaid with the
segmentation map transferred from image A.
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A. Our TPS regression network estimates a 18-dimensional
vector θ̂TPS composed of the 9 x-coordinates, followed by
the 9 y-coordinates of these control points.

(a) Control points over image A

(b) Control points over image B

Figure 15: Illustration of the 3×3 TPS grid of control points
used in our thin-plate spline transformation model.
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