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Abstract

Diffusion magnetic resonance imaging (MRI) is a technique that allows us to probe

the microstructure of materials. The standard technique indiffusion MRI is diffusion

tensor imaging (DTI). However, DTI can only model a single fibre orientation and

fails in regions of complex microstructure. Multiple-fibrealgorithms aim to overcome

this limitation of DTI, but there remain many questions about which multiple-fibre

algorithms are most promising and how best to exploit them intractography.

This work focuses on exploring the potential of multiple-fibre reconstructions and

preparing them for transfer to the clinical arena. We provide a standardised framework

for comparing multiple-fibre algorithms and use it for a robust comparison of standard

algorithms, such as persistent angular structure (PAS) MRI, spherical deconvolution

(SD), maximum entropy SD (MESD), constrained SD (CSD) and QBall. An output

of this framework is the parameter settings of the algorithms that maximise the consis-

tency of reconstructions. We show that non-linear algorithms, and CSD in particular,

provide the most consistent reconstructions.

Next, we investigate features of the reconstructions that can be exploited to im-

prove tractography. We show that the peak shapes of multiple-fibre reconstructions

can be used to predict anisotropy in the uncertainty of fibre-orientation estimates. We

design an experiment that exploits this information in the probabilistic index of con-

nectivity (PICo) tractography algorithm. We then compare PICo tractography results

using information about peak shape and sharpness to estimate uncertainty with PICo

results using only the peak sharpness to estimate uncertainty and show structured dif-

ferences. The final contribution of this work is a robust algorithm for calibrating PICo

that overcomes some of the limitations of the original algorithm. We finish with some

early exploratory work that aims to estimate the distribution of fibre-orientations in a

voxel using features of the reconstruction.
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Chapter 1

Introduction

Diffusion magnetic resonance imaging (MRI) is a powerful tool that allows us to probe

the microstructure of materials, such as the fibrous white-matter of the brain,in-vivo by

observing bulk dispersion of particles that are subject to Brownian motion. In medical

diffusion MRI these particles are usually water molecules due to their abundance in

biological tissue. On a molecular level, water molecules undergo random motion due

to thermal fluctuations. If unhindered, the water moleculescan diffuse freely in any

direction. However, barriers placed into the path of the water molecules restrict the

mobility of the molecules in the direction perpendicular tothe barrier. For example,

the white-matter of the brain consists of fibrous axons that connect different functional

regions. Water molecules diffusing through this microstructure can move more freely

in the direction of the fibres than across them. Voxels used inin-vivo human brain

imaging are typically of the order of2 mm cubed, which is several orders of magnitude

larger than the size of the cells, so there are many barriers that can hinder diffusion

within a voxel. We therefore observe the mass average dispersion pattern, although this

still provides information about the nature of the underlying microstructure, such as the

distribution of fibre orientations.

One major clinical application of diffusion MRI is stroke imaging [1, 2]. Regions

affected by stroke appear hyperintense on diffusion-weighted images, which suggests

a reduction in water mobility. The mechanisms for this reduction are unclear but a

likely factor is cell swelling. When white-matter axons swell, the space between the

axons reduces and the dispersion of water molecules becomesmore hindered. The sub-

tle changes to microstructure that can be observed by diffusion MRI occur before the

changes that can be seen on structural images. This allows clinicians to determine the
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full extent of the affected regions soon after the stroke occurs and leads to an improved

management and treatment of the stroke.

The standard method of diffusion MRI is diffusion tensor imaging (DTI), intro-

duced by Basser et al [3] in 1994. DTI represents the dispersion of water through

diffusion using a simple model known as the diffusion tensor. This model assumes

zero-mean trivariate Gaussian displacements. The diffusion tensor provides us with

several useful pieces of information. Firstly, the diffusion tensor offers scalar indices,

such as mean diffusivity (MD) and fractional anisotropy (FA), which are commonly

used as measures of white-matter integrity. MD measures theoverall dispersion of

water molecules regardless of any orientational preference; FA describes the degree

of directionality of diffusion (i.e. how much the degree of dispersion depends on di-

rection). Damage to tissue microstructure removes some barriers to diffusion, which

allows water molecules to disperse more freely. This results in an increase in MD and

decrease in FA. For example, Klingberg et al [4] show the FA tocorrelate positively

with reading performance in brain regions associated with reading for both healthy and

dyslexic adults. In [5], Douaud et al show differences in white-matter microstructure

between patients with Huntington’s disease and normal controls using DTI.

Another useful piece of information recovered by DTI is an estimate of the lo-

cal orientation in white-matter from the direction of greatest dispersion. White-matter

pathways are often several centimetres in length so stretchover many voxels. By fol-

lowing local fibre-orientation estimates from voxel to voxel through an image, tractog-

raphy algorithms recover the global paths of white-matter tracts through the brain. One

major application of tractography is anatomical connectivity mapping. In [6], Dragan-

ski et al use tractography to investigate the connectivity of the cortico-basal ganglia

circuits. The technique also has several clinical applications, including neurosurgical

planning [7] and evaluation [8]. In neurosurgical planningtractography can be used to

determine the location of important white-matter pathways, such as those involved in

motor function, that are close to an area being resected so that these tracts can be spared.

Tractography is also used post-surgery to investigate whether white-matter pathways

have been preserved or any reorganisation of functional connections has occurred.

The main limitation of DTI is that it can only recover a singlefibre orientation in

each voxel. A typical image voxel is several orders of magnitude larger than the size
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of the white-matter axons being imaged. Therefore, many voxels contain contributions

from several fibre populations. The diffusion tensor model often fails in these situations

and tractography breaks down, missing connections or even suggesting spurious ones.

This has resulted in a new class of methods that aim to recoverall fibre orientations

in the voxel. These are known as multiple-fibre reconstruction algorithms. Various

studies [9, 10] have shown that these methods improve tractography in regions where

crossing-fibre configurations are encountered.

Tractography has a great deal of potential to improve clinical outcomes. However,

there remain some significant issues that limit its use in practise. Regions of complex

microstructure can lead to incomplete segmentations or even an inability to recover

tracts. For example, in cases where the temporal lobe is resected, such as surgical treat-

ment of temporal-lobe epilepsy [11], the optic radiation must be avoided, since damage

to this pathway can lead to permenent visual defects [12]. The optic radiation is not

distinct from other white-matter in structural scans and therefore tractography of this

structure can be of great benefit to the surgeon. However, tractography of the optic ra-

diations is problematic around the anterior portion of Meyer’s loop [13, 14]. The fibre

pathway curves sharply at this point which, when combined with limited spatial reso-

lution and noise in the data, may lead to poor segmentations.Several other tracts also

intersect near this point, leading to a complex crossing arrangement that further com-

plicates the problem. Therefore, the single fibre-orientation estimate provided by the

diffusion tensor will be insufficient to track accurately through this region. Multiple-

fibre algorithms can capture more of the complexity of this structure, which in turn will

potentially lead to improved tractography results.

1.1 Problem statement

Multiple-fibre reconstruction algorithms offer a great deal of useful information about

diffusion in voxels containing complex fibre configurations. However, questions about

how best to interpret and exploit this information must be answered before the methods

can be transferred to the clinical environment. Although multiple-fibre methods have

been used in tractography, it is still unclear how best to integrate them fully. Fibre-

orientation estimates are just one piece of information that can be extracted using these

methods; other information may improve the ability of tractography to navigate through
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complex microstructure. In addition to this, the information recovered can be used to

develop indices that may potentially be more sensitive to changes in microstructure

than those from DTI.

The goals of this work are to determine which multiple-fibre reconstruction algo-

rithms provide the most useful information about the microstructure and to adapt trac-

tography to utilise this information. In this work we do not develop new multiple-fibre

algorithms. Instead, we investigate methods for exploiting more of the information

recovered by exisiting techniques.

1.2 Contributions

This work makes the following contributions:

• a taxonomy of multiple-fibre reconstruction algorithms.

• a rigorous comparison of different multiple-fibre reconstruction algorithms.

• a standardised framework for comparing multiple-fibre algorithms. This frame-

work is based on the procedure for optimising algorithms used by [15].

• a new and faster implementation of the persistent angular structure MRI

(PASMRI) multiple-fibre reconstruction algorithm, using the spherical decon-

volution filter defined in [16].

• a method for exploiting the peak shapes of multiple-fibre reconstructions to pro-

vide information about anisotropy in uncertainty.

• We integrate the method for exploiting peak shapes into the probabilistic index

of connectivity (PICo) tractography algorithm that is implemented the Camino

toolkit.

• a robust calibration algorithm for creating a mapping between uncertainty and

peak shape.

• early exploratory work on modelling the true distribution of fibre-orientations

in each voxel. Specifically, we use the sub-voxel model of Gilani et al [17] to

predict the true fibre-distribution from the reconstruction.
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1.3 Thesis Overview

Chapter 2 introduces the principles behind diffusion MRI along with an overview of

a basic diffusion-weighted MRI sequence. We then describe diffusion tensor imaging.

Finally, we describe both deterministic tractography and probabilistic tractography al-

gorithms.

In chapter 3, we outline the current state-of-the-art multiple-fibre reconstruction

techniques. We introduce the multiple-fibre problem and describe the main multiple-

fibre reconstruction algorithms as well as methods used to regularise these methods.

We go on to outline some of the comparisons that have been performed. Finally, we

describe how the tractography algorithms discussed in chapter 2 have been extended to

exploit multiple-fibre reconstructions. This chapter appears in “Diffusion MRI: from

quantitative measurement to in vivo neuroanatomy”, editedby H. Johansen-Berg and

T. E. J. Behrens [18].

The first algorithmic contribution of this work is detailed in chapter 4, where we

compare some of the multi-fibre reconstruction algorithms.Multi-fibre reconstruction

algorithms can be categorised into two groups: linear and non-linear. Linear methods

involve a simple matrix multiplication; non-linear methods use a non-linear optimi-

sation procedure such as the Levenberg-Marquardt algorithm. Non-linear methods,

such as PAS-MRI [15, 16] offer a potential improvement in terms of the precision of

fibre-orientation estimation, but are very computationally expensive. In comparison,

the linear reconstruction methods are computationally inexpensive and can be used on

a standard desktop. These methods have yet to be compared to each other using a

single framework. We perform a comparison of the main linearmulti-fibre reconstruc-

tion algorithms, as well as a few of the non-linear algorithms, described in chapter 3.

We synthesise crossing-fibre data with a range of angles between the fibre populations,

which allows us to calculate the accuracy and precision of all of the methods. The

framework also finds the settings of the parameters for each method that maximises the

consistency of the fibre-orientation estimates. Part of this work is in Proc. ISMRM

[19].

Chapter 5 provides the second major contribution of this thesis. In this chapter we

hypothesise that the functions output by multiple-fibre reconstructions contain much

more information about the true fibre orientations than justthe peak orientations. We
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show that the shape of the peaks reflect the local spread of fibres and, in particular, that

the peak anisotropy (i.e. how elliptical the peak cross section is) reflects local fibre

bending or fanning. We go on to construct a new general framework for PICo with

multiple-fibre reconstructions, extending Parker and Alexander’s method [10], that ex-

ploits the information encoded in the peak shape. Specifically, we develop a calibration

procedure that provides a mapping between peak shape and uncertainty that can be used

with the Camino implementation of PICo. Specifically, we develop a calibration proce-

dure that provides a mapping between peak shape and uncertainty that can be used with

the Camino implementation of PICo. The aim of this work is notto develop a method

for resolving fibre-crossings, rather we attempt to exploitthe information recovered by

existing algorithms to improve tractography. The technique described here is published

in the Proc. MMBIA [20].

The third major contribution of this work will be introducedin Chapter 6. We

provide a more robust calibration procedure for exploitingthe peak anisotropy from

multiple-fibre reconstructions. The algorithm presented overcomes some limitations of

the procedure described in chapter 5. Finally, we show some proof-of-concept work on

predicting the true distribution of fibre-orientations using features of a reconstruction.

The proof-of-concept section of this chapter is in Proc. ISMRM [21].

Chapter 7 concludes this work with a discussion and details of future work.



Chapter 2

Magnetic Resonance Imaging (MRI)

and diffusion MRI

This chapter provides a general overview of some of the basicprinciples of MRI and

in particular diffusion MRI. We start by introducing the concept of a spin and how they

produce a signal that can be measured. From there, we show howto sensitize MRI

to diffusion of water molecules. We finish by introducing Diffusion Tensor Imaging

(DTI), which is the standard method for modelling diffusion, along with some useful

scalar indices derived from it.

2.1 An overview of MRI

MRI is based on the principles of nuclear magnetic resonanceof nuclei. That is, we

manipulate the proton ‘spins’ to form images. This is necessarily a quantum mechanical

process, but because we observe this on the macro scale some classical ideas are useful.

It is important to remember that ‘spin’ is a quantum mechanical concept. Nucleons do

not literally spin in the classical sense but they do possessangular momentum and

therefore behave as if they are spinning. In medical MRI, theatom of interest is usually

the hydrogen atom due the abundance of water in the body. The nucleus of a hydrogen

atom has a single positively-charged proton. This combination of angular momentum

and charge results in the nucleus having a local magnetic field with dipolar geometry.

The axis of the dipolar field (called the moment of the spin) isnormally randomly

oriented (see figure 2.1a). However, as with any magnet, the spins attempt to align

themselves with any external magnetic field. In MRI, a powerful magnetic field is

provided by a superconducting magnet and is known as theB0 field.
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a) b)

Figure 2.1: A group of spins a) before and b) after a magnetic field is applied.

Unlike conventional magnets, spins may align themselves either with or against

the external magnetic field depending on the energy level they are in (figure 2.1b).

Elements with an odd atomic number have several energy levels [22]. In the case of a

hydrogen nucleus there are two energy levels: a low energy level parallel to the applied

field and a high energy level anti-parallel to it. Spins constantly interchange between

these two states, but the ensemble average in each state remains constant. The number

of spins in each state is given by Boltzmann’s equation:

N+/N− = exp−∆E/kT (2.1)

whereN+ andN− are the number of spins in the high and low energy states respec-

tively, ∆E is the energy separation of the states,k = 1.38×10−23J/K is the Boltzmann

constant andT is the temperature. At room temperature, there are about5% more spins

in the low energy state than the high energy state. This differential results in a slight

magnetic field, which we call the magnetisation vectorM0.

When the nucleus is exposed toB0, it experiences precession. If the spin axis is

not aligned with the applied field, the spin axis will precessaround it. An illustration

of a spin precessing is shown in figure 2.2. The angular frequency ω of precession is

given by the Larmor equation,

ω = γB0, (2.2)

whereγ is the gyromagnetic ratio, a value that is unique for every nucleus type. Note

that the frequency of precession is dependent on both the strength of the magnetic field

and the nucleus being observed.

While the spins are aligned with theB0 field no signal is observed. Energy is
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Figure 2.2: A precessing spin. The dotted line shows theB0 field and the solid circle

plots the path of precession.

introduced to the spins using an radio frequency (RF) pulse.The RF pulse is an os-

cillating magnetic field called theB1 field. The frequency of RF required to excite a

nucleus is the same as the precession frequency of the nucleus given by eqn 2.1. As

energy is introduced, the magnetization vector,M0, is pushed towards the transverse

plane. This is illustrated in figure 2.3. The left panel showsthe path ofM0 from a

fixed frame of reference, called the laboratory frame of reference. The motion is often

simplified (see right panel) by describing the motion relative to a reference point that is

rotating at the same frequency as the spin precession. The duration and strength of the

RF pulse affects the flip angle of theM0. Specifically, the flip angleαf is defined as

αf = γB1tp, (2.3)

wheretp is the duration of the RF pulse. The flip angle,αf , can be controlled by

changing either the strength of the RF or the duration of its application. When theM0

is flipped towards the transverse plane a signal can be observed. This signal will be

at the same frequency as the spin precession. In a simple acquisition a 90◦ pulse is

applied, which flipsM0 into the transverse plane.

As soon as theB1 is removed, the nuclei gradually relax back to their restingstate

and the signal attenuates. This is known as the free-induction decay (FID). Figure 2.4

illustrates a FID. There are several mechanisms that resultin the loss of signal. The first

is T1 (longitudinal; spin-lattice) relaxation. As the spins lose energy they return to their
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Figure 2.3: Path of the magnetization vector,M0, as RF is applied in (left) laboratory

frame and (right) rotating frame.
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Figure 2.4: Free induction decay (FID) of signal after the application of the RF is

removed.

resting state and the magnitude of the z-component ofM0 increases. The other is T2

(transverse; spin-spin) relaxation, which occurs when thephase of a spin is affected by

other spins within a local area. This results in a dephasing of the spins which reduces

the transverse magnitude ofM0.

The scanner is unable to make use of the FID, since much of the signal has been

lost by the time it is being read by the receiver coils. Instead, we observe an echo of the

net magnetisation. For example, a spin echo occurs when out of phase spins are brought

back into phase. As mentioned above, T2 relaxation occurs due to spin-spin relaxation.

However, in practise, the signal decay due to T2 effects is faster than expected. This is

due to inhomogeneities in theB0 field. Although we are unable to do anything about

the random dephasing due to T2 decay, we are able to correct for field inhomogeneities
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Figure 2.5: Illustration of a spin-echo pulse sequence. After the90◦ pulse, the spins are

initially in phase but begin to dephase over time. The180◦ pulse reverses the phase of

the spins. The spins continue to dephase in the same direction, which brings them back

into phase. This forms an echo, after which the spins start todephase again.

by applying another RF pulse that brings the spins back into phase, resulting in a spin-

echo. Figure 2.5 illustrates a basic spin-echo sequence. Inthis sequence, the90◦ pulse

is applied as usual and the spins are allowed to dephase. After some time, TE/2, a180◦

pulse is applied. This pulse reverses the phase of the spins,although they continue to

dephase in the same direction. The spins then start to come back into phase until they

form an echo at the timepoint TE, before dephasing again. We measure the signal at

the echo.

In order to obtain an image it is necessary to determine the spatial location of the

spins providing the signal. This is achieved by applying magnetic gradients (i.e. by

varying the stength of the magnetic field spatially). These gradients are used to alter

the phase and frequency of the spins depending on their precise location within the

scanner and hence encode the spatial location in the signals. The final step in image

formation is to convert the frequency and phase informationto a spatial image via a

Fourier transform [23].
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Figure 2.6: Illustration of pulsed-gradient spin-echo sequence [24]. Diffusion-

weighting gradients (grey blocks) are inserted either sideof the180◦ pulse of the spin-

echo sequence to sensitise the protocol to diffusion processes.

2.2 Diffusion-weighted Imaging and the Reconstruc-

tion Problem

In the previous section we introduced the spin-echo imagingscheme. This scheme can

be extended to capture information about the diffusion of water molecules by applying

a diffusion-weighted field gradient either side of the180◦ pulse. These gradients are

separate to those used in image formation. Figure 2.6 illustrates the diffusion-weighted

pulse sequence, known as the pulsed-gradient spin-echo sequence (PGSE) [24]. The

amount of diffusion weighting is controlled by varying the gradient strengthΓ, duration

δ, orientation, and the time between the onsets of the two gradient pulses∆. The direc-

tion in space in which the magnetic field strength of this gradient changes is referred to

as the “gradient direction”.

Figure 2.7 illustrates how spins are affected by the diffusion-weighted gradients.

In this sequence, the first diffusion-weighted gradient alters the phase of the spins along

the gradient direction. The second diffusion-weighted gradient is after the180◦ pulse

and effectively applies the opposite phase encoding to the first gradient. If the spins

do not diffuse to a different position along the gradient direction during the interval

between the diffusion weighted blocks (second row), the second gradient will cancel

out the effects of the first gradient and restore the spins to their original phase; the

signal will be exactly the same as a T2-weighted signal. However, if the spins move
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Diffusion gradients

Phase (no diffusion)

Phase (diffusion)

Figure 2.7: Illustration showing how magnetic gradients capture diffusion. The top row

shows the gradients. The second row shows the effect of the diffusion gradients on the

phase of static spins and the third row shows their effect on the phase of diffusing spins.

Each column shows a single time point.

to a different position in the gradient (third row), the spins will not be brought back

into phase and signal will be attenuated because the net magnetization is reduced. It

is worth noting that we do not observe the diffusion of individual spins. Instead, we

observe the average diffusion properties of the mass ensemble of the spins within an

image voxel.

2.2.1 Diffusion and the Apparent Diffusion Coefficient (ADC)

Einstein [25] showed that, given a sufficiently large numberof freely diffusing particles,

the distribution of the particle displacements in a given time will be Gaussian. Since

the displacements of freely diffusing particles are directly proportional to the diffusion

time, a constant of diffusivity (known as the diffusion coefficient) can be calculated. In

diffusion MRI, we can estimate the diffusion coeffient of freely diffusing particles from

observations of the displacement over a given time.

When diffusion is observed in a sample however, the microstructure of biological

tissue provides many barriers to diffusion, so the water molecules do not experience

free diffusion. Estimates of the diffusion coefficient willbe affected by this underlying

microstructure. Specifically, the diffusion coefficient ofwater in tissue will appear

lower than that of freely diffusing water. This lower coefficient is referred to as the

apparent diffusion coefficient (ADC) [26]. The ADC providesuseful information about

the underlying microstructure.
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Figure 2.8: Examples of unweightedA?(0) image (left) and diffusion-weighted images

for a single slice of human brain data. The arrow above each diffusion-weighted image

indicates the direction of the gradient.

The ADC is measured in a single direction. When the microstructure has no pref-

erential direction over the space of an image voxel, the probability of a water molecule

displacing a given amount is the same in every direction; thescatter pattern of water

molecules is isotropic. In this case, the value of the ADC will be the same in every

direction. However, if the microstructure being imaged is directionally dependent, the

value of the ADC will change depending on the gradient direction. For example, the

scatter pattern of water molecules in white-matter will be anisotropic and reflect the

underlying orientation of the white-matter. The directional dependence of the ADC

can be removed by averaging the measure over three orthogonal directions.

2.2.2 The Reconstruction Problem

In the previous section, we discussed how microstructure affects diffusivity. In this

section we provide a bit more detail and outline the reconstruction problem. The dis-

placement of particles in 3D is called the scatter pattern,p. The features ofp provide a

rich source of information about the underlying microstructure, such as the orientation

of white-matter fibres. One of the main technical goals of diffusion MRI, referred to as

the reconstruction problem, is to recover the scatter pattern of diffusing water from a set
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of measurementsA(qi), i = 1, ..., N . Figure 2.8 shows examples of images with differ-

ent diffusion gradient directions for a single slice of human brain data. There are clear

difference between the images and we can see structured regions where white-matter is

oriented in the same direction as the gradients. These regions are shown as dark grey

areas on the images. An unweighted image is provided on the left for comparison.

One simple model (theq-space model) of the relationship between the measured

signal and the scatter pattern is

A(q) = (A?(0)−1A?(q)) =

∫

R3

p(x) cos(q · x)dx, (2.4)

whereq is a wavevector in q-space,A?(q) is a measurement prior to normalisation,

A?(0) is a measurement atq = 0 for normalisation, andA(q) is the normalised mea-

surement. For a derivation of equation 2.4 see [27]. The wavevector depends on the

length, strength and orientation of the gradient pulses during the measurement sequence

and the diffusion timet on the pulse length and separation. For pulsed-gradient spin-

echo measurements, for example,q = γδΓ and t = ∆ − δ
3
. Often we separateq

into a scalar wavenumber|q| and a diffusion encoding direction̂q = q/|q|, which is

the direction of the magnetic field gradient in the diffusion-weighted pulses. Theb-

value summarizes both diffusion time and wavenumberb = t|q|2. Theq-space model

in equation 2.4 assumes the displacements of diffusing particles is negligible during

the application of the diffusion gradients compared with their displacements during

the time between gradient onsets, i.e.δ << ∆. Often that assumption is violated in

practice although theq-space model still provides a useful approximation. Other mod-

els, such as the Gaussian Phase Distribution [28] or Callaghan’s matrix method [29]

provide more accurate but complex approximations.

2.3 Diffusion Tensor Imaging

Diffusion Tensor Imaging [3] assumes that the scatter pattern, p, is a zero mean trivari-

ate Gaussian distribution, i.e.

p(x) = ((4πt)3 det(D))−
1
2 exp

(

xTD−1x

4t

)

, (2.5)

whereD is the diffusion tensor andt is the diffusion time. Substituting (2.5) into (2.4)

gives

A(q) = exp(−tqT Dq). (2.6)
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Figure 2.9: Illustration of a diffusion tensor ellipsoid including its three eigenvectors.

The diffusion tensor,D, is a symmetric3 × 3 matrix. It has six free parameters

which are estimated using a minimum of six normalised measurements,A(q). Thus,

DTI requires at least sevenA?(q) including an unweighted (T2) measurement,A?(0),

for normalisation. Figure 2.9 shows an illustration of a tensor represented as a diffusion

ellipsoid. The principal eigenvector of the tensor,e1 provides us with an estimate of

the dominant fibre orientation, which we use in tractography. The eigenvalues,λ1, λ2

andλ3, of the tensor provide useful information about the shape ofthe tensor which are

used to calculate various scalar measures (see section 2.3.1, below).

The shape of the diffusion tensor depends on the underlying microstructure. Fig-

ure 2.10 shows diffusion tensor ellipsoids for a slice of human brain data. In white-

matter bundles, the tensor elongated in the direction of thewhite-matter (figure 2.10,

top left). In regions of grey matter and CSF there is no preferred orientation so the diffu-

sion tensor is approximately isotropic (middle), althoughthe eigenvalues of the tensor

will be larger in CSF, which reflects increased diffusivity in free-water compared to

dense tissue. Finally, the tensor cannot model multiple fibre orientations, so in regions

containing two fibre populations the ellipsoid takes on an oblate shape (bottom).

2.3.1 Scalar Indices

Several statistics are commonly obtained from the diffusion tensor. The two most com-

mon measures are mean diffusivity (MD) and fractional anisotropy (FA). Mean diffu-

sivity is a measure of the overall amount of diffusion in a voxel, i.e.
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Figure 2.10: Example of DTI for a slice of brain data. The glyphs showing the shape

of the tensor are overlaid onto a fractional anisotropy map (see section 2.3.1).

λ̄ =
Tr(D)

3
. (2.7)

Figure 2.11a shows an example of an MD image. In this image, dark regions are ar-

eas where there is low diffusivity; light regions indicate high diffusivity. Diffusion is

restricted in both grey- and white-matter, so both of these tissues are displayed as grey

regions and there is little contrast. Diffusion in cerebral-spinal fluid (CSF) is far less

restricted and therefore displayed as white regions.

The fractional anisotropy (FA) of the diffusion tensor describes how much it de-

viates from a sphere. Specifically, it is the normalised standard deviation of the eigen-

vectors ofD,

FA =

(

3

2

3
∑

i=1

(λi − λ̄)2

)1/2( 3
∑

i=1

λ2
i

)−1/2

(2.8)

In regions of deep white-matter, where the diffusion of water molecules is re-

stricted by the microstructure of the axons, we expect very sharp diffusion tensors

which have a high FA. Conversely, in grey-matter and cerebral spinal fluid (CSF),

where there is no microstructure, or it has no preferential direction on the scale of an

image voxel, we expect spherical tensors and a low FA. Figure2.11b shows an example

FA image. The light areas of the image are areas of high anisotropy (i.e. fibrous white-

matter) and dark areas are areas of low anisotropy (such as grey matter). Directional
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a) b)

c)

Figure 2.11: a) Mean Diffusivity, b) Fractional Anisotropyand c) color coded Frac-

tional Anisotropy (red=left/right, green=anterior/posterior, blue=superior/inferior) im-

ages from a DTI reconstruction of human brain data.

information can be shown by colour coding the image; one approach is to multiply the

FA with the absolute value of the principal eigenvector ofD to get the RGB components

of the pixel [30]. The result of colour coding the FA image is shown in figure 2.11c. In

this image, red shows left-right diffusion; green shows anterior-posterior diffusion and

blue shows superior-inferior diffusion.

2.3.2 Fitting

A standard approach for calculating the diffusion tensor isto fit to the log measurements

using a least squares fit. Taking the log of the measurements yields a linear relationship,

i.e.

log(A) = −bD. (2.9)

However, better results can be obtained by fitting directly to the measurements

(e.g. [31]) since the error distribution will be closer to normal than for the log fit. In

addition, constraints can be placed on the diffusion tensorwhen fitting directly toA(q)

to improve the stability of the fitting procedure. For example, the tensor can be made
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Figure 2.12: Illustration of a spherical acquisition sampling of q-space.

cylindrically symmetric (λ1 = λ2 or λ2 = λ3) by settingD = υeeT + BI [32], where

e is the principal eigenvector of the diffusion tensor andI is the identity tensor.

2.3.3 Acquisition Requirements

Although it is possible to calculate the diffusion tensor from just seven measurements,

in practise many more are often used to reduce the effects of noise. The standard

approach is to makeN measurements with non-zero wavenumbersqi, i = 1, ..., N . The

gradient directionŝqi are unique and distributed uniformly over the surface of a sphere

(see figure 2.12). In addition to this, a furtherM measurements are made withq = 0.

This type of acquisition scheme is known as a “spherical acquisition scheme” [33] since

theqi all lie on a sphere inq-space. It is worth noting that the length scales measured

can be adjusted by altering the radius of the sphere on whichqi lie. Thus, the results

depend on the radius of the sphere. This is true for all the methods that use the spherical

sampling scheme. Although spherical acquisition schemes are the most common, the

qi do not need to be distributed on the surface of a sphere. It is possible that another

acquisition scheme may improve the results of all the reconstruction algorithms.

2.3.4 Limitations

The Gaussian model used by DTI can only model a single fibre orientation. In many

voxels, the signal departs from this Gaussian assumption. For example, many voxels

contain signal contributions from several fibre populations. Since the diffusion tensor

can only model one peak, DTI provides limited and potentially misleading information

in these voxels. We describe this problem in more detail in the following chapter.
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2.4 Tractography

Tractography uses information about the orientations of the fibre populations present in

each voxel to estimate the paths of fibre bundles through the brain. Figure 2.13 shows

paths (also called streamlines) generated using tractography to visualise the cortico-

spinal tracts of a brain. There are several applications fortractography. First, tractog-

raphy can be used to determine the connectivity of the brain [34, 35]. The information

about the paths of the white matter bundles can also be used inneurosurgical planning

[7] and to assess the impact that surgery has on white matter tracts [8]. For example,

tumours can displace white-matter pathways by several centimetres. It is necessary to

determine the new locations of these pathways prior to surgery to avoid damage to these

structures. In terms of evaluation, the degree to which specific white-matter tracts have

been spared and white-matter reorganisation can be investigated, as well as their effect

on clinical scores.

Figure 2.13: An example of tractography.

There are two types of tractography algorithm, deterministic and probabilistic. We

describe both types in the following sections.

2.4.1 Deterministic Tractography

Deterministic tractography uses estimates of fibre-orientations in each voxel (such as

the principal eigenvector of the diffusion tensor) to propagate a path through the brain.

The path starts at a seed point and then propagates from pointto point until some termi-
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nation condition is satisfied. Figure 2.14 illustrates the process. Paths estimated using

deterministic tractography are binary; two points are either connected or not connected.

Also, the streamlines generated using this method can be erratic. Several factors cause

this, including noise and patient motion [36]. In some deterministic tractography al-

gorithms, the fibre-orientation estimates are interpolated to ensure that the streamlines

are smooth, for example [37]. Some algorithms attempt to improve results by imposing

constraints such as limiting the curvature of the path.

Figure 2.14: Illustration of basic streamline tractography. The seedpoint is indicated

by the circle.

Mori et al [38] describe the FACT algorithm, which is an extension to the stream-

line approach. Here, they adjust the step size depending upon the continuity of the local

fibre-orientation estimates. Where adjacent fibres are well-aligned a large step is taken;

when there is no continuity between adjacent fibre-orientation estimates a small step is

taken. This variable step size attempts to prevent the streamline from deviating from

the true trajectory of the white-matter, for example at points of high curvature or when

the streamline is close to a boundary.

More recently, Weinstein et al [39] have introduced the Tensor Deflection (TEND)

tractography algorithm. This algorithm uses the entire diffusion tensor to calculate the

appropriate deflection, as opposed to just the principal eigenvector. Therefore, this

method uses the diffusion tensor as the true PDF of the underlying fibre distributions.

In voxels where the anisotropy is high, the streamline follows the principal eigenvector

of the diffusion tensor. However, as the diffusion tensor becomes more isotropic, the

path of the streamline is deflected less.



2.4. Tractography 38

2.4.2 Probabilistic Tractography

The main limitations of all deterministic tractography algorithms are that they do not

account for uncertainty in the fibre-orientation estimatesand are also unable to recover

some complex structures such as fannings. These limitations have lead to the develop-

ment of probabilistic algorithms. Probabilistic tractography [40, 41, 42] uses models of

uncertainty in fibre-orientation estimates, along with standard streamline tractography,

to calculate the probability of voxels being connected to a seed voxel. The proce-

dure runsN streamline tracking processes from each seed point. For each streamline,

each fibre-orientation estimate is randomly sampled from a probability density func-

tion (PDF) that models the distribution of fibre orientations in each voxel. The index of

connectivityΦ(v) is then

Φ(v) = lim
N→∞

Φ(v, N) ≈
µ(v, N)

N
, (2.10)

whereµ(v, N) is the number of occasions at which voxelv is crossed by a streamline.

Figure 2.15 illustrates the steps of the probabilistic tractography algorithm. Figure

2.16 [34] shows the connection probability from a seed voxelin the lateral geniculate

nucleus over three slices of a brain dataset.

Figure 2.15: Main steps of probabilistic tractography algorithm. A streamline is prop-

agated from the seed point (indicated by the circle), perturbing the fibre-orientation

estimate at each step according to some uncertainty estimate (left). This process is

repeated multiple times and provides us with a set of streamlines (centre). The connec-

tivity index is then the proportion of streamlines that passthrough each voxel (left).

Several alternative methods for modelling the uncertaintyof fibre-orientation es-
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timates have been developed. These fall into three main categories; calibration-based,

bootstrap and Bayesian estimates.

Figure 2.16: An example of probabilistic tractography. Theimages show the connec-

tion probabillity from a seed voxel in the lateral geniculate nucleus. Taken from [34]

2.4.2.1 Calibration-based Estimates of Uncertainty

Calibration-based methods use some feature of the reconstruction to estimate the un-

certainty of the corresponding fibre-orientation estimate. Parker et al [40, 10, 43], Cook

et al [36] and Lazar et al [41] all use a calibration approach to estimating uncertainty.

They construct a mapping from some rotationally invariant feature of the diffusion to

the variance of the fibre-orientation estimate using simulations. In the simplest algo-

rithm [40], for example, Parker et al create a population of deflection angles between a

known fibre direction and an estimate reconstructed by fitting the diffusion tensor (DT)

to noisy synthetic data. They model the deflection angles with a Gaussian distribution

and repeat for several levels of anisotropy in the syntheticdata. Finally, they fit a lin-

ear model of the relationship between the FA and the varianceof the Gaussian model,

which they use to predict the variance in each voxel during tractography.

Cook et al [36] use calibrated PICo with more standard spherical distributions

such as the Watson and Bingham distributions [44] instead ofParker et al’s Gaussian

to model fibre-orientation uncertainty. They evaluate their method using synthetic data

and within PICo tractography tasks on brain data. They show that both the Watson
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and Bingham distributions are better for modelling the uncertainty of fibre-orientation

estimates than Parker et al’s Gaussian model. In particular, the Bingham model captures

anisotropy in the uncertainty.

2.4.2.2 Bootstrap Estimates of Uncertainty

Jones et al [45, 46], Lazar [47] and Haroon et al [48] use statistical bootstrap techniques

to obtain samples of the fibre-orientation estimate distribution. The basic technique,

developed by Jones et al [45] uses conventional bootstrap method to predict uncertainty.

First, they acquire 8 repeats of diffusion weighted brain data. Then, for each voxel, the

bootstrap method is employed to generate bootstrap data. The principal eigenvector of

each bootstrap sample yields a population of fibre-orientation estimates in each voxel,

which can be used directly in the probabilistic tractography algorithm.

One inherent problem with the basic technique described in [45] is that multiple

acquisitions are required. Jones et al [46] overcome this limitation using the Wild boot-

strap technique [49]. The wild bootstrap technique involves modifying the residuals

of a diffusion tensor fit, and then re-fitting the diffusion tensor. The bootstrap esti-

mates of fibre-orientation can then be used in the same was as the estimates from the

conventional bootstrap.

2.4.2.3 Bayesian Estimates of Uncertainty

Behrens et al [50] and Hosey et al [51] use Markov Chain Monte Carlo (MCMC) to

sample the posterior distribution of the parameters of a diffusion model (including fibre

orientation) directly. Behrens et al [50] use a model which consists of an isotropic

component and a highly anisotropic component to form a “balland stick” model (see

section 3.3.2 for details). They estimate parameters for this model, including the fibre

orientation, using Monte Carlo simulation. These parameters are then used directly in

the probabilistic tractography algorithm as samples of thedistribution of orientations.

Friman et al [52] also use a Bayesian approach to estimate uncertainty, but they

avoid the usage of MCMC by fixing some of the parameter in theirmodel of diffusion

and then integrating over the unit sphere. As a result, this method is faster than those of

[50] and [51]. However, the constrained model is an over-simplification of the diffusion

process.
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2.5 Conclusion

In this section we provided a basic introduction to MRI and how it is extended to cap-

ture diffusion processes. We then described the problem of estimating features of the

scatter pattern given a set of measurements, as well as a popular reconstruction al-

gorithm (DTI) that assumes a simple Gaussian model of the scatter pattern. Finally,

we show how tractography algorithms use estimates of fibre-orientation to estimate the

paths of white-matter tracts through the brain. However, there are many complex white-

matter configurations in the brain and many, if not all, white-matter tracts will include

regions of complex microstructure. Therefore, incorporating multiple-fibre reconstruc-

tion algorithms is desirable. In the next chapter we introduce the main multiple fibre

algorithms as well as some of the approaches to using them in tractography.



Chapter 3

Multiple Fibre Reconstruction

Techniques

3.1 Introduction

The previous chapter introduces diffusion tensor imaging (DTI). The technique has

become popular because it provides two unique insights intotissue microstructure: it

quantifies diffusion anisotropy, which is a useful index of white matter integrity, and

provides an estimate of the principal direction of axon fibres, which enables tractogra-

phy. Powerful though it is, DTI has several limitations. Onekey limitation is that it can

only recover a single fibre orientation in each voxel and fails at fibre crossings. This

limitation is a major obstacle for tractography and connectivity mapping. However, it

is not a limitation of diffusion MRI in general, but merely the modelling assumptions

that DTI makes. This chapter covers a variety of alternativemodels and algorithms that

aim to recover more detailed information about the orientations of fibres from diffusion

MRI measurements and, in particular, to resolve the orientations of crossing fibres. We

start the chapter in section 3.2 with a conceptual overview of the limitations of DTI and

the problems that crossing fibres and other complex fibre configurations present. Sec-

tions 3.3 and 3.4 outline the key methods for modelling and resolving multiple fibres.

We summarize the pros and cons of each method at the end of section 3.4. Section 3.5

discusses specific information we can extract from the output of the algorithms in sec-

tions 3.3 and 3.4 such as multiple dominant-orientations and indices of anisotropy or

complexity. Section 3.7 discusses applications, in particular, to improve tractography

and connectivity mapping. This chapter is based on work published in [18] in 2009.
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The algorithms selected were the most commonly used at the time of writing.

3.2 Multiple Fibres: What’s all the fuss about?

In white matter, the configuration of axon fibres has a big effect on the shape ofp.

White matter axons are tiny compared to typical MRI voxels. Axon radii are in the

range [0.1,10]µm, whereas voxels typically have sides in the range [1,5] mm.Voxels

therefore contain hundreds of thousands of axon fibres, which can adopt a wide range

of often complex configurations. Some configurations produce Gaussian-like scatter-

ing, but others can producep with highly non-ellipsoidal contours. Whenp departs

significantly from the Gaussian model, the DT contains very little useful information

and can be actively misleading. Figure 3.1 shows some relatively simple configurations

of axons within single image voxels together with an illustration of the scatter pattern

we expect within each. We depict the scatter as distributions of displacements from

one starting position, although in a real diffusion MRI experiment, the initial positions

are approximately uniformly distributed over the voxel. Figure 3.1 also shows the DT

that gives the best approximation of eachp and the principal direction of each DT,

which is the estimate of the dominant fibre orientation for each configuration. The last

two columns show an object called the fibre orientation distribution and the directional

variation of the diffusion signal, both of which we explain below.

When the fibres are all straight and parallel (row 1 of figure 3.1), p is highly

anisotropic and elongated in the fibre direction. The DT reflects the shape ofp, since

p has approximately ellipsoidal contours, and the principaldirection gives a good es-

timate of the single fibre orientation. The second and third rows show more complex

configurations in which the fibres are fanning and bending, within a plane, respectively.

In both cases,p and the corresponding DT are less anisotropic than for the straight par-

allel fibres. In particular, the largest eigenvalue becomessmaller and the middle eigen-

value is larger. In the straight parallel fibres example, molecules tend to move in the

vertical direction in the figure, wherever they are in the voxel. In the bending example,

however, movement depends on location within the voxel. Molecules at the bottom

of the voxel tend to move along an axis about30◦ to the vertical, while those in the

middle tend to move along the vertical axis and at the top along an axis30◦ the other

side of the vertical. The scatter pattern for the whole voxelcontains contributions from



3.2. Multiple Fibres: What’s all the fuss about? 44

Figure 3.1: Illustration of various simple configurations of axon fibresthat arise frequently

in brain-image voxels (first column). The second column shows the kind of scatter pattern we

expect from each of the fibre configurations in the first column. The third column shows the

best-fit DT, the fourth shows the principal direction of the DT and the fifth shows the fibre

orientation distribution function (fODF) for each configuration. The sixth column shows the

directional variation of the diffusion-weighted signal for fixed diffusion weighting. In the last

row, the DT is perfectly oblate so the principal direction inundefined. In practice, noise will

cause the principal direction to have random orientation inthe plane of the two crossing fibres.
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all areas; on average, we see more horizontal scattering than in the straight parallel

fibres configuration. Note, however, that the bending does not affect the displacements

in and out of the bending plane, so the smallest eigenvalue ofthe DT remains the same

as the straight parallel fibres and the DT is intermediate between prolate and oblate.

The fanning configuration produces an identical DT to the bending configuration in a

similar way. For both the fanning and bending configuration,the principal direction is

unchanged from the straight parallel fibres configuration. The principal direction now

provides a good estimate of the mean fibre direction, but doesnot reflect the full com-

plexity of the configuration. The shape of the DT may convey some information about

the configuration, but it is difficult to separate the effectsof the configuration of fibres

from other effects, such as fibre size and density and contributions from other tissue

types. Moreover, the fanning and bending configurations areindistinguishable given

only the DT.

The last two rows in figure 3.1 show crossing fibre configurations. The fourth row

shows an oblique crossing. Althoughp for the oblique crossing is different to the fan-

ning and bending configurations and clearly has non-ellipsoidal shape, the best-fit DT

is identical to the fanning and bending configurations. The principal direction is now

actively misleading, as the mean fibre direction does not correspond to the direction of

any fibre in the voxel. The orthogonal crossing producesp with cross-shaped contours

that reflect the multiple fibre orientations. The DT cannot capture this contour shape

and the closest Gaussian approximation top is a perfectly oblate DT, which contains

none of the useful directional information in the truep.

For comparison, the fifth column in figure 3.1 shows the distribution of fibre ori-

entations within each configuration. This object will be important later in this chapter

and we shall refer to it as the fibre orientation distributionfunction (fODF). The fODF

quantifies the fraction of fibre portions (note that fibres mayvary in orientation along

their length) within a voxel with each orientation. Mathematically, the fODF is a prob-

ability distribution on the sphere, as each point on the sphere corresponds to a unique

orientation. For example, the simplest configuration in figure 3.1 is the straight paral-

lel fibres in the first row. This configuration has only one fibreorientation, since the

orientation of all the fibres is the same and does not vary along the fibre lengths. The

fODF is therefore zero for any orientation other than vertically upwards and has a sharp
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Figure 3.2:Illustration of the fibre-orientation distribution function in a voxel containing bend-

ing fibres. The fibre orientation depends on location in the voxel (left). The fODF captures the

set of orientations from all positions with the voxel. Centre-left shows the set of orientations

drawn on the bending configuration on the left panel. The two images on the right show differ-

ent representations of the fODF. The first method (centre right) scales the radius of the sphere

by the value of the fODF. The second method uses a colour map torepresent the fODF; hot

colours indicate high values of the fODF.

spike in the upward direction. (The pictures in figure 3.1 exaggerate the widths of the

peak for visibility.) Other configurations have less trivial fODFs. Figure 3.2 shows an

illustration for the bending configuration in row 3 of figure 3.1. Each fibre has a range

of orientations from up and left at the bottom of the voxel, tovertically up at the centre

and up and right at the top. Each orientation contributes to the fODF so the fODF is

non-zero for a range of orientations in the plane of the bending, but, for this idealized

bending example, zero everywhere else. The fODF therefore has the shape of a shovel

or paddle head. (Again, the figure exaggerates the width of the shovel for visualiza-

tion.) Figure 3.2 uses two visual representations for functions on spheres to illustrate

the fODF. The first (“stretched sphere”) stretches the radius of the sphere by the value

of the function; the second (“colour”) uses colour to reflectthe value of the function

in each direction. In the stretched-sphere representation, peaks of the shape reflect the

most common fibre directions. In the colour representation,hot colours indicate high

values and appear in the most common directions.

Spherical acquisition protocols became standard for DTI because they reduce the

dependence of anisotropy and fibre-orientation estimates on true fibre-orientation (see

[53]). These protocols acquire diffusion weighted measurements with fixed diffusion

weighting (b-value) but varying direction. The measurement therefore depends only on
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orientation and thus is a function of the sphere like the fODF. Figure 3.1 also shows

how the measurement varies as a function of direction for each configuration. The

measurement function is very different to the fODF. For simple configurations (rows

1-3) the measurement is small where the fODF is large, since more diffusion in the

mean direction causes more signal attenuation. However, the last two rows reveal a

more complex relationship between the two functions. In theorthogonal crossing-fibre

configuration, the signal has local maxima in the fibre directions whereas in the oblique

crossing configuration neither the local maxima or minima ofthe signal are in the fibre

directions. Diffusion tensor imaging protocols typicallysample this measurement func-

tion in 30-100 directions (see [53]). These sets of measurements capture enough of the

directional variation of the diffusion weighted signal potentially to provide the angular

resolution to resolve crossing fibres. Early experiments [54, 55] compare these spher-

ical measurement functions with what we would expect ifp were Gaussian. Results

show clear departures from the Gaussian consistently in known fibre-crossing regions.

These observations motivated the development of a variety of techniques for resolv-

ing multiple fibre orientations and capturing complex fibre configurations. Some of

these techniques use more flexible models than DTI, such as multi-tensor models, to

separate contributions from distinct fibre populations; wecover these methods in sec-

tion 3.3. Other non-parametric techniques aim to estimate the full distribution of fibre

orientations, i.e. the fODF, in each voxel. Some of this latter class, including Diffu-

sion Spectrum Imaging, QBall Imaging and Persistent Angular Structure MRI, use the

directional structure ofp to reflect the fODF. Others, such as spherical deconvolution

methods, combine modelling and non-parametric approachesto reconstruct the fODF

more directly. Section 3.4 covers non-parametric approaches.

3.3 Model-based Approaches

This section looks at model-based approaches that resolve fibre-crossings by modelling

distinct fibre populations separately.

3.3.1 The Multi-Tensor Model

The multi-tensor model is a simple generalization of DTI, which replaces the Gaussian

model forp with a mixture ofn Gaussian densities. The model assumes the voxel
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Figure 3.3:Illustration of a multi-compartment model for a crossing fibre-configuration (first

panel). In this example, the fibre configuration can be split into two compartments (second

panel), which each have their ownp (third panel). Each compartment is modelled by a separate

DT (fourth panel). When the DTs are combined, they model the completep for crossing.

containsn distinct groups or “populations” of fibres and that diffusing molecules stay

within only one population (no exchange between populations). The approach models

each population by a separate DT. Figure 3.3) illustrates the idea forn = 2 and the

crossing configuration in the last row of figure 3.1. Thep for the whole voxel is the

sum of the Gaussians that each DT represents weighted by the fraction of the volume

that each population occupies. We can write this mathematically as

p(x) =

n
∑

i=1

aiG(x;Di, t), (3.1)

where eachai ∈ [0, 1] is the volume fraction of the i-th fibre population and
∑

i ai =

1, G(·;D, t) is the Gaussian function with zero mean and covariance2Dt, t is the

diffusion time andx is a displacement.

In multi-tensor approaches, we estimate the parameters of the model forp, i.e.

a1, ..., an andD1, ...,Dn, from a set of diffusion-weighted measurements. With the

model in equation 3.1, we can write the normalized diffusion-weighted signal

A(q) =

n
∑

i=1

ai exp(−tqT Diq), (3.2)

For spherical acquisition schemes, botht and|q| are fixed (sob is fixed) and only

the gradient direction varies among measurements, so we could rewrite equation 3.2
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A(q̂) =
n
∑

i=1

ai exp(−bq̂Diq̂). (3.3)

Although spherical acquisition schemes are common for fitting multi-tensor models,b

may vary among measurements andq andt may even vary independently.

The multi-tensor model assumes that the number,n, of distinct fibre populations

is known. Practical considerations, such as the number of measurements and the mea-

surement noise level, limit the number of orientations the method can resolve reliably

and most work uses a maximumn of 2. Whenn = 1, the model is exactly that used in

DTI.

Unlike the DT model, the parameters,D1, ...,Dn of the multi-tensor model cannot

be expressed as a linear function of the measurements so the model fitting requires

non-linear optimization. Once fitted, the principal eigenvector of eachDi provides a

separate fibre-orientation estimate.

Figure 3.4 visualizes the full two-tensor model in each voxel of an axial slice

of human brain data. The brain data consists of 60 diffusion-weighted images with

b = 1200 s mm−2 and unique evenly distributed gradient directions and oneb = 0

image for normalization. The image size is128×128×60 with isotropic voxels that are

approximately2×2×2 mm3 in size. Glyphs showing contours ofp are overlaid onto a

fractional anisotropy (FA) map from the one-tensor model (i.e. DTI). The figure shows

one- and two-tensor models for two regions of interest. Panels 3.4a and 3.4b show a

region of fibre crossing where several fibres intersect, including the superior fronto-

occipital fasciculus and the corpus callosum. In figure 3.4a, the two-tensor models

reveal multiple directions, but DTI (figure 3.4b) fits oblatesingle tensors that fail to

reveal any useful direction information. Figures 3.4c and 3.4d highlight the limitation

of the two-tensor model. The region has a single dominant fibre orientation which the

single tensor recovers very well. The two-tensor model can become unstable when

only one population is present and produce spurious results. We have emphasized this

in figure 3.4c by showing both DTs in each voxel without using the weightingsa1 and

a2. The fitted volume fractions of the DTs less well aligned withthe fibre direction

tend to be small, but the figure reveals greater deviation of the dominant direction from

the fibre direction than the single-tensor model in figure 3.4d.
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Figure 3.4:Two-tensor models fitted in each voxel of an axial slice of a normal human brain

dataset. The model is the full 13-parameter two-tensor model in every voxel. Ellipsoidal con-

tours ofp from both tensors are overlaid on a standard FA map. Inset images a and b show

two- and one-tensor models respectively for a crossing-fibre region. c and d show two- and

one-tensor models respectively for a region of the corpus callosum which has a single fibre-

population.
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3.3.2 Limitations, Refinements and Special Cases

The general form of equation 3.1 accommodates a wide range ofspecial cases with

different constraints on then DTs. Forn = 2, the full tensor has 13 free parame-

ters: the six components of each DT and one for the volume fraction a1 anda2 (since

a2 = 1 − a1). The large number of parameters is one cause of the instability we high-

light in figure 3.4. Constraints on the model can reduce complexity and help stabilize

the fitting procedure. For example, in the multi-tensor model, we can enforce positive

definiteness using the Cholesky decomposition, as in [56], or cylindrical symmetry on

the component DTs, as in [57], or fix the DT eigenvalues, as in [58]. Spatial regular-

ization techniques also help overcome the fitting problem byensuring voxel-to-voxel

coherence, see [56, 59].

A particularly simple model with the form of equation 3.1 is Behrens’ ball-and-

stick model. The ball and stick model [50, 51] assumes that water molecules belong

to one of two populations: a restricted population of water molecules in and around

fibres with scatter patternpr and a free population that does not interact with fibres and

has scatter patternpf . Behrens et al [50] use an isotropic Gaussian model forpf . They

use a Gaussian model forpr in which the DT has only one non-zero eigenvalue so that

particles move only in the fibre direction. The ball and stickmodel extends naturally to

multiple-fibres by including multiple “sticks” in the model.

The ball and stick model is deliberately over-simplified. Several related models

are similar in separating free and restricted compartments, but use more expressive

models for the components. Kaden et al [60] model diffusion in a similar way to the

ball and stick model, but replace the “stick” components with distributions of sticks

to capture less-trivial fODF structure that fanning or bending might produce. Assaf et

al’s Composite hindered and restricted model of diffusion (CHARMED) [61] models

pr with an analytical model for diffusion restricted to a cylinder [62] andpf with an

anisotropic Gaussian model (the “hindered” diffusion in the extra-cellular space).

The choice ofn presents a model-selection problem: in voxels with only one

fibre orientation, we lose accuracy by fitting a model withn ≥ 2. For example, fig-

ure 3.4c shows that the two-tensor model provides poorer estimates of the single fibre-

orientation in the corpus callosum than the one-tensor model. Ideally, we would fit a

one-tensor model in voxels with one fibre population, a two-tensor model in those with
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two populations, and so on. The statistics literature is extensive on model selection

and we will not review it here other than to mention some approaches used specifically

for choosing the number of fibres in diffusion MRI. Parker andAlexander [43] use the

spherical-harmonic voxel-classification algorithm proposed in [55] to classify voxels as

isotropic, one-fibre or two-fibre, but the method does not extend naturally aboven = 2.

Tuch [58] thresholds the correlation of the measurements with their predictions from

then = 1 model in each voxel separately to decide whether to usen = 1 or n = 2.

Behrens et al [9] use a Bayesian approach.

3.3.3 Acquisition Requirements

Alexander and Barker [57] recommend, based on simulations,using a spherical ac-

quisition withb in the range2200 − 2800 s mm−2 when acquiring data in 64 gradient

directions. With these settings the two-tensor model resolves60◦ crossings consistently

but consistently does not resolve30◦ crossings with SNR of 16).

3.4 Non-Parametric Algorithms

The model-based techniques in the previous section recovera finite number of domi-

nant fibre-orientations and do not naturally distinguish, for example, fanning or bending

configurations from parallel fibre populations. The motivation for all the methods in

this section is to estimate the fODF from diffusion MRI measurements, which provides

more insight into the underlying configuration. We call the methods in this section non-

parametric because they do not rely solely on parametric models ofp, but try instead to

reconstruct the fODF without placing modelling constraints on its form.

This section covers a variety of methods that reconstruct different functions of the

sphere and use them as estimates of the fODF. Diffusion spectrum imaging (DSI) and

QBall imaging reconstruct a function called the diffusion orientation distribution func-

tion (dODF). The DOT algorithm and the original PASMRI algorithm recover slightly

different functions that contain similar information to the dODF. Spherical deconvo-

lution methods recover a more direct estimate of the fODF. Webegin this section by

considering these different objects and how they relate to the fODF.

Like the fODF, the dODF is a probability distribution on the sphere. The dODF

is the probability that a diffusing water molecule moves in aparticular direction. That
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Figure 3.5:Illustration of ODFs for several simple white-matter configurations. The second

column shows the fODF for each configuration. The third and fourth columns show the dODF

and normalized dODF respectively for each white-matter configuration. The normalized dODF

is rescaled so that its minimum value becomes zero. This emphasizes the directional structure

of the dODF without affecting peak directions.

probability is not the same as the fraction of fibres with thatorientation. Figure 3.5

compares the fODF and the dODF for various axon fibre configurations. An immediate

qualitative difference between the fODF and the dODF is thatthe dODF is a smoother,

less spiky function. Consider the straight parallel fibres configuration. As discussed

in section 3.2, the fODF is zero apart from a single spike in the fibre direction. The

dODF is much broader, although the peak is still in the fibre direction. Although water

molecules are most likely to move in the fibre direction, moves in other directions, even

perpendicular to the fibres, are still common. Axon fibres have finite inner diameter so

accommodate perpendicular moves, as does the extra-cellular space, which also con-

tains diffusing water that contributes to the signal. Thus the dODF is non-zero for all

directions, even for the sharpest possible fODF. However, the broad structure of the

two functions is similar; in particular, the peaks are in similar directions.

The model-based approaches of the previous section do not recover an estimator

of the fODF directly, although we might consider the set of principal directions as an

fODF estimate that is non-zero only in a finite set of directions. Probabilistic tractogra-
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phy techniques (see section 2.4) often use the uncertainty on discrete fibre-orientation

estimates as an estimate of the fODF. The distinction between the uncertainty of dis-

crete fibre orientation estimates and the fODF is subtle but important. We shall refer

to the former as the uncertainty ODF (uODF), as it is also a probability distribution on

the sphere. The uODF in one direction is the probability that, under the assumption the

voxel containsn distinct fibre populations, one of those populations is in that direction.

That probability is not the same as the fraction of fibres witha particular orientation,

which is the fODF. Like the dODF, however, the uODF has similar structure to the

fODF and provides a useful estimate.

3.4.1 Diffusion Spectrum Imaging

Diffusion Spectrum Imaging (DSI) [63, 64] attempts to measure p directly and makes

no assumptions about tissue microstructure or the shape ofp. For an idealized pulse

sequence with infinitesimally short gradient pulses,p for diffusion timet is the Fourier

transform (FT) of the measurement functionA with pulse separationt (see sec-

tion 2.2.2). For this idealized pulse sequence,A depends only on wave vectorq, which

is a vector in 3D space that we can control by varying the gradient strength and orien-

tation (see [65]). Diffusion spectrum imaging acquires measurements for each of a grid

of wavevectors. This configuration of samples allows us to use a fast Fourier transform

(FFT), which provides a similar grid of samples of the FT of the measurement function,

i.e. p. Thus, DSI samplesA on a grid ofq and the FFT provides samples ofp on a grid

of displacementsx. The first two panels of figure 3.6 illustrate this step.

The acquisition scheme for DSI is very different to the spherical acquisition

schemes we have considered up to now. For spherical acquisition |q|, and thusb, is

fixed so all wavevectors are equidistant from the pointq = 0 and lie on a sphere in

q-space. The grid sampling scheme in DSI typically samples the whole interior of a

sphere in a regular grid of samples; figure 3.7 compares the two schemes.

The discrete representation ofp we get from the FFT is not directly useful for

estimating the fODF, since it is a function of 3D space. The dODF comes from a simple

projection ofp onto the sphere. The value of the dODF for each orientation isthe sum

of p at all points on a line through the origin with that orientation (see figure 3.7, third

panel). More formally, the dODFφ of p is [64]:
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Figure 3.6:2D illustration of estimating the dODF using DSI. The left panel shows the mea-

surement function as a function ofq The white spots show the values ofq at which we acquire

a measurementA(q) and have a grid formation. The second panel showsp, which is the FT of

A, together with the grid formation of displacement vectors at which the FFT provides a value

of p. To obtain the dODF (right), we interpolate the grid of samples ofp and integrate along

radial lines through the origin, as the third panel depicts.

Figure 3.7: 2D illustration of a grid sampling (left) and a spherical acquisition (right) for

samplingq-space.
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φ(x̂) =

∫ ∞

0

p(αx̂)dα (3.4)

wherex̂ is a unit vector in direction ofx. Diffusion spectrum imaging usually

computesφ(x̂) for each of a finite set of directionŝx by taking steps along the line in

directionx̂, interpolating the discretep to estimate its value at each step and summing

the values over all steps.

3.4.1.1 Limitations

The major limitation of DSI is the acquisition requirements. To cover the required 3D

grid of points inq-space typically requires an order of magnitude more measurements

than typical DTI spherical acquisition schemes acquire. Standard protocols typically

acquire 500-1000 measurements. In practice, image resolution must decrease to acquire

so many measurements in tolerable time.

A further limitation is reliance on the FT. The Fourier relationship betweenp and

A relies on infinitely short pulses. In practise pulses are notinfinitely short and have

length close to the diffusion time so depart significantly from the assumptions of the

technique. The effect is considerable blurring ofp and the derived dODF, although

strong peak directions are not affected a great deal.

3.4.1.2 Acquisition Requirements

In the original work [63], Wedeen et al use an acquisition with 500 values ofq and

a maximumb-value of20, 000 s mm−2. In [66], Kuo et al attempt to optimize the ac-

quisition scheme for DSI. They recommend a maximumb-value of6500 s mm−2 if the

number ofq is 515 and a maximumb-value of4000 s mm−2 with 203 measurements.

3.4.2 QBall Imaging

QBall imaging (QBall) [67, 68] approximates the dODF that DSI estimates using mea-

surements from a spherical acquisition scheme. Acquisition requirements are therefore

more manageable than DSI although the approximation of the dODF introduces some

blurring, which may reduce angular resolution and precision of peak directions.

The approximation of the dODF comes from a transform called the Funk Radon

Transform (FRT). The FRT is a transformation of spherical functions that maps one

function of the sphere to another. The FRT of a spherical function f at a point̂x on the
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Figure 3.8:Steps of the QBall Algorithm. We start (left) with samples ofA at fixed|q| with

various different directions. We interpolate on the sphereto approximate the continuousA at

fixed |q| (panel 2). To sample the dODF in one direction, we sum the interpolatedA around the

perpendicular equator (panel 3). We repeat the procedure invarious directions to obtain many

samples of the dODF (panel 4). Finally, we may interpolate toapproximate the continuous

dODF. In this figure points on the sphere indicate a sampled function; solid shading of the

sphere indicates a continuous function.”

sphere is the integral off over the great circleC(x̂) that lies in the plane perpendicular

to x̂ through the origin. The QBall approximation of the dODF is simply the FRT

of the measurement function on a shell inq-space (like those shown in figure 3.1).

Mathematically, we can write this

φ(x̂) =

∫

C(x̂)

A(q)dq̂, (3.5)

whereq̂ = q/|q|. Figure 3.8 illustrates the procedure.

In the absence of noise, the approximation ofφ becomes closer as the fixed|q|

or b-value of the measurements increases [64]. However, in practise, noise becomes

more significant as|q| increases and a good balance needs to be found, [69] studies the

trade-off in simulation.

The steps of the original QBall algorithm are

• Interpolate the discrete set of measurements on the sphere in q-space to estimate

the measurement at each point on each contourC(x̂).

• Compute FRT by summing interpolated measurements on even steps aroundC(x̂)

to get samples of the dODF.

• If required, interpolate the dODF samples with a linear basis for spherical func-

tions. This means we representφ as a linear combination of a set of simple
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functions that can be combined to approximate more complex functions:

φ(x̂) =
∑

k

βkθk(x̂), (3.6)

whereθk are the basis functions andβk are the weights.

These steps can be combined to a single matrix multiplication, which makes the

QBall algorithm computationally light. Tuch’s original implementation [67] uses ra-

dial basis functions to interpolateA and representφ. Appendix B provides a slightly

different, but general implementation for any linear basis[69].

Figure 3.9 shows dODFs reconstructed using Tuch’s originalQBall algorithm in

each voxel of the same slice as figure 3.4. For each glyph, we normalize the range of

the dODF to [0,1] to emphasize shape, as Tuch suggests in [64]. Figure 3.9a shows that

the dODFs have single peaks along the expected fibre directions in the corpus callosum.

In the fibre-crossing region, figure 3.9b, the dODF shapes reflect the orientations of the

crossing fibres but may not have separate peaks in each direction because the functions

are too smooth. However, theb-value in this dataset is lower than optimal for resolving

two fibre directions using QBall [64, 69].

3.4.2.1 Limitations and Refinements

Later work [70, 71, 72] use spherical harmonics in place of the radial basis function for

θ, which gives a more compact representation ofφ and avoids numerical computations

as the FRT has analytic form ifA in equation 3.5 is a linear combination of spherical

harmonic functions.

A related method called the Diffusion Orientation Transform (DOT) [73] calcu-

lates a variant of the dODF. The DOT is a single contour ofp at fixed radiusR0. The

single contour ofp is distinct from the dODF, which has contributions from all con-

tours. In practice, for sensible choices of|q| andR0, the two functions appear similar.

3.4.2.2 Acquisition Requirements

In [67], Tuch uses an acquisition with 252 gradient directions at ab = 4000 s mm−2.

Kuo et al [16] recommend using ab of 3000 s mm−2 with 493 gradient directions and

2500 s mm−2 with 253 directions. More recently, Tournier et al [74] showthat QBall

with 80 gradient directions atb = 4000 s mm−2 when SNR=95 can resolve45◦ cross-

ings consistently but not30◦ crossings using data acquired from the phantom of Lin et
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Figure 3.9: Spherical harmonic QBall dODFs in slice used in figure 3.4. The dODFs are

overlaid on a standard FA map. The regions of interest show dODFs for the same crossing-fibre

region (a) and single-fibre region (b) in figure 3.4.
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Figure 3.10:Spherical Deconvolution. The response functionR convolved with the fODF,f ,

gives the observedA. In the simple example, the convolution becomes a sum for twodirections

asf is zero for all others.

al [75]. Alexander [69] shows in simulation that, at SNR=16 with 54 gradient direc-

tions, QBall gives best performance withb in the range2000 − 2500 s mm−2. At these

settings the method resolves two-fibre crossings consistently if the separation angle is

85◦ or above. The method requires an increase in SNR to 24 or gradient directions to

100 to resolve three orthogonal fibres consistently.

3.4.3 Spherical Deconvolution

Spherical Deconvolution (SD) was originally proposed by Anderson [76] and inde-

pendently by Tournier et al [77] to recover the fODF directly, rather than some other

function with similar structure. The key idea is to considerthe set of measurements as

the sum of measurements we would get from a fibre population with each orientation

weighted by the fraction of fibres with that orientation. Mathematically, each measure-

ment is then a convolution of the measurementsR(q; x̂) for a single fibre population

with orientationx̂ with the fODF,f ,

A(q) =

∫

f(x̂)R(q; x̂)dx̂, (3.7)

wheref is the fibre orientation distribution. Figure 3.10 shows a simple example for

a voxel containing fibres with two orientations only. In the example,f is non-zero in

only two orientations, soA is the sum ofR rotated for each of those orientations. In

general, however,A will contain contributions forR rotated to all directionŝx.

Spherical Deconvolution aims to recoverf by deconvolving the measurements

with R. The procedure requires a model for diffusion in a fibre population to obtain

R. Reference [76] models diffusion within fibres in a similar way to Behrens’ ball and
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stick model (see section 3.3.2), i.e.,p is a Gaussian but water molecules move only

in the fibre direction. With this model,R(q; x̂) = exp(−td(q · x̂)2), wheret is the

diffusion time andd is the diffusivity. Tournier et al [77] derive their response function

directly from brain data by calculating the average signal from the most anisotropic

voxels. With a model for the response function, the deconvolution step reduces to a

single matrix multiplication if we use a linear basis to representf . Appendix C outlines

a general implementation for any linear basis.

3.4.3.1 Limitations and Refinements

A major limitation of Spherical Deconvolution [59, 50] is its susceptibility to noise,

which often results in spurious peaks in the recovered fODF.Figure 3.11 illustrates this

problem. Each panel in the figure shows an fODF recovered fromdata synthesized

from the ideal fODF in figure 3.10 after adding a small amount of noise (SNR=20 at

b = 0). The first panel in figure 3.11 shows the fODF using the basic algorithm in ap-

pendix C. Several regularization techniques have been developed to avoid the spurious

peaks in the fODF that the basic algorithm produces. Tournier’s original method [77]

uses low-pass filtering by downweighting higher-order terms in the spherical harmonic

representation off . This reduces spurious peaks, but also reduces angular resolution,

see figures 3.11 and 3.12b. More recent versions [78] use Tikhonov regularization [79],

which removes spurious peaks and negative lobes inf while retaining high angular

resolution (figure 3.11, panel 3). The technique is referredto as Constrained Spherical

Deconvolution (CSD) or, if the fODF is over-defined, super-resolved CSD. Alexander

[16] uses a maximum entropy representation forf that is naturally positive definite; see

next section.

Figure 3.12 shows reconstructed fODFs using no filtering (3.12a), low-pass filter-

ing (3.12b), and super-resolved CSD (3.12c). The unfilteredalgorithm output is very

noisy; the regularizations to produce more reasonable fODFs. In particular, super-

resolved CSD produces FODs with sharp peaks and appears to have a good angular

resolution.

Another limitation is the assumption thatR is the same for all fibre populations.

However, fibre-populations have different cell sizes, densities, permeability and pack-

ing configurations. Recent advances [60, 80] relax this assumption to some extent.
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Figure 3.11:Examples of the output of various Spherical Deconvolution algorithms. The un-

filtered fODF has many spurious peaks. Downweighting high-order terms in the spherical har-

monic basis reduces spurious peaks at the cost of angular resolution (centre). Super-resolution

CSD (right) avoids spurious peaks while retaining angular resolution.

Figure 3.12:Spherical Deconvolution fODFs in the slice used in figure 3.4using a) no regu-

larization, b) low-pass filtering, c) super-resolution CSD. The main image shows fODFs from

super-resolved cSD.
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3.4.3.2 Acquisition Requirements

Tournier et al [77] use 60 gradient directions withb = 3000 s mm−2, an SNR of 30 and

NEX of 3. Simulations show that Spherical Deconvolution canresolve crossings at an-

gles down to40◦ with these settings although consistency is not clear. On phantom data

[74] with 80 directions,b = 4000 s mm−2 and SNR of 95, super-constrained Spherical

Deconvolution resolves30◦ crossings consistently.

3.4.4 Persistent Angular Structure (PAS) MRI

Jansons and Alexander’s PASMRI algorithm [15] computes yetanother function of the

sphere called the persistent angular structure (PAS), which, like the dODF or DOT, is a

projection ofp onto the sphere designed to have similar structure to the fODF. The idea

behind the PAS is to find a function that captures the angular structure ofp that persists

in all contours. Formally, the PAS is the functionp̃ of the sphere that, when embedded

in three-dimensional space on a sphere of radiusr, has a Fourier transform that best fits

the normalized measurements.

In the original algorithm, Jansons and Alexander derive a maximum entropy pa-

rameterization of̃p:

p̃(x̂) = exp

(

λ0 +

N
∑

j=1

λj cos(rqj · x̂)

)

, (3.8)

where the parameterr controls the smoothness ofp̃ and a non-linear optimization fits

the parametersλj, j = 0, ..., N to fit p̃ to the measurements. This parametrization

provides a representation for the PAS function that is optimal in the sense that it imposes

the least information of its own on the recovered estimate. Alternative implementations

[16, 19] replace the maximum entropy representation with more familiar linear basis

representations such as spherical harmonics. Although linear bases make recovering

the PAS much quicker, they are less able to capture its true shape. In particular, the

maximum entropy representation is naturally positive definite, like p̃ and the fODF,

and can represent very spiky functions that smooth linear bases cannot.

Figure 3.13 shows the recovered PAS in each voxel of the same brain slice used

previously. The PAS functions have much sharper peaks and appear more consistent

with each other in fibre-crossing regions (figure 3.13a) thanthe output of other methods

we have covered. However, the computation time for the algorithm is significantly
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Figure 3.13:PASMRI on the slice used in figure 3.4. The regions of interestshow the recon-

structions for the same crossing-fibre region (a) and single-fibre region (b) in figure 3.4.
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higher.

3.4.4.1 Limitations and Refinements

Like the dODF or DOT, the PAS is a property ofp rather than the true fODF. Fur-

thermore, in common with those methods, the precise relationship betweeñp and

the fODF is unclear. Spherical Deconvolution methods have atheoretical advantage

that their output relates directly to the fODF, which is the quantity of interest. How-

ever, [16, 19] show theoretical similarities between PASMRI and Sperical Deconvo-

lution. In particular, the PAS is simply a deconvolution using the response function

R(q; x̂) = r−2 cos(rq · x̂). We can replace the maximum entropy parameterization

of θ with a linear basis to recover a linear representation of thePAS using exactly

the deconvolution implementation in Appendix C. More interestingly, we can imple-

ment Spherical Deconvolution using the maximum entropy representation developed

for PASMRI, as in [16]. Although the maximum entropy representation increases the

computation time of Spherical Deconvolution considerably, it allows recovered fODFs

to be guaranteed positive and have very spiky shapes with thepotential to better capture

the true fODF of coherent white-matter.

Non-linear optimization and numerical integration make the PASMRI algorithm

much slower than deconvolution and QBall as implemented above [69]. However,

recent work [81] optimizes the PASMRI algorithm to produce dramatic reductions in

computation time that make the procedure more manageable.

3.4.4.2 Acquisition Requirements

Alexander [69] shows in simulation that at SNR=16 with 54 gradient directions,

PASMRI gives the best performance whenb is in the range1500− 2000 s mm−2. With

these settings the method resolves two-fibre crossings consistently if the separation an-

gle is60◦ or above. The method recovers two or three orthogonal crossings consistently

with the number of gradient directions as low as 30 at SNR=16.

3.5 Derived Information

The methods in section 3.4 output spherical functions that can be used directly for qual-

itative analysis but require further processing to extractuseful quantitative information.

This section outlines techniques for extracting useful information from these spheri-
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cal functions. The section starts with general methods for estimating peak directions.

It goes on to describe broad scalar indices of shape, such as Generalized Fractional

Anisotropy, and measures of peak curvature that may give further insight into the true

white-matter architecture.

3.5.1 Principal Directions

The peaks of the fODF provide estimates of the dominant fibre orientations. Most

representations of spherical functions, i.e. linear basessuch as spherical harmonics

or radial basis functions or non-linear representations such as eqn.(3.8), do not have

general analytical expressions for peak directions so we have to search for peaks nu-

merically. Jansons and Alexander’s algorithm [15] samplesthe spherical function in

each of a large number of evenly distributed directions and identifies locally maximal

samples, i.e. those that are greater than any other samples within a ‘search radius’.

They use a Newton method to refine the exact positions of each local maximum and

finally discard duplicates. Haroon et al [48] speed up the process by fitting a quadratic

surface local to each maximum which provides an analytic approximation.

Numerical search for peak directions is computationally expensive and typically

depends linearly on the number of parameters in the representation of the spherical

function. For fast linear methods like QBall and Spherical Deconvolution, computa-

tion for peak finding can be orders of magnitude greater than the initial reconstruction.

More recently, Bloy et al [82] provide an analytic expression for peak directions of

spherical functions represented as symmetric tensors (equivalent to spherical harmon-

ics), although the approach is not practical for high orders.

3.5.2 Generalized Fractional Anisotropy

In [67], Tuch defines the Generalized Fractional Anisotropy(GFA) as an analogue for

QBall of the FA in DTI. The FA is a measure of variation of the DTeigenvalues that is

independent of their magnitude. In a similar way, the GFA is ameasure of variation of

the dODF,φ. Mathematically,

GFA =

[

∫

(φ(x̂) − φ̄)2dx̂
∫

φ(x̂)2dx̂

]

1
2

, (3.9)

whereφ̄ = (4π)−1
∫

φ(x̂)dx̂. The definition extends to any other function of the sphere

and we can compute the GFA of any fODF, PAS, uODF, etc in exactly the same way.
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In fact, Tuch [67] provides a discrete version of Eqn. 3.9 that works with samples ofφ,

but the continuous version above is more generally useful, since some of the integrals

are often analytic, particularly for functions represented using spherical harmonics.

Higher-order moments are also possible,

Mn =

[
∫

(φ(x̂) − φ̄)ndx̂
∫

φ(x̂)ndx̂

]

1
n

, (3.10)

and the Camino toolkit [83] implements generalized skewness (M3) and kurtosis (M4).

Higher-order moments may provide other useful informationthat is complimentary to

the fractional anisotropy and reflect features of the fibre configuration that the GFA

is insensitive to, although no exploration of this idea is inthe current literature. For

example,M3 provides an analogue of the DT skewness (see chapter 3).

3.5.3 Peak Hessians and Peak Sharpness

It is a mistake to assume that the output of any of the methods in section 3.4 gives

an exact reconstruction of the fODF. For some algorithms, the difference is explicit,

since, as we have seen, the dODF and fODF are different quantities. Even for spherical

deconvolution methods however, several factors cause departures of the reconstructed

fODF from the true fODF: Choice of linear basis or representation affect the recov-

ered shape, models ofR simplify processes in brain tissue and noise, smoothing and

regularization add further artefacts.

How well different reconstructed functions reflect the truefODF remains an open

question. Peak directions appear to correspond within known fibre directions. Further-

more, we tend to observe different peak shapes in regions with different configurations.

In particular, as noted in section 3.2, fanning and bending configurations can produce

paddle-shaped peaks with an anisotropic cross-section.

The Hessian, or matrix of second partial-derivatives, describes the curvature of a

function. The trace of the Hessian provides a measure of peaksharpness. Parker and

Alexander [10] show that the sharpness of the ODF peaks reflect the uncertainty of the

fibre orientation estimates and may provide information about the dispersion of fibres

within the image voxel. In [10], the Hessian is computed numerically by evaluating the

spherical function at slightly displaced positions in two locally orthogonal directions.
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3.6 Evaluation and Comparison of Multiple-Fibre Al-

gorithms

This section outlines the main comparisons of the algorithms described in the previous

sections to date. The section starts with an overview of typical metrics used to eval-

uate the performance of reconstruction techniques. We thengive an overview of the

validation of each method and comparisons between reconstruction techniques.

3.6.1 Validation Methods

There are several methods available for comparing reconstruction algorithms. The fol-

lowing methods are commonly used:

• Qualitative assessment reveals regions where algorithms produce sensible results

corresponding to anatomical knowledge and where they do not, but is limited by

current knowledge and does not provide quantitative measures for comparison

and optimization.

• High quality datasets obtained under special conditions not achievable routinely

(e.g. long acquisition times) can provide a ground-truth against which to study

the effects of increased noise or reduced image resolution or sampling on algo-

rithm performance. This approach does not highlight fundamental limitations of

algorithms that also affects results from high quality data.

• Synthetic data from simple models, such as mixtures of Gaussians, more complex

biophysical models (e.g. [84, 85]), or numerical simulations of the diffusion

process [86, 87, 88]. In synthetic data, the quantities we aim to recover, such as

fibre directions, are known, although the models often over simplify brain tissue

and the imaging process.

• Scanner data from physical phantoms, constructed from materials such as glass

or polymers, e.g. [75], are also useful, but again do not reflect the full complexity

of brain tissue.

3.6.2 Statistics for Validation and Comparisons

In diffusion MRI, we are often interested in being able to accurately and consistently

recover the orientations of the dominant white-matter populations in each voxel. Vari-
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ous metrics are used to assess the performance of the reconstruction algorithms within

this task. Here, we introduce some of the common metrics and techniques and discuss

the requirements for each.

3.6.2.1 Statistics that do not Require a Ground-Truth

The direction concentration [57] measures the precision ofthe fibre-orientation esti-

mates from reconstruction algorithm. To compute the direction concentration, we re-

quire a set of estimates of a direction, but do not require knowledge of the true direction.

The set of estimates may come from repeated trials on synthetic data with different

noise realizations, as in [57], or from a statistical procedure such as bootstrapping (see

section 3.6.3, box 3.6.3). The direction concentration is

γ = − log(1 − κ1), (3.11)

whereκ1 is the largest eigenvalue of the mean dyadic tensorY = m−1
∑m

i=1 eie
T
i ,

whereei, i = 1, ..., m is a collection of directions. A high value ofγ indicates that the

estimates are tightly clustered around the mean, whereas a low value indicates that the

estimates vary more widely.

A related dispersion statistic is the “95% cone of uncertainty” [89] also measures

the precision of the reconstruction. This metric uses a population of fibre-orientation

estimates in a given voxel to calculate the angle at the vertex of the cone containing

95% of the estimates. This uncertainty is visualized as a cone containing 95% of the

fibre-orientation estimates.

3.6.2.2 Statistics that Require a Ground-Truth

In this section we define metrics that require a ground truth.The ground truth can be

obtained in several ways. For example, some features of the ground truth, such as fibre

orientation, are often known when using a synthetic (numerical) model of diffusion or a

physical phantom. Alternatively, the ground truth can be approximated to some extent

by a acquiring a very high quality dataset. The measures are then calculated using a

subset of the data that is of comparable quality to clinical data.

The angle bias is a measure of accuracy. The true fibre-orientation must be known

and a set of estimates must be available, so the measure is generally limited to synthetic
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data trials or by comparison with estimates from high quality daya. The angle bias is

α = cos−1(µ · n), (3.12)

which is the difference between the meanµ fibre-orientation estimate and the true fibre

orientationn. More specificallyµ is the principal eigenvector of the mean dyadic

tensor,Y, andn is the true fibre orientation. A small angle bias indicates that the

fibre-orientation estimate is close, on average, to the truefibre-orientation.

Another measure is the consistency fraction [16], which measures how often an

algorithm identifies the right number of directions with approximately the right orien-

tations. The number of fibre directions must be known, so the measure is generally

limited to synthetic data trials or by comparison with estimates from high quality data.

A reconstruction is consistent if:

• The number of estimated directions is the same as the number of true directions.

• The estimated directions match the true directions to within a given tolerance (for

example,cos−1(0.95)).

The Kullback-Leiber (KL) Divergence [90] measures the divergence between two

distributions and may be used to give a more complete comparison of two spherical

functions, as in [67], than just comparing their peak directions. Specifically, the KL

divergence of a functionφ to a reference functionφr is

KL(φr, φ) =

∫

φr(x̂)(log φr(x̂) − log φ(x̂))dx̂. (3.13)

This measure assumes that the reference function is a gold-standard and that any devi-

ation from this is due to unwanted noise or artefacts in the reconstruction.

3.6.3 Validation of Spherical Deconvolution

In [91], Tournier et al estimate the 95% cone of uncertainty for reconstructions from

their spherical harmonic implementation of Spherical Deconvolution using the boot-

strap method (see box 3.6.3) and compare the results to thosefrom DTI. The results

show that DTI has a significantly higher precision where voxels contain a single fibre

population. Spherical Deconvolution shows multiple peaksin the expected directions

in some crossing-fibre regions.
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3.6.3 - Bootstrap: The bootstrap technique [92] creates a large number of

samples from a smaller dataset to improve statistics. The standard method

requires multiple acquisitions of the signal of each measurement. To create

a new sample, one of each of the measurement is drawn at randomfrom the

set of repeats to provide a new combination. Related techniques, such as

wild bootstrap [49, 93] and residual bootstrap [93, 45], only require only a

single acquisition.

In [94], Tournier et al show qualitatively that there are less spurious peaks in the

FODs from their entropy-minimized algorithm than those from their original algorithm.

They evaluate their optimization of the response function using entropy-minimization

by comparing it to results where the parameters were set empirically.

In [78], Tournier et al optimize their CSD algorithm using synthetic data. They

show that CSD gives better angular resolution than the original spherical deconvolu-

tion algorithm and that the non-negativity constraint doesnot introduce a bias into the

results. They also use bootstrap data to estimate the 95% cone of uncertainty of CSD

and super-CSD and compare the results to those of the original algorithm. They show

that CSD is more precise than the original implementation ofspherical deconvolution,

especially where the crossing angles of the fibres is small. However, the optimal choice

of maximum order of spherical harmonic to use to represent the FODs from CSD varies

with the intersection angle, volume fraction, etc.

Tournier et al [95] compare CSD to their entropy minimization regularisation and

QBall. They perform a qualitative validation using a regionof interest in the region of

the arcuate fasciculus. They show that their Tikhonov regularization produces FODs

with sharper peaks than those generated using their entropyminimization procedure. In

[96], they perform a quantitative comparison of their constrained spherical deconvolu-

tion algorithm to QBall using the phantom model of Lin et al [75]. At b = 3500 s mm−2,

Tournier et al’s method was capable of resolving crossing fibres where the crossing an-

gle is30o, whereas the QBall algorithm was only able to successfully resolve the two

directions in 30% of the voxels and the direction estimates from ODF peaks had a

significantly higher bias than those from from FOD peaks.

Dell’Aqua’s method [97] has an extra parameter that has a significant effect on the

output. In [97], Dell’Aqua et al show the effects of alteringthe optimization parameter
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of their method against SNR using synthetic data. They conclude that there is a trade-

off between optimization parameter setting and the SNR of the data, and that the value

of the optimization parameter must be chosen on a case by casebasis.

Sakaie and Lowe [98] compare their Damped Singular Value Decomposition reg-

ularisation algorithm to Tournier’s low-pass filtering [77] and minimum entropy [94]

methods. They show that their method has a smaller error angle than the other regu-

larizations at low SNR. They compare the methods quantitatively using synthetic data

and qualitatively on human brain data.

3.6.4 Optimization of PAS-MRI and comparisons with other meth-

ods

In [15], Jansons et al optimize the PAS-MRI algorithm using synthetic datasets. They

show that when the angular structure is weak (for example, ingrey-matter), the PAS

has many spurious peaks caused by noise. When the angular structure is strong, the

noise has much less affect on the PAS. They demonstrate that PASMRI can resolve

orthogonal crossing fibres at SNR=16, which is typical of in-vivo human brain data.

Alexander [16] shows that PASMRI compares favourably to maximum entropy

spherical deconvolution (MESD), by having a much higher consistency fraction in syn-

thetic data trials. The experiments show that both non-linear PASMRI and Spherical

Deconvolution are consistently better than a linear implementation of Spherical Decon-

volution. In [99], Alexander et al compare QBall to PAS-MRI using synthetic datasets.

They show that PASMRI provides higher consistency fractions than QBall at fixed

SNR.

3.6.5 Comparisons of QBall with other Reconstruction Algorithms

Qualitative results in [64, 68] show good agreement betweenQBall and DSI in a fibre-

crossing region in the human brain. However, these results come from high-quality test

data from a spherical acquisition scheme with 492 gradient directions, which requires

similar acquisition time to DSI.

Tuch [67] optimizes QBall by finding the width of the basis function σ which

minimizes the condition number of the interpolation matrix, Y. He also calculates the

angle bias and KL divergence for QBall reconstructions of synthetic data and provides

a qualitative evaluation of the performance of QBall using brain data to show that the
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method produces sensible results.

In [70], Hess et al show that ODFs from their Spherical Harmonic implementation

of QBall broadly agree with those from Tuch’s original implementation. They compare

the implementations qualitatively using a whole-brain dataset. However, the compar-

ison uses a large number of diffusion encoding directions and the precision of each

method was not measured.

3.6.6 Other Evaluations and Comparisons

In [100], Kuo et al attempt to find the optimal acquisition scheme for DSI. They acquire

a high-quality dataset with 925 values ofq, which they subsample to produce datasets

with 691, 515 and 203 values ofq. They perform tractography on the reconstructions

and compare the similarity of the resulting tracts with those from the full dataset. They

show that at least 515 samples are necessary, otherwise the results of the method be-

come significantly different from the reference. Furthermore, they compare two types

of sub-sampled datasets with the reference. They find that datasets with the same max-

imum |q| as the full dataset, but reduced spacing are more similar to the reference than

those with the same spacing but reduced maximum|q|.

Lin et al [75] evaluate how well their method approximates the ODF by comparing

it to DSI using data acquired from their phantom. They show that although the accuracy

and precision of their approximations of the ODF are not as good as those from DSI,

their method offers a significant reduction in acquisition time.

Özarslan et al’s [101] generalized diffusion tensor imaging method is studied us-

ing both synthetic data and data acquired from a rat brain. They show qualitatively

that their method produces reasonable results using both the synthetic data and brain

data. However, no quantitative validation or comparison has been performed using this

method.

Lui et al [102] perform a qualitative evaluation of their method using images ac-

quired from four numerical phantoms. They visualize probability density function iso-

surface and skewness maps. The shapes of the functions reflect the known orientations

of the phantoms.

3.6.7 Summary

Table 3.6.7 (below) provides a summary of the pros and cons ofeach method.
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Method Acquisition requirement Computation time Accuracy Bias

Two Tensor low/medium medium medium low

Ball and Stick low medium medium low

PASMRI medium high high low

SD (low-pass filtered)

medium low medium medium

(peak finding medium)

SD (cSD) medium medium medium low

DSI very high medium high medium

QBall

medium/high low medium/low high

(peak finding medium)

DOT medium/high medium medium low

Table 3.1: Summary of acquisition requirements and computation times for the

multiple-fibre reconstruction algorithms

3.7 Applications and Exploitation

This section discusses applications of the models and algorithms covered earlier in this

chapter. Specifically, we describe applications to tractography algorithms to allow them

to exploit the extra information. The results of the tractography algorithms described

below have been shown to be more consistent with known anatomy than single fibre

approaches [9, 10].

3.8 Extending Tractography for Multiple-Fibre algo-

rithms

In section 2.4 we described two main approaches to tractography: deterministic and

probabilistic. In this section we show how these approacheshave been extended to

incorporate information from multiple-fibre reconstruction algorithms.

3.8.0.1 Extending Deterministic Tractography to Exploit Multiple-

Fibre Algorithms

Several methods have been suggested for extending deterministic tractography to the

multi-fibre case. Basic streamline tractography algorithms are simple to adapt to exploit
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multiple fibres in each voxel. The basic extension simply requires a method to choose

which of the multiple directions to follow at each step. The simplest strategy [103]

picks the direction that aligns most closely with the previous step. Hagmann et al [104]

use the same strategy to generate streamlines from DSI data.Perrin et al [105] use the

shape and peak orientation of the QBall dODFs to influence thepaths of the streamlines

at each step.

3.8.0.2 Generalisation of Probabilistic Tractography Algorithms to

Multiple-Fibre Reconstructions

Both Parker and Alexander [43] and Cook et al [106, 107] generalize calibrated PICo

to use multi-tensor models, which can improve tracking through fibre-crossings. How-

ever, this framework suffers from the limitations of the multi-tensor models such as

fitting problems and the need to prespecify the number of fibres per voxel. Hosey et al

[51] and Behrens et al [9] show results from combining multi-tensor models with the

MCMC approach.

Parker and Alexander [10] extend calibrated PICo to exploitmultiple fibre recon-

struction algorithms. They use peak directions as fibre-orientation estimates, of which

there may be several in each voxel. In place of the FA of the diffusion tensor, they

use the sharpness of the fibre orientation distribution peakto predict the uncertainty of

the estimate. Broad peaks have a high uncertainty, sharp peaks have a low uncertainty.

Specifically, they compute the Hessian, or second derivative matrix, of the PAS func-

tion at each peak and use its trace as a measure of mean curvature. The uncertainty

mapping is indexed using the log of the trace of the Hessian ofeach peak to find the

variance in a Gaussian model of uncertainty. A weakness of the approach in [10] is

that the Gaussian model does not account for anisotropy in the uncertainty of the fibre-

orientation estimate. Anisotropy in the uncertainty occurs in regions of fanning and

bending where the fibres spread out more in one direction thananother.

Haroon et al [48] use the wild bootstrap algorithm to estimate the uncertainty of

fibre-orientation estimates obtained using QBall. However, the residuals obtained from

the QBall ODF are often very small, resulting in poor estimates of uncertainty. They

present two methods, both of which use wild bootstrap method. The first method fits

the QBall ODF and then estimates the diffusion signal from the ODF using a mono-
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exponential approximation. This estimate is then comparedto the measured signal to

find the residuals. The second uses QBall to estimate the dominant fibre-orientations

present in a voxel and then uses these estimates to constrainthe fitting of a compart-

ment model. The residuals from this mixture model are comparable to those from a

standard bootstrap estimate of the uncertainty. They show that the second method is a

better predictor of uncertainty than the first method, although the uncertainty estimates

from this technique are not directly measured from the QBallODF. Berman et al [108]

use the residual bootstrap algorithm to obtain samples of the uODF using QBall.

Hosey et al [51] and Behrens et al [9] use multiple fibre ball and stick models

(see section 3.3.2) with Markov Chain Monte Carlo (MCMC) to obtain uODF sam-

ples. However, these implementations suffer from the limitations of the over-simplified

model of diffusion that they use. For example, it is unclear how the model will fit com-

plex structures such as fannings and bendings. Fonteijn et al [109] estimate the uODF

from spherical harmonic QBall dODFs using MCMC.

3.9 Summary

This chapter has reviewed the main multiple-fibre compartment models and multiple-

fibre reconstruction algorithms used in diffusion MRI. Although many more exist, we

have aimed to give a conceptual overview. These algorithms seek to recover the ori-

entations of the multiple fibre populations in each voxel of an image volume. One

class of algorithms, including QBall, DOT and PASMRI estimate features of the parti-

cle displacement density,p, that are spherical functions with peaks that provide fibre-

orientation estimates. The aim is usually to recover the distribution of fibre orientations

or fODF. However, the relationship betweenp and the fODF is complex and unclear.

Spherical deconvolution methods estimate the fODF more directly, but rely on overly

simple modelling assumptions. Outstanding issues remain in Spherical Deconvolution

of what models provide the most accurate fODFs. Choice of representation of spher-

ical functions remains an important issue, since linear representations lack flexibility

and non-linear ones require long computation times. Validation also remains an impor-

tant issue. Alexander [69] evaluates and compares various algorithms in simulation;

Tournier et al [74] make comparisons using phantom data. Allthe methods in section

3.4 produce spurious peaks in isotropic regions and techniques to distinguish genuine
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angular structure from noise are important for proper exploitation. The various derived

quantities we discuss in section 3.5 provide some robustness to noise that allows ex-

ploitation for tractography and connectivity mapping, butfurther work is required to

refine these techniques.

We have outlined each of the methods, as well as some of the main techniques

for exploiting the information they provide. Non-parametric reconstructions have the

advantage of being able to recover multiple peaks in each voxel without the requiring

prior knowledge of the number of fibre populations. Model-based approaches have a

clearer link to the underlying microstructure due to their explicit modelling of certain

features of the tissues (for example hindered and restricted compartments). If the model

approximates the underlying structure well, they can provide useful insight into the

microstructure and may also have higher precision.

In summary, although the multiple-fibre techniques we have discussed clearly pro-

vide additional insight beyond the basic models in diffusion MRI, extracting reliable

quantitative information can be difficult. Much work remains to validate the techniques

and quantify what features of their output are reliable and meaningful. Other open

questions remain, such as the trade-off between image resolution or voxel size and

the number of measurements we can acquire in each voxel. Increasing image resolu-

tion can avoid mixing fibre populations in single voxels so that simple models suffice.

However, signal decreases as image resolution increases and partial volume effects will

still occur even with very small voxels as we cannot avoid having voxels spanning tis-

sue interfaces. As resolution decreases, the configurations within single voxels become

more complex, but we can acquire more measurements with higher signal that support

more complex models to separate the effects.

We mentioned fanning and bending configurations produce similar fODFs. In

fact, many quite different configurations can have similar fODFs and the methods we

have described are unable to distinguish them. Future methods may use more global

knowledge of fibre geometry to separate these configurations, see for example [110].



Chapter 4

Optimization and Comparison of

Reconstruction Algorithms

The methods described in chapter 3 each have their own advantages and disadvan-

tages. The linear methods have the advantage of being computationally inexpensive

and having modest data requirements. For this reason we willfocus mainly on the

linear algorithms, although we show results from several non-linear approached to pro-

vide insight into the improvement that can be gained from a more computationally

heavy reconstruction algorithm. As discussed in chapter 3,the multiple-fibre recon-

struction algorithms we compare have already been evaluated using varying qualities

and types of data (such as synthetic data and brain data), as well different measures

of accuracy and precision. Here, we propose comparing methods using a framework

which consists of synthetic data that models two fibre-populations and various scoring

criteria. As far as we know, this is the only comparison of themultiple-fibre methods

using a standardised framework. The parameters of the reconstruction algorithms are

optimized prior to any between-method comparison to ensurethat the tests give a fair

representation of the performance. Thus, the methods are compared on a level playing

field. We optimise and compare the following linear algorithms:

• spherical harmonic QBall (SH-QBall)

• radial basis function QBall (RBF-QBall)

• linear persisent angular structure MRI (RBF-PAS)

• radial basis function spherical deconvolution (RBF-SD)
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• spherical harmonic spherical deconvolution (SH-SD) with aDT response func-

tion

• spherical harmonic spherical deconvolution (SH-SD) with a‘spike’ response

function

In addition to this, we optimise and compare the following non-linear algorithms

to show the potential improvements gained from using more complex reconstruction

algorithms:

• constrained spherical deconvolution (CSD)

• persisent angular structure MRI (PASMRI)

• maximum entropy spherical deconvolution (MESD)

Finally, we perform a timing analysis to compare the computational demands of

the algorithms using a synthetic dataset. We present the results for each algorithm in a

table summarising the reconstruction time and subsequent post-processing time.

4.1 Experimental Strategy

The experiments here aim to disprove the null-hypothesis that all the linear methods

perform equally well. We limit the comparisons to syntheticdata that represents voxels

containing two distinct fibre-populations, but the framework is straightforward to ex-

tend to include both single-fibre voxels as well as three-fibre voxels. Furthermore, we

limit the quality of the datasets to approximate the qualityof data that can be acquired

in a clinical setting. The methods are evaluated by calculating the precision, accuracy

and consistency of fibre-orientation estimates recovered from synthetic data. For each

reconstruction algorithm, we perform the following steps:

• create synthetic datasets using various parameter combinations

• for each parameter setting combination of the reconstruction algorithm

- for each dataset

- reconstruct the data

- find the peak directions
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- find the optimal peak threshold by calculating the mean consistency fraction

over all datasets for each peak threshold setting.

• calculate all metrics at optimal settings

The details of the procedure above are given in the remainderof this section.

4.1.1 Synthetic Data

We generate synthetic data using a two-tensor model of diffusion. By varying the pa-

rameters of the tensor model, we can generate a range of crossing fibre configurations

on which to test the reconstruction algorithms. For this experiment we generate data us-

ing 45 different combinations of the two-tensor model. Eachparameter combination is

used to generate a dataset consisting of 144 voxels containing diffusion measurements

synthesized from the model. Specifically, we generate data using the test function.

Specifically, we generate data using the test function

p(x) = aG(x;D1, t) + (1 − a)RT
θ G(x,D2, t)Rθ (4.1)

wherea is a mixing parameter,G(x;D, t) is a zero mean Gaussian with covariance

2tD, D1 = diag(λ1, λ2, λ2), D2 = diag(λ2, λ1, λ2) andRθ is a rotation byθ about the

z-axis. Each dataset uses a single parameter combination from λ1 ∈ {1.9, 1.5, 1.1} ×

10−9 m2 s−1, a ∈ {0.5, 0.6, 0.7} andθ ∈ {0◦, 10◦, 20◦, 30◦, 40◦}. In all of the datasets

λ1 + λ2 = 2.1× 10−9 m2 s−1. The fractional anisotropy of the diffusion tensors,D, are

0.94, 0.77 and 0.46 respectively. The parameter settings are chosen such that all of the

algorithms will fail to consistently recover both fibre orientations for at least some of

the datasets. A random rotation is applied to the test function prior to the estimation of

the diffusion-weighted measurements to remove any potential directional bias caused

by acquisition scheme. The data is synthesized by sampling the Fourier transform ofp,

using eqn 2.4, at each wavenumber in a spherical acquisitionscheme with 60 gradient

directions andb = 1200 s mm−2. The settings of the acquisition scheme are chosen so

that the data is of similar quality to data that can be acquired clinically. The distribution

of noise in MR data is Rician [111]. Therefore, noise is addedto the measurements

as random complex numbers with independent real and imaginary parts drawn from

N(0, ε2), whereε = F (0)/S, F is the Fourier transform ofp at each wavenumber,S is
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the signal to noise ratio (SNR) atb = 0. We then take the modulus to get the synthetic

measurement. The data generated usesS = 20, which is typical of diffusion MRI data.

The parameters of the test functions have been chosen such that all the methods

would fail to reconstruct at least some of the test functions, whether it be due to a

limited angular resolution of the method or an inability to reconstruct a secondary peak

with a very small volume fraction.

4.1.2 Processing

We use the peak finding method of Jansons and Alexander [15] (see section 3.5.1) to

recover the fibre-orientation estimates from the ODF for each voxel. In addition to

the peaks that correspond to fibre-populations, there are also spurious peaks that result

from noise in the data. The fibre-orientation estimates thatcorrespond to these spurious

peaks do not contain useful information and must be removed.This is achieved by

setting a threshold on the peak magnitude. The amount of peak-thresholding required

to remove spurious peaks varies from algorithm to algorithm. For example, QBall

dODFs are very smooth and have a few small spurious peaks. Therefore, QBall dODFs

tend to require a threshold that removes only the smallest peaks; conversely, spherical

deconvolution produces spiky fODFs which contain many large spurious peaks and

therefore needs a much larger threshold. To find the optimal peak-culling thresholds

for each algorithm we vary the thresholding parameters to maximize c̄. Specifically, we

remove peaks where

m > (q ∗ g + w ∗ h), (4.2)

wherem is the magnitude of the peak,

q =
1

4π

∫

|x|=1

f(x)dx (4.3)

is the mean magnitude of the ODF,

w =
1

4π

∫

|x|=1

(f(x) − q)2dx (4.4)

is the number of standards deviations of the magnitudes overthe ODF andg andh are

tuneable parameters.

Prior to comparing the algorithms, we optimize the methods with regard to their

parameters. This involves varying the parameters of each method to maximize the con-

sistency fraction (section 3.6.2). To simplify the search,we use the mean consistency
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fractionc̄ over all 45 datasets. We discuss the metrics used in more detail in the follow-

ing section.

4.1.3 Metrics

To assess the performance of each algorithm, we compute the angle bias,α, direction

concentration,γ, and consistency fraction,c, of the estimated fibre-orientations over

a large number of trials. Details of how each metric are calculated are given in sec-

tion 3.6.2. We primarily use the consistency fraction for our analysis, since it looks at

both the accuracy and precision of the reconstruction. However, the metric only tests

whether the reconstruction provides the correct number of fibre-orientation estimates

and whether they are within a given tolerance. In a case whereone algorithm has a high

accuracy but the other is just within the tolerance, the consistency fraction will assign

an equal score to both. Therefore, we also look at the angle bias (accuracy) and direc-

tion concentration (precision) of the fibre-orientation estimates separately to provide

further insight into the performance of the algorithms.

In addition to the metrics described above, we also compute the mean consistency

fraction, c̄, which is the average of the consistency fractions for all 45datasets at one

parameter setting of the reconstruction algorithm. We maximizec̄ when optimizing the

parameters of each reconstruction algorithm and when searching for the optimal peak

thresholding settings.

4.2 Experiment 1 - Comparison of SH-QBall and RBF-

QBall

In this section we compare the Tuch’s original QBall implementation (RBF-QBall)

[67, 68] to the Spherical Harmonic implementation (SH-QBall) [70].

4.2.1 Method

SH-QBall has a single parameter to vary, the order of the spherical harmonic, which

we alter in the range{4, 6, 8}. The range is set such that the dODF has enough pa-

rameters to be able to reconstruct multiple peaks without having more free parameters

than the number of gradient directions. Specifically, spherical harmonic representation

with a maximum order of 8 has 45 parameters, which less than the 60 unique diffusion-
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weighted measurements in our acquisition; increasing the maximum order further will

result in having more parameters than measurements. Conversely, dODFs with a max-

imum order below 4 will not be able to represent crossing fibres. See appendix A for

details on the implementation of spherical harmonics.

The implementation of RBF-QBall uses two sets of radial basis functions (details

of the QBall implementation are given in appendix B). Each set of radial basis functions

has two parameters, the number of basis function centres andthe width of the basis

functions,σ. We use the first set of radial basis functions,

A(q) =

J
∑

j=1

ξjψj(q), (4.5)

whereξj is the weight of thej-th basis functionψj , to model the data. We fix the

number of basis function centresJ to be the same as the number of gradient directions

in the acquisition. The second set of radial basis functions,

φ(x̂) =

K
∑

k=1

βkθk(x̂), (4.6)

whereβk is the weight of thek-th basis functionθk,represents the reconstructed dODF.

We useK = {42, 80, 120, 246, 755} basis functions to represent the dODF. We vary

the width of both sets of radial basis functions independently in the rangeσ ∈ [3◦, 27◦].

In addition to the parameters of each variant of QBall, we also maximizec̄ over

the threshold parameters,g andh. We select a discrete set of values for both parameter

such thatg ∈ [0, 1.5] andh ∈ [0, 8].

4.2.2 Results

We observe that varying the maximum order of spherical harmonic basis in the range

{4, 6, 8} has no significant effect on the mean consistency fraction,c̄. Therefore we use

a maximum spherical harmonic order of 6, which is in agreement with other work, such

as [70]. For SH-QBall with a maximum spherical harmonic order of 6, c̄ is maximized

when the threshold settings areg = 1 andh = 0. However, the increase in̄c attained

by thresholding the QBall dODFs is negligible (see figure 4.1). In this experiment we

apply the peak thresholds for completeness. The settings that maximizēc for spherical

harmonic QBall are: maximum spherical harmonic order 6,g = 1 andh = 0. At these

settings̄c = 0.27.
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Figure 4.1: Plot of mean consistency fraction,c̄, against peak threshold parametersg

andh for SH-QBall. The threshold removes peaks withm > (q ∗ g + w ∗ h), where

q is the mean magnitude of the ODF andw is the number of standards deviations of

the magnitudes over the ODF. The combination ofg andh that maximizēc is indicated

with a red triangle.

Figure 4.2 plots the consistency fraction (c), angle bias (α) and direction concen-

tration (γ) for all datasets at the optimal reconstruction settings for SH-QBall. We will

refer to this type of plot as a “tile plot”. In this figure, a separate tile is shown for

each dataset and there are separate panels of tiles forc, γ andα. The lighter the colour

of the tile, the better the performance of the reconstruction algorithm with regard to

the corresponding metric. For SH-QBall, the reconstructions have a high consistency

fraction for orthogonal crossings where both tensors haveλ1 = 1.9 × 10−9 (top left

panel). However, SH-QBall fails to consistently recover fibre-crossings for many of

the synthetic data configurations. In particular, the technique is unable to recover fibre

crossings when the fibre populations cross atθ > 20◦, so the tiles for these datasets are

black. The angle bias,α, (centre row) of SH-QBall reconstructions is less than5◦ for all

datasets whereθ ≤ 20◦ andλ1 ≥ 1.5 × 10−9 m2 s−1. This suggests that when multiple

peaks are recovered by the dODF, the bias in the estimates of fibre orientations is small.

In contrast, the direction concentration is only high for datasets wherem ∈ {0.5, 0.6}

andλ1 = 1.9 × 10−9 or θ = 20◦ andλ1 = 1.9 × 10−9 (bottom row, left panel). The

direction concentration is low for all other datasets, which suggests that there is a lot

of uncertainty in the fibre-orientation estimates. The fulltable of results showing the

numerical data underlying figure 4.2 is given in appendix F.1.
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Figure 4.2: Tile plot for SH-QBall reconstructions showingc (gray),α (yellow-red)

andγ (blue) for datasets using test functions withλ1 = 1.9×10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

Figure 4.3 plots̄c against the number of basis functions,K, (a), the width of the

basis functions,σ,(b) and the width of the basis functions used to approximatethe data,

σdata, (c) for RBF-QBall. In these plots, all parameters are varied to maximizēc for the

parameter of interest. We find that thec̄ is maximised when using 120 basis functions

(figure 4.3a). c̄ appears to be stable when the width of the basis function is between

7 − 12◦ (figure 4.3b), although the maximum is at7.5◦. Figure 4.3d shows the effect

of varyingσdata on c̄. The optimal setting ofσdata is around3◦. Increasing the width

of the basis functions for the RBF representation of the datayields no improvement in

c̄. The optimal RBF-QBall settings are:K = 120, σ = 7.5◦, σdata = 3◦, g = 1 and

h = 0.5. At these settings̄c = 0.25.

Figure 4.4 shows results for each dataset at the optimal reconstruction settings.
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Figure 4.3: Plot of a)K, b) σ and c)σdata against̄c for RBF-QBall to show the effect

of varying the algorithm’s parameters on its performance..The error bars show the

standard error of the consistency fractions for the 45 datasets.

As with SH-QBall, RBF-QBall is only able to consistently reconstruct a few datasets

at λ1 = 1.9 × 10−9 m2 s−1 andλ1 = 1.5 × 10−9 m2 s−1. However, unlike SH-QBall,

the maximum consistency fraction does not reach 1 for any of the datasets. Another

difference between RBF-QBall and SH-QBall is that RBF-QBall is able to capture two

fibre orientations when the crossing angle is60◦, a = 0.5 andλ1 = 1.9 × 10−9 m2 s−1,

although the consistency fraction for these datasets is very low (see figure 4.4, top left

panel). The full table of results showing the numerical dataunderlying figure 4.4 is

given in appendix F.2.

4.2.3 Conclusions

Peak thresholding offers little improvement on the consistency of the results for QBall

regardless of basis used to represent the dODF (see appendixE, figures E.1a and b). The

QBall dODFs have very broad peaks and therefore seem less susceptible to spurious

peaks caused by noise. However, the dODF peaks are also oftenvery small, so even
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Figure 4.4: Tile plot for RBF-QBall reconstructions showing c (gray),α (yellow-red)

andγ (blue) for datasets using test functions withλ1 = 1.9×10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

modest threshold settings are likely to remove useful fibre-orientation estimates.

In terms of the quality of reconstruction, figures 4.2 and 4.4show that both SH-

QBall and RBF-QBall resolve crossing fibres consistently whenθ = 20◦ but not when

θ = 30◦. The reconstructions also give poor results when one fibre population provides

more signal than the other. The dODFs here appear worse than in [67, 68] because

they use higher quality data with higher b-values and many more gradient directions.

However, the acquisition scheme used in that work is not suitable for routine clinical

use.

SH-QBall has two benefits over the original RBF implementation. Firstly, it gives

more consistent results (see figures 4.2 and 4.4, top row) than the RBF implementation

for most datasets whereθ ≤ 20◦ and a ∈ {0.5, 0.6}, which is perhaps due to the
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analytic approach to calculating the integrals for the Funk-Radon transform. Second,

there is only a single parameter that needs to be optimized for the SH implementation.

In contrast, RBF-QBall requires the optimization of 3 parameters and it is unclear how

the optimal parameter settings will vary between acquisition schemes and how they

interact. Therefore, we recommend using SH-QBall.

4.3 Experiment 2 - Comparison of RBF-SD and RBF-

PAS

In section 3.4.4 we discuss how PASMRI can be considered to beSD with a specific

response function. In this experiment we examine the effectthat changing the response

function has on the consistency of reconstructions for a radial basis function implemen-

tation of SD. Specifically, we compare a ‘spike’ response, which assumes diffusion only

occurs in the fibre direction, to the PAS response. We use the same linear deconvolu-

tion approach to reconstruction to ensure that we are only comparing the changes to the

response function. The implementation of RBF-PAS was published in [19].

4.3.1 Method

Both RBF-PAS and RBF-SD are implemented using the linear SD algorithm de-

scribed in appendix C. For both methods, we use the radial basis functionsθ(x̂) =

exp(−σ−2 cos−1(x̂ · ŷ)) centred on a set of reconstruction points,ŷ, k = 1, ..., K,

which are evenly distributed over the sphere;σ controls the width of the radial basis

function. In addition to the RBF parameters, RBF-PASMRI hasa response function

parameterr and SD has the response function parameterd.

For both methods, we useK = {42, 80, 120, 246} basis functions and a discrete

set ofσ ∈ [10, 150]◦. For RBF-PASMRI, we use the response functionR(q; x̂) =

r−2 cos(rq · x̂) and choose a set ofr such thatr ∈ [0.5, 5]. For RBF-SD, we use the

‘spike’ response functionR(q; x̂) = exp(−bd(q · x̂)) and set the parameterd so that

we have a discrete range ofbd ∈ [0.5, 7].

As in the previous experiment, we vary the peak threshold parameters,g andh.

We select a discrete set of values such thatg ∈ [0, 10] andh ∈ [0, 100] for RBF-PAS

andg ∈ [0, 10] andh ∈ [0, 8] for RBF-SD.
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4.3.2 Results

Figure 4.5 shows plots of performance metrics against parameter settings for RBF-

PASMRI. Changing the number of basis functions (figure 4.5a)does not have a large

effect on the quality of reconstruction, although80 basis functions gives the greatest

mean consistency. Figure 4.5b shows how the response function affects the quality of

reconstruction. For each setting ofr, we fix the number of basis functions to80 and

vary σ to maximizec̄. The response yields the largestc̄ at r = 2.6. Figure 4.5c plots

basis function width,σ, against̄c. In this plot the number of basis functions is fixed at

80 and the response is fixed atr = 2.6. There is a large increase in̄c at aroundσ = 40◦

and the value remains around the same value to the end of the tested range. The optimal

value for the datasets used isσ = 90◦. The threshold settings that maximize thec̄ for

RBF-PASMRI areg = 1.5 andh = 62. The complete list of optimal settings for

RBF-PASMRI are:K = 80, r = 2.6, σ = 90,g = 1.5 andh = 62. At these settings

c̄ = 0.44.

Figure 4.6 shows similar plots for RBF-SD. As with RBF-PASMRI, 80 basis func-

tion centres provides the highestc̄ (figure 4.6a). Figure 4.6b shows the effect of varying

the response parameter,bd, on c̄. Unlike the PAS response, varying the parameter of

the ‘spike’ response gives a gradual change inc̄. For RBF-SD,bd = 5 maximizes̄c,

althoughbd ∈ [3.5, 5.5] yields similar results. Varying the width of the basis func-

tions (Figure 4.6c) shows a similar general trend to the plotin figure 4.5c, although̄c

is maximal atσ = 100◦). The optimal settings for RBF-SD are:K = 80, bd = 5,

σ = 100,g = 1.5 andh = 8. At these settings̄c = 0.51.

Figure 4.7 shows the complete set of results for RBF-PASMRI.At the parameter

settings selected, the RBF-PASMRI algorithm is able to consistently reconstruct test

functions withλ1 = 1.9×10−9 m2 s−1 andθ ≤ 10◦ (top left panel). The method is also

able to reconstruct test functions withθ ≤ 40◦ andλ1 ≥ 1.5 × 10−9 m2 s−1 to some

extent, although it fails completely outside of this range.In this range of synthetic data

settings the angle bias for RBF-PAS is around3◦ to 10◦. The complete table of results

is provided in Appendix F.3.

Figure 4.8 shows the complete set of results for RBF-SD. The method is able to

provide near-consistent results whenλ1 = 1.9 × 10−9 andθ ≤ 20◦. The consistency is

reduced slightly whenλ1 = 1.5 × 10−9, although the angle bias remains low. As with
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Figure 4.5: Plots the mean consistency fraction,c̄, against a) the number of basis func-

tions,K, b) the response parameter,r, and c) the width of the basis functions,σ, for

RBF-PAS to show the effect of varying the algorithm’s parameters on its performance.

The error bars show the standard error of the consistency fraction for the 45 datasets.

RBF-PAS, RBF-SD is unable to recover crossings whenθ = 40◦ or λ1 = 1.1 × 10−9.

However, RBF-SD generally provides more consistent reconstructions (top rows of

figures 4.7 and 4.8), has a smaller angle bias (middle rows), and a higher direction

concentration (bottom rows). The complete table of numerical results for all datasets is

provided in Appendix F.4.

4.3.3 Conclusions

Using a set ofK = 80 basis functions yields the most consistent results for bothRBF-

PAS and RBF-SD. Using more basis functions than this does notimprove the consis-

tency further and results in longer processing times and greater storage requirements of

the reconstructions. In terms of the width of the basis functions,c̄ is low for small set-

tings ofσ but increases rapidly whenσ = 40◦ (RBF-PAS) orσ = 80◦ (RBF-SD). This

increase in̄c may be due to a reduction in the number of spurious peaks, since basis

functions with broad peaks will be unable to over-fit to the noise in the data. Both RBF-

PAS and RBF-SD appear to be stable over large ranges ofσ (see figures 4.5c and 4.6c
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Figure 4.6: Plots̄c against a) the number of basis functions,K, b) the response param-

eter,bd, and c) the basis function width,σ, for RBF-SD to show the effect of varying

the algorithm’s parameters on its performance. The error bars show the standard error

of the consistency fraction for the 45 datasets.

respectively), although̄c is maximised when setting the width of the basis functions

to σ ∈ {90◦, 100◦}. In practise voxels may contain three or more fibre populations.

Therefore, it may be better to use a smaller value ofσ in the stable ranges shown in the

figures.

The ‘spike’ response provides more consistent reconstructions. This is demon-

strated in figures 4.7 and 4.8, which show the performance of RBF-PAS and RBF-SD

respectively. The optimal setting of the ‘spike’ response function isbd = 5 for the

acquisition used here, although the value can be changed in the range[3.5, 5.5] without

a large decrease in̄c. In contrast,̄c appears to be greatly affected by the precise setting

of r for RBF-PAS. This is due to the cosine term used in the response function. As

r increases the frequency of the waves on the response increases. Certain frequencies

seem to provide good fits to the data. In conclusion, we recommend using the ‘spike’

response with aroundK = 80 basis functions for an acquisition similar to the one used

here.
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Figure 4.7: Tile plot for RBF-PAS reconstructions showingc (gray),α (yellow-red)

andγ (blue) for datasets using test functions withλ1 = 1.9×10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

4.4 Experiment 3 - Comparing a SH-SD to RBF-SD

In the previous experiment we investigate the effect of changing the response func-

tion of spherical deconvolution on the performance of the algorithm. We show that the

choice of response can have a significant effect on the consistency of the reconstruc-

tions. In this experiment we investigate the effect of usingtwo different basis function

representations, spherical harmonics and spherical radial basis functions, on the quality

of reconstruction. We compare the results from RBF-SD givenin the previous exper-

iment to those from the original spherical harmonic implementation of the algorithm.

In order to make the comparison fair, we change the response function for the spherical

harmonic implementation to the ‘spike’ function, althoughwe also show results for the



4.4. Experiment 3 - Comparing a SH-SD to RBF-SD 93

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

c

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)
a

 

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

0

0.2

0.4

0.6

0.8

1

α

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

90.0

72.0

54.0

36.0

18.0

0.0

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

90.0

72.0

54.0

36.0

18.0

0.0

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

90.0

72.0

54.0

36.0

18.0

0.0

γ

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

0

1

2

3

4

5.1

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

0

1

2

3

4

5.1

0 10 20 30 4o

0.7

0.6

0.5

θ (degrees)

a

 

 

0

1

2

3

4

5.1

Figure 4.8: Tile plot for RBF-SD reconstructions showingc (gray),α (yellow-red) and

γ (blue) for datasets using test functions withλ1 = 1.9 × 10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

DT response used by [77].

4.4.1 Method

The Matlab code for the spherical harmonic implementation of SD [77] was kindly

supplied by Donald Tournier. The implementation provided uses the DT response

R(q; x̂) = exp(−tqDq), whereD = υx̂x̂T + βI. In addition to this, we use the

‘spike’ response from the previous experiment. The spherical harmonic implementa-

tion of Spherical Deconvolution has two parameters: the maximum spherical harmonic

order of the fODF and the response parameter (d for the ‘spike’ response; FA for the DT

response). See appendix A for details on the implementationof spherical harmonics.

In this experiment we investigate the quality of SH-SD usingmaximum spherical
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harmonic orders of 4 and 6. The settings for the RBF-SD are given in section 4.3.1. We

set the FA of the tensor in the range{0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}; the diffusivity is set

internally toTr(D) = 0.9 × 10−9 m2 s−1. We use discrete settings of the parameterd

in the ‘spike’ response so thatbd ∈ [0.5, 8].

For both methods, we vary the threshold parameters,g andh, to maximisēc. We

select a discrete set of values for both parameter such thatg ∈ [0, 10] andh ∈ [0, 8].

4.4.2 Results
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Figure 4.9: Plots of̄c againstbd of the ‘spike’ response for SH-SD to show the effect

of varying the parameter on the algorithm’s performance. The error bars show the

standard error of the consistency fraction for the 45 datasets.

Only Spherical Harmonic with a maximum spherical harmonic order of 4 pro-

duced non-zero consistency fractions for SD when using the original spherical har-

monic implementation. Figure 4.9 plots the effect of altering the parameterbd of the

‘spike’ response function. From the settings investigated, c̄ is maximised at around

bd = 4.5, although the value of̄c does not vary much in the rangebd ∈ [3.5, 5.5]. The

optimal settings for SH-SD (‘spike’ response) are: maximumspherical harmonic order

4, bd = 4.5, g = 2 andh = 1. At these settings̄c = 0.49

SH-SD with the ‘spike’ response gives̄c = 0.49 when optimized. The method

therefore has a similar performance to RBF-SD, which givesc̄ = 0.51 when optimized.

Looking at the datasets individually (figures 4.11 and 4.8),both implementations of SD

can reconstruct voxels whereθ = 30◦ but notθ = 40◦. However, RBF-SD reconstructs

datasets wherem = 0.7 more consistently (top row of figure 4.8) than SH-SD.
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Figure 4.10: Plots of̄c against the FA of the DT response function for SH-SD to show

the effect of varying the parameter on the algorithm’s performance. The error bars

show the standard error of the consistency fraction for the 45 datasets.

Figure 4.10 plots the effect of altering the FA of the DT response for SH-SD.

There is an increase in̄c as the FA of the response increases andc̄ is maximized when

the FA=1. The optimal settings for SH-SD (DT response) are: maximum spherical

harmonic order 4, FA=1,g = 2.5 andh = 2. At these settings̄c = 0.48.

Figure 4.12 shows a tile plot for SH-SD with the DT response. When the test func-

tions haveλ1 = 1.9 × 10−9 m2 s−1, SD can consistently resolve fibres with separation

angles of60◦ (θ = 30◦), but not50◦ (θ = 40◦). At λ1 = 1.5 × 10−9 m2 s−1 the con-

sistency of the reconstructions drops for all test functions. SH-SD (DT reponse) pro-

duces very inconsistent reconstructions whenλ1 = 1.1×10−9 m2 s−1 for the parameter

settings selected. This method provides slightly biased estimates of fibre-orientation

with the angle bias for each dataset typically around3 to 10◦. The consistency of re-

constructions from SH-SD using the DT response is similar tothat of SH-SD using

the ‘spike’ response, although the consistency fraction isnoticeably lower for several

datasets whereθ ∈ {0◦, 20◦} andλ1 ∈ {1.5, 1.9} × 10−9 m2 s−1 (see figures 4.11 and

4.12, top rows). The complete table of results is provided inAppendix F.5.

4.4.3 Conclusions

The RBF implementation of spherical deconvolution gives a slightly higher c̄ than the

SH implementation. When looking at the consistency fractions for each dataset, the

RBF implementation provides more consistent results when one fibre population con-
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Figure 4.11: Tile plot for SH-SD (‘spike’ response) reconstructions showingc (gray),α

(yellow-red) andγ (blue) for datasets using test functions withλ1 = 1.9× 10−9 m2 s−1

(left column)1.5× 10−9 m2 s−1 (centre column) and1.1× 10−9 m2 s−1 (right column).

The rows of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The cross-

ing angle varies with grid column.

tributes more to the signal than the other. In addition to this, the direction concentra-

tion is slightly larger for the RBF implementations than forthe SH implementations,

especially whenλ1 = 1.9×10−9 m2 s−1. However, the SH implementation has less pa-

rameters to optimize than the RBF implementation and, depending upon the response

function used, may be more intuitive to set. Optimizing the RBF implementation of SD

for each acquisition scheme is computationally heavy task and it is still unclear how the

settings will affect the reconstruction performance for voxels containing one or many

fibre-populations. Therefore, the spherical harmonic implementation is preferable de-

spite the small sacrifice in reconstruction consistency.

The two response functions used for SH-SD give similar results. However, the

‘spike’ function appears to give slightly more consistent reconstructions than the DT
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Figure 4.12: Tile plot for SH-SD (DT response) reconstructions showingc (gray),α

(yellow-red) andγ (blue) for datasets using test functions withλ1 = 1.9× 10−9 m2 s−1

(left column)1.5× 10−9 m2 s−1 (centre column) and1.1× 10−9 m2 s−1 (right column).

The rows of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The cross-

ing angle varies with grid column.

response in datasets whereλ1 ≥ 1.5 × 10−9 m2 s−1 andθ ≤ 20◦ (see figures 4.11 and

4.12, top rows). The ‘spike’ response also has a higher direction concentration (see

figures 4.11 and 4.12, bottom rows), although the angle bias is similar regardless of the

response used. It is unclear whether other response functions may yield more consistent

results over all datasets.

4.5 Experiment 4 - Comparing CSD to PASMRI and

MESD

In this experiment we optimize and compare three of the more established non-linear

methods, CSD, PASMRI and MESD.
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4.5.1 Method

Constrained spherical deconvolution (CSD) has five parameters that need to be opti-

mized (see appendix D for implementation details). There are two sets of spherical

harmonic basis functions, each with a maximum spherical harmonic order. One set

represents the data and the other represents the fODF. The third parameter is the FA of

the response function. Finally, CSD has two parameters for regularization. The first is

the regularization parameterτ and the second controls the a parameterλ that controls

the degree of regularization. For the comparisons here we use the following ranges for

the parameters:λ ∈ {0, 0.25, 0.5, 1, 2, 5, 10} andτ ∈ {0%, 10%, 20%, 30%}, as well

as the maximum order of the spherical harmonic as{6, 8, 10, 12, 14, 16}. In addition

to the SH basis for the fODF, we fit a SH basis to the data using maximum spherical

harmonic orders of 6 and 8. We limit the maximum order for datainterpolation to 8 be-

cause an order 10 fit has 66 free parameters. We alter the FA of the DT used to generate

the response function in the range{0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The Matlab code for

CSD was kindly supplied by Donald Tournier

Both PASMRI and MESD only have a single parameter to optimize. For PASMRI,

we user ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}. For MESD, we setd such

that we have a set ofbd in the rangebd ∈ [0.8, 3].

As in the previous experiment, we vary the peak threshold parameters,g andh.

We select a discrete set of values such thatg ∈ [0, 15] andh ∈ [0, 15] for PASMRI and

MESD andg ∈ [0, 15] andh ∈ [0, 8] for CSD.

4.5.2 Results

Figure 4.13 shows the effect of varying each parameter of CSDon the mean consistency

fraction. When varying each parameter, all of the other parameters are fixed at their

optimum values. The setting ofτ (figure 4.13a) has little effect on̄c. In contrast,

varyingλ has a much larger effect on̄c. Figure 4.13b plotsλ against̄c. At λ = 0 the

reconstructions are inconsistent, but a small increase inλ results in a large increase in

c̄. Increasingλ further results in a gradual reduction inc̄. The consistency fraction is

greatest when modelling the fODF (figure 4.13c) using an order 8 spherical harmonic

fit and the data (figure 4.13d) using an order 6 spherical harmonic fit. Unlike SH-SD

(DT response),̄c does not increase linearly with FA. Instead,c̄ is maximimal when the
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response function has an FA of 0.6 (figure 4.13e). The optimalsettings for CSD are

λ = 0.25, τ = 0, SH = 8, SHdata = 6, FA=0.6,g = 6 andh = 0. At these settings

c̄ = 0.62.
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Figure 4.13: Effect of changing parameter settings on mean consistency fraction,̄c, for

CSD. The parameters are a)τ , b) λ, c) fODF SH order, d) data ODF SH order and e)

response FA. The error bars show the standard error of the consistency fraction for the

45 datasets.

Figure 4.14 shows the effect of changing the parameters for MESD (left) and

PASMRI (right) onc̄. The settingbd = 1.8 maximizes̄c for MESD, whereas the value
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r = 1.5 gives the highest̄c for PASMRI. The effect of changing the PAS parameterr

is less eratic than for the linear implementation (RBF-PAS). The threshold settings that

maximizec̄ for PASMRI and MESD areg = 8, h = 0 andg = 7, h = 4 respectively.

The optimal settings for PASMRI are:r = 1.5, g = 8 andh = 0. At these settings

c̄ = 0.58. For MESD, the maximum mean consistency fraction (c̄ = 0.54) is observed

at the settings:bd = 1.8, g = 7 andh = 4.
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Figure 4.14: Plots of mean consistency fraction,c̄, against the parameter for MESD

(left) and PASMRI (right). The error bars show the standard error of the consistency

fraction for the 45 datasets.

CSD (figure 4.15) and PASMRI (figure 4.16) both provide consistent reconstruc-

tions whenλ1 = 1.9 × 10−9 m2 s−1 and θ ≤ 20◦. The consistency of reconstruc-

tions from both methods are generally high even whenλ1 = 1.5 × 10−9 m2 s−1 and

θ = 60◦, although outside of this range the methods fail. In contrast, MESD (fig-

ure 4.17) mainly gives less consistent reconstructions than PASMRI or CSD when

λ1 = 1.5 × 10−9 m2 s−1. However, MESD provides more consistent reconstructions

than all of the other two algorithms for datasets whereλ1 = 1.5 × 10−9 m2 s−1 and

θ = 40◦. The angle bias for CSD and MESD is less than4.5◦ for datasets where

λ1 ≥ 1.5 × 10−9 m2 s−1 andθ ≤ 20◦. PASMRI has a higher angle bias over this range

with values lower than13◦.

4.5.3 Conclusions

We find that the non-linear reconstruction algorithms all give consistent results for most

of the datasets. In particular, CSD gives the most consistent results, with PASMRI

performing almost as well. The consistency of MESD reconstructions is slightly lower
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Figure 4.15: Tile plot for CSD reconstructions showingc (gray),α (yellow-red) and

γ (blue) for datasets using test functions withλ1 = 1.9 × 10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

than for the other methods, except for datasets whereλ1 = 1.5× 10−9 and the crossing

angle is50◦, where the consistency is around0.5. The reason for this difference may

be due to the tuning of the parameter setting; other settingsof bd may result in greater

consistency in other datasets. This is also true of the otherreconstruction algorithms.

The angle bias of all of the methods examined in this section is low across the range,

particularly for CSD.
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Figure 4.16: Tile plot for PASMRI reconstructions showingc (gray),α (yellow-red)

andγ (blue) for datasets using test functions withλ1 = 1.9×10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

4.6 Time requirements of the reconstruction algo-

rithms

In this section we look at the time requirements of the algorithms compared above. To

test the time requirements of the algorithms, we generate a synthetic dataset consisting

of 144 voxels and time how long each algorithm takes to reconstruct the dataset. As

a further test, we time how long the subsequent process of finding the peak orienta-

tions takes for each algorithm. All processing was performed on a 2.26GHz processor

running Windows Vista.

The dataset used in this analysis consists of two-fibre voxels generated using equa-

tion 4.1.1, witha = 0.5, λ1 = 1.9 × 10−9 m2 s−1, θ = 0◦ andS = 20. The parameters
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Figure 4.17: Tile plot for MESD reconstructions showingc (gray),α (yellow-red) and

γ (blue) for datasets using test functions withλ1 = 1.9 × 10−9 m2 s−1 (left column)

1.5 × 10−9 m2 s−1 (centre column) and1.1 × 10−9 m2 s−1 (right column). The rows

of each grid correspond to test functions witha ∈ {0.5, 0.6, 0.7}. The crossing angle

varies with grid column.

of each algorithm were set to the values that maximisedc̄ in the comparisons performed

earlier on in the chapter.

Table 4.1 shows the reconstruction and peak-extraction times for each algorithm.

The linear algorithms (RBF-SD, SH-SD, RBF-QBall and SH-QBall) all have a fast

reconstruction time. However, the calculation of the fibre-orientation estimates is faster

for the linear algorithms that use spherical harmonics to represent the ODF (SH-SD and

SH-QBall) than those that use radial basis functions (RBF-SD and RBF-QBall). CSD

has a short reconstruction time, and the calculation of the fibre-orientation estimates

also has a low time requirement. PASMRI and MESD take severalorders of magnitude
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algorithm computational complexity time (s)

reconstruction peak extraction total

CSD medium 4 38 42

PASMRI high 4466 21 4487

MESD high 5752 27 5579

SH-SD low 5 17 22

RBF-SD low 1 153 154

RBF-QBall low 1 237 238

SH-QBall low 2 26 28

Table 4.1: Summary of the computational complexity and timerequirements for all

optimized algorithms. RBF-PAS has been omitted since it is avariation of RBF-SD

and therefore has the same complexity and time requirements.

longer to run than the algorithms described above, althoughthe time required for peak-

orientation extraction is comparable to that of SH-SD and SH-QBall.

The results suggest that using spherical harmonics to represent the ODF helps

speed up post-processing of the reconstructions to find the peak orientations. In terms

of the non-linear algorithms, the overall computation timefor CSD is similar to that of

the linear algorithms, although the algorithm complexity is slightly higher. PASMRI

and MESD both take far longer to reconstruct the data than theother methods tested.

This is in part due to the comprehensive checks that the original algorithm uses. Re-

moving these checks results in a significant reduction of computation times.

4.7 Conclusions and Future Work

In this chapter we have presented a standardised framework for optimizing and com-

paring multiple-fibre reconstruction algorithms. As far aswe know, this is the first

head-to-head analysis of multiple-fibre algorithms using astandardized framework that

optimizes the parameters of each reconstruction algorithm. We provide a table of the

mean consistency fraction,c̄, and parameter settings for each reconstruction algorithm

in table 4.2. As expected, non-linear algorithms, such as CSD and PASMRI, give more

consistent results than the linear methods. This is particularly noticeable when the

crossing angle between fibre populations is60◦ (i.e. θ = 30◦) or the mixing parameter
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a = 0.7. In both of these cases, CSD, PASMRI and MESD all give more consistent

results than the other methods. In this work we calibrate thenon-linear implementation

of PASMRI for our datasets. Although we present an optimal setting of r = 1.5, this

value only holds for two-fibre configurations. We recommend usingr = 1.4, as used by

Jansons and Alexander [15], which is optimized using one, two and three fibre datasets.

Although PASMRI, MESD and CSD all give consistent results, the computation time

of CSD is several orders of magnitude smaller than that of PASMRI and MESD. How-

ever, the implementation of PASMRI and MESD used for this analysis includes a large

number of internal checks to test convergence of the algorithm. If these are removed

there is a significant increase in the speed of the algorithm.

Of the linear algorithms, RBF-SD gives the most consistent results. RBFs allow a

greater degree of flexibility when approximating the reconstructed fODF/dODF unless

there is a mathematical advantage to using the spherical harmonic representation, as in

[70]. However, there are two limitations of the RBF implementation. The first limita-

tion is that it has more tuneable parameters than the spherical harmonic implementation

and it is unclear how the optimal settings of these parameters vary with changes to the

acquisition scheme. The second limitation is that peak extraction is far slower for the

RBF implementation than for the spherical harmonic implementation. Therefore, we

recommend using spherical harmonic basis functions.

QBall gives the least consistent results of all the reconstruction algorithms. The

QBall results appear worse than those in other studies (e.g.[67, 70]), since the quality

of data used here has been limited to a level that can be acquired in a time-frame that is

tolerable to patients.

There are, however, several refinements can be made to the design of the frame-

work. Firstly, our work uses datasets with two fibre orientations. Adding voxels con-

taining 1 and even 3 fibre orientations will provide further insight into the capabilities

of the reconstruction algorithms.

In this work we use acquisition settings that are typical fora clinical dataset. Fur-

ther experiments are required to optimise the acquisition for multiple-fibre reconstruc-

tion algorithms.

We use the mean consistency fraction,c̄ to optimize the parameters of the recon-

struction algorithms. This is just one measure that we can use. In future work we will
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investigate other metrics that may improve the optimization procedure.

algorithm c̄ parameters

CSD 0.62 λ = 0.25, τ = 0, SH = 8, SHdata = 6, FA=0.6,g = 6, h = 0

PASMRI 0.58 r = 1.5, g = 8, h = 0

MESD 0.54 bd = 1.8, g = 7, h = 4

RBF-SD 0.51 K = 80, bd = 5, σ = 100,g = 1.5, h = 8

SH-SD (‘spike’ response) 0.49 SH = 4, bd = 4.5, g = 2, h = 1

SH-SD (DT response) 0.48 SH = 4, FA=1,g = 2.5, h = 2

RBF-PAS 0.44 K = 80, bd = 5, σ = 100,g = 1.5, h = 8

SH-QBall 0.27 SH = 6, g = 1, h = 0

RBF-QBall 0.25 K = 120, σ = 7.5◦, σdata = 3◦, g = 1, h = 0.5

Table 4.2: Summary of̄c and parameter settings for all optimized algorithms

In addition to this, although the tensor model used to generate data has the benefit

of providing the exact orientations of all the fibre orientations present, the model is an

over-simplification of the diffusion processes occurring in the brain. Use of simula-

tions or physical phantoms may provide a more realistic dataset with which to test the

datasets. Depending on the method used to simulate data, this may in turn allow us to

look at other features of the ODF that encode useful information, such as peak shape

or sharpness.

Alternatively, we could use brain data to compare the algorithms. However, the

lack of a ground truth presents a significant challenge when using brain data to compare

reconstruction algorithms. There are several ways to create a ground truth. For exam-

ple, acquiring high-quality data from an ex-vivo brain can give reliable fibre-orientation

estimates. Other techniques, such as tracers and histology, can also provide insight

into the microstructure, although combining them with diffusion MRI reconstructions

present their own challenges.



Chapter 5

Exploiting Peak Anisotropy for

Tracking Through Complex Structures

In this chapter we show that multi-fibre reconstruction techniques, such as Persistent

Angular Structure (PAS) MRI or QBall Imaging, provide much more information than

just discrete fibre orientations, which is all that previoustractography algorithms ex-

ploit from them. We show that the shapes of the peaks of the functions output by

multiple-fibre reconstruction algorithms reflect the underlying distribution of fibres.

Furthermore, we show how to exploit this extra information to improve probabilistic

index of connectivity (PICo) tractography. The method usesthe Bingham distribution

to model the uncertainty in fibre-orientation estimates obtained from peaks in the PAS

or QBall dODF. The Bingham model captures anisotropy in the uncertainty, allowing

the method to track through fanning and bending structures,which previous methods

do not recover reliably. We devise a new calibration procedure to construct a mapping

from peak shape to Bingham parameters. We test the accuracy of the calibration using

a bootstrap experiment. Finally, we show that exploiting the peak shape in this way can

provide improved PICo tractography results.

5.1 Methods

This section describes how to calculate the shape of the cross-section of peaks from

multiple fibre reconstructions and introduces the peak anisotropy, which is a measure

of how elliptical the cross-section of a peak is. We then givedetails of the bi-polar

Bingham distribution, which can model anisotropy in a spherical distribution. Finally,

we describe a calibration procedure that exploits peak shape to improve estimates of
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Figure 5.1:Example peak shapes for a variety of plausible white-matterconfigurations in each

voxel. In the crossing-fibre case, there are two peak anisotropies, one for each peak.

uncertainty required for PICo tractography.

5.1.1 Peak Anisotropy

Peak anisotropy describes how elliptical the cross-sections of the peaks of multiple-

fibre reconstructions are. We hypothesize here that the peakanisotropy reflects the un-

derlying distribution of fibre-orientations. Figure 5.1 shows examples of peak shapes

we expect for different fibre configurations. When the white-matter tract consists of

axons oriented parallel with each other (left) we expect thedODF to have a single peak

with a circular cross-section; the peak anisotropy is low. In contrast, in voxels con-

taining two fibre populations (centre-left), the peaks of the function will have a slightly

elliptical cross-section with the broader part of the ellipse oriented in the plane of the

crossing. Finally, where there is a bending or fanning structure present in the voxel

(centre-right and right respectively), the peaks of the function will have a highly ellipti-

cal cross-section that corresponds to the distribution of fibre-orientations present. Note

that the peak shape is the same for the bending and fanning configurations. This is

because the distribution of fibre orientations is approximately the same for each config-

urations, even though the spatial localization of each fibreorientation is different. We

use the Hessian to describe each peak. We compute a separate peak Hessian for each

peak in the dODF.

To calculate the peak anisotropy, we generalize the standard definition of the frac-
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Figure 5.2:The Watson distribution whenκ > 0 (left), κ = 0 (centre) andκ < 0 (right). The

mean orientation of the distribution,z, is the same for all three images.

tional anisotropy [112] to

FA =

√

N
∑

(λi − λ̄)
2

(N − 1)
∑

λ2
i

, (5.1)

whereλi, i = 1, ..., N are eigenvalues of someN-dimensional quadratic form and̄λ is

their mean. ForN = 3, we get the familiar FA for three-dimensional DTs proposed in

[112]. Here we useN = 2 to compute the anisotropy of the Hessian at PAS or dODF

peaks. We refer to this quantity as thepeak anisotropy.

We also use the FA of the two minor eigenvalues of the diffusion tensor, which

provides an analogue to peak anisotropy for DT-MRI. The FA ofthe minor eigenvalues

quantifies diffusion anisotropy orthogonal to the principal direction of the diffusion

tensor.

5.1.2 Spherical Distributions

The Watson distribution [44] is

p(x) = W (x; z, κ) = M

(

1

2
,
3

2
, κ

)−1

exp[κ(z · x)2], (5.2)

whereM denotes the confluent hypergeometric function of the first kind [44], the vector

z is the mean orientation andκ controls the concentration of the distribution. The

distribution is isotropic aboutz. Figure 5.2 shows how various settings ofκ affect the

shape of the distribution. Whenκ > 0 (figure 5.2, left), the distribution is “bipolar” and

is most concentrated at±z. At κ = 0 (figure 5.2, centre) the estimates are uniformly

distributed over the sphere and whenκ < 0 (figure 5.2, right) the distribution forms
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Figure 5.3:The Bingham distribution forκ1 = κ2 < 0 (left), κ1 < κ2 < 0 (centre) and

κ1 = κ2 = 0 (right)

a girdle. The Bingham distribution is a generalisation of the Watson distribution with

elliptical contours,

p(x) =
1

M2(
1
2
, 3

2
,A)

exp[κ1(z1 · x)2 + κ2(z2 · x)2], (5.3)

where

A = (z3, z2, z1)
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0 κ2 0

0 0 κ1











(z3, z2, z1)
T (5.4)

andM2 is the confluent hypergeometric function of the first kind formatrix argument

[44]. There are two parameters,κ1 ≤ κ2 ≤ 0, that define the concentration of the

distribution, sinceA andA + dI give equivalent distributions for any reald, where

I is the identity. Therefore it is customary to setκ3 = 0. Figure 5.3 shows how

settingκ1 andκ2 affects the shape of the distribution. Whenκ2

κ1
≈ 1 the distribution

is circular(figure 5.3, left) . Asκ2

κ1
→ 0 the distribution becomes increasingly elliptical

(figure 5.3, centre). The distribution is a girdle whenκ2 = 0, and whenκ1 = κ2 = 0

the distribution is uniform (figure 5.3, right). The mean of the distribution isz1 × z2

andz1 andz2 are the principal axes of the elliptical contours of the PDF.

5.1.3 Calibration

For calibration, we construct a mapping from the two Hessianeigenvaluesλ1 andλ2

to the Bingham parametersκ1 andκ2 using simulations on two-tensor mixture models

with known peak directions. Specifically, for a large numberof noisy trials we synthe-
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size data from test functions and reconstruct fibre-orientation estimates and associated

Hessian matrices using the multiple-fibre reconstruction of choice. In each trial, we

rotate the true direction to a common reference frame and apply the same rotation to

the reconstructed direction. We collect the rotated reconstruction directions into bins

with similar Hessian eigenvalues. We choose the bin sizes empirically such that the

bins contain enough samples to provide a robust estimate of the distribution parameters

while being small enough to limit the mixing of peak shapes. The bin size is set to 0.45

for the PASMRI calibration, 0.2 for the QBall (spherical harmonic order 4) and 0.3 for

the QBall (spherical harmonic order 6) calibrations, and the bins are indexed using the

log of the Hessian eigenvalues. We fit the parameters of the Bingham distribution in

each bin containing 50 or more samples. Finally, we fit linearsurfaces to the log of

each Bingham parameter as a function of the log of the Hessianeigenvalues. We create

two calibration mappings; one for the voxels containing a single fibre population and

one for voxels containing two fibre populations. In voxels where more than two fibre

populations are reconstructed we use the two-fibre calibration mapping to estimate un-

certainty. The Hessian of the peaks of the dODFs are calculated using the method of

Parker and Alexander [10] (see section 3.5.3).

The synthetic data come from test functions described in section 4.1.1. We use

combinations ofλ2 ∈ [1, 5] × 10−10 m2 s−1, a ∈ [0.1, 0.5] andθ ∈ [0, 45o]. We set

Tr(D) = λ1 + 2λ2 = 2.1× 10−9 m2 s−1, which is approximately the value expected in

brain data. For datasets containing a single fibre orientation per voxel, the test function

is p(x) = G(x;D1, t), whereλ2 ∈ [1, 5] × 10−10 m2 s−1. The parameters are varied

between their minimum and maximum values to create all possible variations of the

test function. A random rotation is then applied to the test function to remove any

directional bias due to the chosen acquisition scheme. We add Rician noise to makeS,

the SNR atb = 0 equal to 20, which is approximately the same value as the average

SNR of the white matter in theb = 0 image of each brain volume.

The synthetic data used for calibrating the original diffusion tensor implementa-

tion of PICo is constructed using the method described aboveto generate data from a

single Gaussian model; see Cook et al [36] for details.

Figure 5.4 shows an example calibration mapping. Firstly, samples from peaks

with similar shapes are collected into bins (figure 5.4a). The figure shows the distribu-
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a) b) c)

Figure 5.4: Illustration of the calibration procedure. a) Shows the samples after the bin-

ning step (bins are demarked by blue lines; the bin size has been doubled for clarity). b)

Plots the Bingham distribution parameters,κ1 (blue dots) andκ2 (green dots), in each

bin prior to fitting calibration mappings. c) The calibration outputs two linear map-

pings from the Hessian eigenvalues,log(λ1) andlog(λ2), and the Bingham parameters

log(−κ1) (blue surface) andlog(−κ2) (green surface).

tion of samples for two bins. The distribution of samples on the left comes from a bin

wherelog(λ1) = log(λ2). These samples form an isotropic distribution. The distribu-

tion on the right comes from a bin wherelog(λ1) > log(λ2). The samples in this bin

form an anisotropic distribution. Next, the Bingham distribution is fitted to the samples

in each bin (figure 5.4b). The figure shows two markers for eachbin, one forlog(−κ1)

(blue) and one forlog(−κ2) (green). Finally, a linear surface is fitted to the Bingham

parameters (figure 5.4c). Each of the surfaces maps the Hessian eigenvalues of a peak

to one of the Bingham parameters. In this example, the blue surface mapsλ1 andλ2 to

κ1 and the green surface mapsλ1 andλ2 to κ2. Only half of the surfaces is ever used,

sinceλ1 ≥ λ2. Thus, to estimate the Bingham parameters of the uncertainty model for

a peak with Hessian eigenvaluesλ1 andλ2 from the calibration mapping, we set

κ1 = − exp(c
(1)
1 + c

(1)
2 log(λ1) + c

(1)
3 log(λ2)) (5.5)

κ2 = − exp(c
(2)
1 + c

(2)
2 log(λ1) + c

(2)
3 log(λ2)), (5.6)

wherec(1)i andc(2)i , i = 1, 2, 3, are the coefficients for the two linear surfaces. During

tractography we draw vectors from the Bingham distributionwith shape parametersκ1

andκ2, using the fibre-orientation estimate as the mean of the distribution.
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5.1.4 Human Brain Data

High angular resolution diffusion-weighted imaging (HARDI) data were acquired on

a 3 T Philips Achieva scanner using an 8-element SENSE head coil. A pulsed gra-

dient spin echo (PGSE) echo planar imaging (EPI) sequence was implemented with

TE=54ms, TR=6000ms, Gmax=62mT/m, partial Fourier factor 0.679,112 × 112 ma-

trix reconstructed to128×128 using zero filling, reconstructed resolution1.836,mm×

1.836,mm, slice thickness2.1,mm, 34 contiguous slices, 61 diffusion sensitisation

directions atb = 1200 s mm−2, 1 at b = 0, SENSE acceleration factor = 2.5. The

total imaging time for each HARDI acquisition was approximately 7 minutes. This

acquisition was repeated 8 times during a single scanning session in the same volun-

teer to provide a conventional bootstrapping dataset. All diffusion-sensitised images

were registered to the correspondingb = 0 image within each slice location to remove

eddy current-induced distortions and for all scanning repetitions to the first scan, using

the 6-degrees-of-freedom 2D registration schedule file available in FSL’s FLIRT. The

average SNR in the white-matter regions of theb = 0 image is 20.

5.2 Experiments and Results

In this section, we show that the peaks of multiple-fibre reconstructions do provide

useful information that can be used to improve tractographyresults. We use the cal-

ibration procedure for both QBall and PASMRI. For the QBall reconstruction we use

spherical harmonic basis functions [70], since the spherical integral can be computed

analytically and therefore does not incur the numerical inaccuracies of the radial basis

function implementation described in [67]. We use the PASMRI standard settings listed

in [15].

5.2.1 Correlation between Hessian anisotropy and fanning in the

human brain

We start by testing the hypothesis that the peaks of the PAS ordODF contain more use-

ful information than simply the peak sharpness and direction by generating images of

the peak anisotropy of the dominant peaks of the PAS and the dODF in each voxel, as

well as the anisotropy of the DT perpendicular to its principal axis. The peak anisotropy

images (figure 5.5) generated are colour-coded to show the direction of the anisotropy
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using the principal eigenvector of the peak Hessian of the spherical functions and the

second eigenvector of the DT respectively. Both point in thedirection of the largest

anisotropy of the peak cross-section, which we hypothesizeis the direction of the fibre-

spread/uncertainty. In this experiment we use a maximum spherical harmonic order

4 for QBall, which is the simplest spherical harmonic representation that can support

multiple peaks. We consider this simplified case before looking at more complex rep-

resentations because the effects of noise are less problematic.

Figure 5.5 shows the magnitude and direction of the 2D FA of the DT (b) and the

peak anisotropy of the dominant peak from dODF (c) and PAS (d)in each voxel. In fig-

ures 5.5b and 5.5c, light pixels indicate that the cross-section of the principal peak of the

reconstruction is elliptical; dark regions indicate that the peak cross-section is circular.

Where there are multiple peaks, figures 5.5b and 5.5c show only the anisotropy of the

largest peak. The peak anisotropy at the centre of the corpuscallosum (highlighted with

the upper box) is low, since the fibres are approximately parallel in this region and any

spread is isotropic. Note that this is in stark contrast to the diffusion tensor anisotropy

(Fractional Anisotropy) in the corpus callosum, which is usually very high. However,

the PAS peaks in the descending motor pathways (highlightedwith the left box) have

high anisotropy with the largest axis in the posterior-anterior direction (green), which,

according to anatomical knowledge [113], is the direction of the fanning of this struc-

ture. The dODF peak anisotropy image highlights the fanningstructure less clearly

than PAS. This is a result of the fourth-order spherical-harmonic representation of the

dODF, which cannot model anisotropy in the peak sufficientlywell. However, both the

PASMRI and QBall peak anisotropy maps broadly agree. In the case of the DT, the FA

of the two-dimensional DT orthogonal to the dominant fibre direction generally agrees

with the other two images.

5.2.2 Calibration validation

We validate the estimates of the Bingham distribution parameters provided by the cali-

bration mapping by comparison with bootstrap samples from the 8 repeats of the human

brain data. We identify 4 regions of interest (ROIs), one containing voxels with highly

coherent fibre bundles, one with fibre-crossings, one in a fanning region and one in an

isotropic region. Each ROI contains 25 voxels. The ROIs are shown in figure 5.6. Each
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Figure 5.5: images of a) the standard colour-coded principal direction map from the

DT weighted by FA of the full three dimensional DT. Red indicates left-right; green

indicates front to back; blue top to bottom; intensity is FA.b) Colour-coded map of

the second eigenvector weighted by the FA of the two-dimensional DT orthogonal to

the dominant fibre direction. c) Colour-coded peak major axis orientation weighted

by peak anisotropy for the dominant dODF peak. d) Colour-coded peak major axis

orientation weighted by peak anisotropy for the dominant PAS peak. In cases where

the PAS or dODF has several peaks, the peak anisotropy of the peak with the greater

magnitude is shown.
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ROI was extracted from all 8 datasets and we create 100 bootstrap sets of measurements

for each voxel by sampling with replacement from the 8 options for each measurement

[114]. We reconstruct using PASMRI and QBall (using maximumspherical harmonic

orders of both 4 and 6) and estimate the fibre-orientation estimates and associated Hes-

sians for each bootstrap. We then order the peak directions from the bootstraps into

populations with similar orientations and store the peak directions corresponding to the

largest peak.

To calculate the bootstrap estimate of uncertainty, we fit the Bingham distribu-

tion to the bootstrap estimates of the peak direction for thelargest peak and find

ζ1 = log(−κ1), ζ2 = log(−κ2) and the 2D FA of the Bingham parametersηb =

FA(diag(κ1, κ2)). For the calibration estimates, we find the Bingham parameter esti-

mates for the peak directions of each of the 100 bootstraps using the calibration map-

ping (equations 5.1.3 and 5.1.3) and calculate the mean of the three measures,̄ζ1, ζ̄2

andη̄c.

Figure 5.7 plotsζ1, ζ2 andηb againstζ̄1, ζ̄2 andη̄c for QBall (orders 4 and 6) and

PASMRI. Each marker represents a voxel in one of the ROIs. If the bootstrap and

calibration estimates of uncertainty agree, the markers will be on the linex ' y. In

terms of the anisotropy of the Bingham parameters (left column), neither QBall order

4 or QBall order 6 provides compelling results. For both methods, the calibration

estimates of̄ηc are generally in the range [0, 0.4]. The agreement between bootstrap

estimates ofηb and calibration estimates of̄ηc for PASMRI is a little better, although

in most cases the calibration still underestimates anisotropy in the uncertainty. With

regards to the magnitude of the Bingham parameters, the calibration and bootstrap

methods broadly agree.

The anisotropy estimates from the dominant peak of the reconstructions,η̄c, are

generally lower than the corresponding estimates from the bootstrap,ηb. However,

in cases where there are several peaks, it is likely that samples will be drawn from

both peak directions during tractography. Therefore, we fita single Bingham to both

populations when computingηb to capture this effect. Specifically, to estimate the

uncertainty anisotropy, we fit a Bingham distribution to theset of all peak directions

from all 100 bootstraps and compute the 2D FA of the Bingham parameters,ηb. Then,

for each bootstrap, we use the calibration to estimate the Bingham parameters. We
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Figure 5.6: The regions of interest used for validating the performance of the fitted

mapping (the PAS is shown in each voxel of the ROIs). The ROIs were chosen to

include a) crossing fibre, b) grey matter, c) fanning and d) single fibre regions of the

brain.

draw 100 samples from all of the Bingham PDFs in each bootstrap, fit a single Bingham

PDF to the whole collection of these samples and computeη̄c. Figures 5.8a and 5.8b

plot ηb againstη̄c for each voxel in each ROI for PASMRI and QBall, respectively.

As in figure 5.7, each marker represents a voxel in one of the ROIs and markers on

the linex ' y indicate agreement between the calibration and bootstrap estimates of

uncertainty.

For both settings of QBall,ηc (figure 5.8b) are generally very low (0.1 − 0.2)

in comparison toηb, althoughηc improves for grey matter and fibre-crossing regions.

Neither the fourth-order or sixth-order spherical-harmonic basis function representa-

tion of the dODF cannot adequately capture the anisotropy inthe peaks of the QBall

dODF. The PASMRI calibration gives better results (figure 5.8a), withηb and η̄c gen-

erally agreeing. Some disagreement occurs for the high FA samples, where bootstrap-

ping gives much higher anisotropy. Occasionally, when the uncertainty is anisotropic,

PASMRI produces small peaks in the perpendicular directionrather than a single el-

liptical peak. The small spurious peak causes unexpectedlylow η̄c in the main peak.

Future work may correct for this by including the peak heightin the calibration map-
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Figure 5.7: Validation results for calibration mapping estimates of the Bingham pa-

rameters. Each plot compares bootstrap estimates of uncertainty to the mean estimate

from the calibration mapping. The left column shows plots comparing estimates of

the anisotropy of the Bingham parameters, the centre columnshows plots comparing

estimates ofκ1 and the right column shows plots comparing estimates ofκ2.

ping.

5.2.3 Tractography

We run PICo tractography on the human brain data using the newmultiple-fibre PICo

algorithm in conjunction with PASMRI and QBall (both order 4and order 6) and com-

pare the results to those of the algorithm described in [43].The tractography pro-

cess was started from a manually defined region of interest atthe base of the corti-

cospinal/corticopontine tracts (see Figure 5.9, inset). The dominant pathway from the

seed region runs inferior-superior into the corona radiata, where the descending motor

pathway fibres cross lateral fibres projecting from the corpus callosum.

Figure 5.9 shows the results of tractography using the multi-fibre algorithm with

both PASMRI and QBall as well as results from the DT algorithmintroduced by [36]

using both the Watson and Bingham distributions to model uncertainty. As expected,

the original DT-PICo algorithm fails at fibre-crossings, which results in large holes in

the descending motor pathway reconstructions. In the DT case, the connection indices
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Figure 5.8: Validation results for calibration mapping estimates of the Bingham pa-

rameters. a) and b) are plots of the mean anisotropy of the Bingham parameters,̄ηc,

estimated by our mapping against the anisotropy of the Bingham parameters,ηb, esti-

mated using bootstrapped data for both PAS and QBall respectively.

in the descending motor pathways vary widely, as opposed to the connection indices

from PAS-PICo and QBall-PICo, which are more consistent over the tract. For QBall,

the PICo results have fewer holes than the DT-PICo results, since the QBall dODFs

are able to model multiple peaks. However, for QBall order 4 the reconstruction of the

descending motor pathways generally fails to reach the cortical layer. The results of

the PAS-PICo and QBall order 6 tractography experiments aremore favourable. Not

only do the algorithms correctly map the fanning structure of the descending motor

pathways, the reconstructed tracts extend to the cortical layer. The PAS-PICo results

show fewer holes in the descending motor pathways than thosefrom either order 4 or

order 6 QBall PICo. These results reflect the greater abilityof PASMRI to resolve fibre-

crossings with a small number of measurements over QBall [32]. The difference map

from the PAS-PICo experiment shows that using the information about the shape of the

peak results in a more even index of connection over the descending motor pathways,

although the overall magnitude of the connection indices islower.

5.3 Discussion and Conclusions

We have introduced a generalization of the PICo algorithm that allows us to use more

of the information contained in the fibre-orientation distributions to improve tractogra-

phy through complex white-matter structures. We have demonstrated that the algorithm

described here works for both PASMRI and QBall. Since the algorithm exploits infor-
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Figure 5.9: PICo tractography results using a DT reconstruction (top row), QBall re-

construction (middle row) and PASMRI reconstruction (bottom row). The difference

map shows where the probability of connection is higher whenusing the Bingham dis-

tribution (blue) or the Watson distribution (red). The seedROIs are shown in the axial

view in the top-left corner (inset).

mation captured by the ODF, it is independent of reconstruction technique and extends

easily to similar algorithms such as Spherical Deconvolution (see chapter 3). The boot-

strap validation shows that the FA of the Bingham parametersfrom the PASMRI cali-

bration and the bootstrap estimates approximately correlate. For order 4 QBall-PICo,

the choice of PDF used to model uncertainty makes little difference to the resulting

PICo connectivity map. This results from using a fourth-order spherical-harmonic basis

function representation of the dODF. The connectivity map from order 6 QBall-PICo

is more favourable, although the bootstrap validation still suggests that the ODF is still

unable to model anisotropic peaks. Using a spherical radialbasis function representa-

tion of the dODF or higher-order SH may allow peak anisotropyto be captured better.

PAS-PICo gives the most compelling results. The differencemaps in figure 5.9 demon-

strate clear changes by modelling anisotropy. The PAS-PICodifference map clearly

shows that using both the shape and sharpness of the PAS peaksresults in a higher

connection probability in regions of fibre crossings. Utilizing other information in the

peaks of multi-fibre reconstructions, such as the height of the peaks of functions, in

PICo may improve results further. The bootstrap validationhighlights one weakness of
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the PASMRI reconstruction algorithm, which is that it sometimes produces a spurious

perpendicular peak in fanning structures. Future work willinvestigate and compare the

ability of other multiple fibre reconstructions to capture the shape of fanning and bend-

ing structures. For example, we can extend the framework described in the previous

chapter to determine how well different algorithms model complex fibre configurations

such as fannings and bendings.



Chapter 6

Refining Multiple-Fibre PICo

In the previous chapter we introduced a method for exploiting the peak shapes of

multiple-fibre reconstructions to improve estimates of uncertainty in PICo tractogra-

phy. Since its initial publication in 2007, it has become thestandard multiple-fibre re-

construction PICo method in the popular Camino toolkit [83]. However, the histogram-

based calibration procedure has several limitations. First, the choice of bin size affects

the mapping and needs to be chosen empirically for each new calibration. Make the

bins too large and peaks with different shapes will be combined into a single bin; make

the bins too small and there will not be enough samples to obtain a reliable estimate

of the distribution parameters. Second, bins that do not contain enough samples are

not used to estimate the parameters of the calibration mappings, which wastes useful

information. A consequence of this second point is that the histogram-based calibration

procedure requires a large amount of data over all peak shapes in order to generate a

reliable mapping. Several methods may improve the calibration. For example, instead

of binning fibre-orientation estimates into fixed bins, we could choose the k-nearest

neighbours [115] to given Hessian eigenvalues. Alternatively, we could dynamically

alter the sizes of the bins to reduce the effects they have on the calibration surfaces.

In this chapter we describe a new calibration procedure thatavoids using a binning

procedure completely by parameterising the mapping from peak shape to the distribu-

tion parameters and fitting it to all the data at once. This notonly allows us to avoid any

requirement for choosing parameters, but it also exploits all of the fibre-orientation es-

timates in the calibration dataset. Furthermore, it allowsus to use a smaller calibration

dataset, since we no longer need to fit individual distributions explicitly.

Finally, we present some exploratory work on a method which aims to model the
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fODF, as opposed to the uODF, in each voxel.

6.1 Maximum Likelihood Calibration

In this section we describe the maximum likelihood approachto learning a calibrated

mapping between peak shape and the parameters of a distribution used to model un-

certainty. Reconstructing synthetic data using a multi-fibre reconstruction algorithm

gives us two useful pieces of information: the shape of each peak of the ODF and the

deviation angle between the peak direction (our fibre orientation estimate) and the true

fibre-orientation. The goal of the calibration procedure isto find the mapping between

features of the ODF and distribution parameters from the deviations of the calibration

data. The calibration mapping uses features of the ODF to predict the distribution pa-

rameters that model the uncertainty of the fibre-orientation estimates. For example, in

the previous chapter we use the eigenvalues of the peak Hessian to estimate the Bing-

ham parameters. The calibration mapping consists of calibration surfaces for each of

then distribution parameters, i.e.κ1, ..., κn. The calibration procedure alters the pa-

rameters of the mapping surfaces to maximize the likelihoodof all the deviations in

the training data. Specifically, givenN samples we aim to maximise the log-likelihood

function

L =
N
∑

i=1

log
(

p(θi, φi|κ1(λ1, λ2; c
(1)
1 , ..., c

(1)
M ), ..., κn(λ1, λ2; c

(n)
1 , ..., c

(n)
P ))

)

(6.1)

wherep gives the likelihood of deflectionθi andφi given the Bingham parameter esti-

mates fromκ1, ..., κn; c(1)1 , ..., c
(1)
M , ..., c

(n)
1 , ..., c

(n)
P are the coefficients of the calibration

mappings andλ1 andλ2 are the Hessian eigenvalues of the peak.

The full calibration procedure consists of the following steps:

1. choose calibration dataset

2. synthesize data

3. fit ODF to synthetic data

4. extract peak shape and orientation information

5. choose uncertainty model
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6. choose surface model for calibration mapping

7. pre-process calibration data

8. fit surface to maximize 6.1

The first five steps are identical to the corresponding steps in the histogram-based

calibration described in the previous chapter. We will therefore focus on the last three

steps in the remainder of this section. In particular, we will examine different cali-

bration mappings and alternative strategies for processing the calibration data to match

fibre-orientation estimates to their corresponding fibre orientations and remove outliers.

6.2 Choosing the model of uncertainty and mapping

representation

We consider two distributions to model the uncertainty of each ODF peak: the Watson

and Bingham distributions. For each of these distributionswe need to define suitable

mapping parameterizations. Here, we consider a 1D mapping for the Watson distribu-

tion parameter and two 2D mappings for the Bingham parameters. We define several

mapping parameterizations below.

For the Watson distribution, we map from the peak sharpness to the concentration

parameter,κ, using the mapping (wm1)

κ1 = c1 + c2 log(Tr(H)). (6.2)

Thewm1 mapping allows the Watson distribution parameter,κ, to be both positive

and negative. This mapping also only has two parameters to optimize, which should

make the calibration robust.

For both of the Bingham calibrations, we use a separate mapping for each of the

distribution parameters,κ1 andκ2. The first calibration mapping for the Bingham is

the unconstrained mapping (bm1)

κ1 = − exp(c
(1)
1 + c

(1)
2 log(λ1) + c

(1)
3 log(λ2)), (6.3)

κ2 = − exp(c
(2)
1 + c

(2)
2 log(λ1) + c

(2)
3 log(λ2)), (6.4)
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where we setκ1 = κ2 if κ2 < κ1 to ensure that the Bingham parameters are valid (i.e.

thatκ1 <= κ2 <= 0). Neither of thebm1 mapping surfaces are constrained, which

makes the mapping flexible.

The second mapping we consider is the constrained mapping (bm2)

κ1 = − exp(c
(1)
1 + c

(1)
2 log(λ1) + c

(1)
3 log(λ2)), (6.5)

κ2 = κ1 + exp(c
(2)
1 λ1 + c

(2)
2 λ2). (6.6)

The constrained (bm2) mapping has fewer free parameters than the unconstrained

(bm1) mapping, which may make the calibration more robust. However, using a con-

strained mapping forκ2 will limit the shapes of the distributions that can be captured

by the calibration and therefore may bias estimates of the distribution parameters.

6.3 Calibration data

We construct a separate calibration mapping for one- and multiple-fibres. This means

that each mapping only models uncertainty for a subset of thedata, which should re-

sult in more accurate estimates of uncertainty from the calibration. Prior to fitting the

mapping to the calibration data, we must make choices on how to split the dataset into

one- or multiple-fibre subsets, match the fibre-orientationestimates to the true fibre

directions and reduce the effect of outliers. We start this section by discussing how

to separate the calibration dataset into one-fibre and multiple-fibre voxels so that the

resulting calibration mappings provide a more representative estimate of uncertainty.

We then look at how to match fibre-orientation estimates to the true fibre orientations.

In particular, we focus on cases where the number of estimates (i.e. ODF peaks) does

not agree with the actual number of fibre populations. Finally, we consider methods for

reducing the effect of outliers on the calibration mappings.

6.3.1 Sorting samples into one- and multi-fibre calibrationdatasets

The calibration dataset is constructed from test functionsusing one and two tensor

models; the dataset contains voxels with one and two fibre directions. However, the

number of fibre-orientation estimates from the reconstructed ODFs do not necessarily

match the number of fibre directions. Therefore, when separating the calibration data

we must decide which data is used for the one-fibre calibration and which data is used
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for the multi-fibre calibration. In the previous chapter we split the calibration dataset

into two subsets according to the number of tensors used to create the test function.

However, we do not know the true number of fibre orientations in each voxel of a

brain volume, just the estimated number of fibres. Therefore, the uncertainty estimates

from the original mapping may be biased because the set of voxels used for creating the

calibration mapping will not be reflective of the voxels for which the mapping estimates

the uncertainty. We present two alternatives below.

Separate A more suitable approach to the one used in the previous chapter is to sepa-

rate the datasets into different subsets based on whether the voxel contains a sin-

gle fibre-orientation estimate or multiple estimates. Therefore, if reconstructed

ODF has a single peak, the corresponding fibre-orientation estimate is used in

the one-fibre mapping. Conversely, if the ODF has multiple peaks, the corre-

sponding fibre-orientation estimates are used in the multiple-fibre mapping. The

benefit of this approach is that both the calibration and tractography algorithms

use the same criteria for classifying each voxel. In addition to this, using sepa-

rate mappings for one- and multiple-fibre voxels potentially makes the calibration

procedure more flexible.

Combined Alternatively, we can bypass the problem of subdividing thecalibration

dataset by using the whole dataset, consisting of both one- and multiple-fibre

voxels, to learn a single combined mapping. This simplifies the calibration pro-

cess, since there is no longer a need to classify voxels as onefibre or multiple

fibre before predicting uncertainties. A potential limitation of this approach is

that a single mapping may not be flexible enough to model accurately the uncer-

tainties for both one fibre and multiple fibre voxels.

6.3.2 Matching fibre-orientation estimates to true fibre-orientations

and dealing with bias

Multi-fibre reconstructions often contain spurious peaks (false-positives) or model sev-

eral fibre-orientations with a single peak (false-negatives). Reconstructions exhibiting

these artefacts have a detrimental effect on the calibration if they are not removed or

down-weighted. Some spurious peaks can be thresholded out,which may alleviate
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the problem to some extent. However, there are many voxels where spurious peaks

remain, useful fibre-orientation estimates are removed, orthe reconstruction provides

a misleading estimate of the fibre orientation (i.e by modelling several fibre orienta-

tions by a single peak). The false-positives and false negatives cause several problems.

Firstly, matching fibre-orientation estimates to true fibreorientations becomes prob-

lematic because there is not a one-to-one correspondence. Another problem is that

errors in reconstruction may adversely influence the resulting mapping if they are not

dealt with appropriately. In this section we propose several methods for matching fibre-

orientation estimates to the true fibre orientations and fordealing with reconstructions

that may introduce bias into the mapping.

Let us consider the case where two fibre orientations are modelled as a single

peak in the reconstruction and compare that to a case where both fibre orientations are

correctly modelled with separate peaks. For both of these configurations we expect

to see anisotropic distributions, oriented so that the distribution of fibre orientations is

greater in the plane of the crossing, with the fibre-orientation estimates clustered around

the fibre directions. However, when the directions are modelled by a single peak this

is not the case. Although the peak shape reflects the underlying fibre configuration,

the distribution of fibre orientation estimates is no longerclustered around the fibre

directions.

Figure 6.1 illustrates both cases using fibre-orientation estimates from PASMRI

reconstructions. The fibre orientations are shown by red markers. In the voxels that

contain a60◦ crossing (left), the PAS generally has two peaks and we observe an

anisotropic distribution of fibre-orientation estimates clustered around the two fibre ori-

entations. For voxels that contain20◦ crossings (right), only a single fibre orientation is

predicted. The fibre-orientation estimates for the20◦ case are tightly clustered around

a point half way between the two fibre orientations. This effect introduces a bias into

the calibration data because the true deflections are much greater than the variance of

the single fibre-orientation estimate.

These biased estimates need to be downweighted or removed from the calibration

dataset. We outline several methods for downweighting or removing these estimates

below.

All The first approach to mapping fibre-orientation estimates tothe fibre directions ap-
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Figure 6.1: Uncertainty of fibre-orientation estimates from PASMRI reconstructions of

synthetic data for60◦ crossings (left) and20◦ crossings (right). For each configuration,

we generate 50 noisy trials using a two-tensor model of diffusion and plot the fibre-

orientation estimates (blue markers) on the sphere. We alsoplot the fibre orientations

(red markers) for reference.

plies no downweighting. Specifically, we assign each fibre-orientation estimate

to the closest fibre direction and allow the same estimate to be matched to both

fibre directions when there is only a single estimate but two fibre directions. This

approach has the benefit of using all of the available data. However, it makes no

attempt to remove the biased estimates described above. Therefore, the resulting

mapping will overestimate the uncertainty.

Closer In the second approach, we assign each fibre-orientation estimate to the closest

fibre-direction as before, but here we match the estimate only to the closer of the

two fibre orientations when a single peak is recovered from two fibre orientations.

This reduces the contribution of the misclassifications to the one-fibre mapping,

although the resulting mapping still overestimates the uncertainty.

noFP The third approach rejects all of the false positives (i.e. remove all voxels where

the number of fibre-orientation estimates does not match thenumber of fibre

orientations). This removes a lot of the training data, but also culls a most of the

spurious and biased samples.
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6.3.3 Outlier rejection

In addition to the methods described in section 6.3.2, we consider the use of outlier re-

jection to remove spurious samples from the ‘all’ and ‘closer’ datasets used to calibrate

the mapping between the distribution parameters and the peak shape. Outlier rejec-

tion is not applied to the ‘noFP’ dataset, since many of the outliers have been removed

already.

To remove the outliers from a dataset, we perform an initial calibration using the

procedure described above section 6.1 with both the ‘all’ and ‘closer’ datasets. We then

use the calibration mapping to calculate the likelihood of each sample in the dataset. Fi-

nally, we remove samples that have a likelihood lower than a manually selected thresh-

old and refit the mapping to the remaining samples.

Figure 6.2 shows examples histograms of the log-likelihoodof each sample of a

complete calibration dataset for a PASMRI calibration. Thehistograms shows a distri-

bution that has a very long tail to the left where the likelihood of the samples is very

close to zero. These samples are considered outliers in the dataset and thresholded out.
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Figure 6.2: Histograms showing the likelihood of each sample in a single-fibre (left)

and a two-fibre (right) calibration dataset (‘all’) as estimated using PASMRI and the

bm1 calibration mapping.

6.4 Fitting

We use the matlab function fminunc to search for the mapping parameters that min-

imize the negated likelihood from equation 6.1. The function uses an unconstrained
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [116, 117, 118,

119] for the minimization. At each iteration, we find the local gradient numerically.

To overcome local minima, we run the algorithm 20 times, withdifferent starting

points drawn from a zero-mean normal distribution. We set the standard deviations of

the distributions on the initial setting of each parameter to a similar magnitude as the

parameter settings obtained using the histogram-based approach in chapter 5. The al-

gorithm converges on the same solution and terminates having minimised the objective

function for approximately60% of the runs and we assume that solution is the global

minimum.

6.5 Experiments

In this section we investigate the effects of outliers on themaximum likelihood calibra-

tion and compare the variants of the calibration procedure using a bootstrap validation

and PICo tractography. Details of the method used to generate the bootstrap data and

the measures calculated are provided in sections 5.2.2 and 5.2.3 respectively. We use

both PASMRI and Spherical Harmonic QBall with a maximum spherical harmonic or-

der of 6 to reconstruct the data.

6.5.1 Effect of synthetic data artefacts on a calibration between

peak sharpness and uncertainty

We start by examining the effects of outliers on calibrations between uncertainty and

peak sharpness (i.e. using the Watson distribution to predict uncertainty). We anticipate

that outliers in the calibration dataset will add a large bias the calibration mapping. In

particular, we expect to see an over-estimation of uncertainty.

To test this hypothesis, we plot the deflection angle betweenthe fibre orientation

and the corresponding peak orientation against the peak sharpness for two datasets (the

‘all’ and ‘noFP’ datasets) and compare the plots. If there are no outliers, we expect the

deflection angles to decrease as the peak sharpness increases. The ‘noFP’ dataset will

reject most outliers, so we can consider the plot from this dataset as close to the ground

truth. We reconstruct the calibration data using PASMRI. The samples are aligned with

the z-axis using the approach described in section 5.1.3.

Figure 6.3 plots the deflection angle of the samples against peak sharpness for the
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Figure 6.3: Plots the deflection angle of each sample in the single-fibre ‘all’ calibration

dataset against the corresponding peak sharpness. The distribution of samples on the

sphere are shown for three ranges of peak sharpness (top row). PASMRI was used to

reconstruct the data.

single-fibre ‘all’ calibration dataset. In the scatter plot, there are two clusters of sam-

ples. One cluster consists of samples with small deflection angles. The other consists

of samples with far larger deflection angles and is limited tothe middle of the range

of peak sharpness. Samples from several ranges of peak sharpness are shown above

the plot of deflection angles. The samples from broad peaks (left) have a large distri-

bution whereas sharp peaks (right) are tightly clustered around the z-axis. In contrast,

peaks with a sharpness in the middle of the range (centre) have a broad distribution with

anisotropic contours. This is caused by voxels that containtwo true directions which

have produced a single anisotropic peak. As suggested in section 6.3.2, this configura-

tion yields deflection angles that are not representative ofthe underlying uncertainty.

Figure 6.4 shows a plot similar to the one in figure 6.3 but using the ‘noFP’ dataset.

Unlike figure 6.3, the scatter plot for this dataset only contains a single cluster consist-

ing of samples with small deflection angles; the second cluster of samples with large
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deflection angles no longer appears. The distributions of samples from broad peaks

(left) and sharp peaks (right) are similar to those from the ‘all’ dataset. However, the

distribution of samples in the middle of the range (centre) is far more concentrated

around the fibre-orientation. In addition to this, the contours of the distribution are not

anisotropic and the variance is lower than for the equivalent range in figure 6.3.

Figure 6.4: Plots the deflection angle of each sample in the single-fibre ‘noFP’ calibra-

tion dataset against the corresponding peak sharpness (thetrace of the peak Hessian, as

in chapter 5). The distribution of samples on the sphere are shown for three ranges of

peak sharpness (top row). PASMRI was used to reconstruct thedata.

The anisotropic distribution of samples from ODFs with a single peak that models

two fibre directions provides some information about the spread of fibre orientations

but does not reflect the actual uncertainty of the fibre-orientation estimates. These sam-

ples greatly increase the uncertainty in the middle of the range of peak sharpnesses

(figure 6.3, centre), which increases the uncertainty estimates for the majority of fibre-

orientation estimates when using a linear mapping during tractography. The effect

is particularly noticeable for calibrations where uncertainty is estimated using peak

sharpness (for example, when using thewm1 mapping). Outlier rejection reduces the
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effect of these outliers slightly, but they still have a large affect thewm1 mapping. We

investigate the effects of outlier rejection in more detailin the following experiment

(section 6.5.2). We therefore recommend using the ‘noFP’ dataset when calibrating

between peak sharpness and uncertainty. Although this effect is important when con-

sidering mapping uncertainty to peak sharpness, it also affects calibration mappings

between peak shape and uncertainty.

6.5.2 Calibration estimates of uncertainty vs bootstrap estimates

Here we use the bootstrap data from the previous chapter to compare bootstrap esti-

mates of uncertainty to estimates from the maximum likelihood calibration procedure

described in section 6.1. We expect bootstrap estimates of uncertainty to broadly agree

with the calibration estimates of uncertainty.

We have three main hypotheses: firstly, we expect outlier rejection to improve the

agreement between the bootstrap estimates of uncertainty with those from the calibra-

tion mapping. Secondly, the constrained (bm2) calibration mapping has less parame-

ters which will result in a calibration that is less likely toget trapped in local minima.

Therefore, we hypothesise that thebm2 mapping will provide better agreement with

the bootstrap than thebm1 mapping. Thirdly, we hypothesise that separate mappings

for single fibre and multi-fibre voxels will provide a more flexible mapping than a sin-

gle combined mapping for all voxels. Separate mappings are only fitted to a subset

of the data and may therefore reduce any problems caused by any non-linearity in the

relationship between the peak shape and distribution parameters. If this is the case, es-

timates of uncertainties from separate mappings will have abetter agreement with the

bootstrap estimates than those from the combined mappings.

In this experiment, we focus on the dominant peaks and compare the predicted

Bingham parameters from the bootstrap with those from the calibration mappings. De-

tails of the method used to generate the bootstrap data and the measures calculated

are provided in section 5.2.2. We reconstruct each of these voxels and compare the

bootstrap estimates of the Bingham anisotropy,ηb, and the Bingham parameters,ζ1 and

ζ2 to the corresponding mean calibration estimates in each voxel, η̄c, ζ̄1 and ζ̄2 (see

section 5.2.2).
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6.5.2.1 Effect of outlier rejection on calibration

First, we test the hypothesis that outlier rejection improves the agreement between

calibration estimates of uncertainty with the bootstrap estimates. For this experiment

we use the ‘all’ dataset and separatebm1 calibration mappings for the single- and multi-

fibre voxels. The outlier threshold is chosen manually for each calibration.

Figure 6.5 shows plots of̄ηc (left column), ζ̄1 (centre column) and̄ζ2 (right col-

umn) of the calibration estimate against the correspondingestimate for the bootstrap.

For both PASMRI (top two rows) and QBall (bottom two rows) we show plots before

and after outlier rejection. The PASMRI plots without outlier rejection (top row) shows

good agreement between the calibration and bootstrap estimates of anisotropy in uncer-

tainty (η̄c andηb respectively) for crossing and fanning fibres. However, thecalibration

estimates of̄ζ2 are considerably lower than the estimates ofζ2 from the bootstrap. Ap-

plying outlier rejection (second row) yields similar agreement between the calibration

and bootstrap estimates of anisotropy in the uncertainty but provides a closer agree-

ment between the calibration estimate ofζ̄2 and bootstrap forζ2. There is also closer

agreement between the calibration estimate ofζ̄1 and bootstrap forζ1.

The QBall calibration, without outlier reduction (figure 6.5, third row), yields poor

agreement between the bootstrap estimates ofζ1 (centre panel) and̄ζ2 (right panel)

and the corresponding calibration estimates. Specifically, the calibration estimates of

the Bingham parameters are very low compared to the bootstrap estimates. There is,

however, some agreement between the calibration and bootstrap estimates of anisotropy

in uncertainty (left panel) for fanning and high FA voxels. The QBall calibration with

outlier rejection (fourth row) has good agreement with the bootstrap for estimates ofζ1

andζ2 (centre and right panels respectively). However, there is poor agreement between

the calibration and bootstrap estimates of anisotropy in uncertainty (left panel).

Outlier rejection improves the agreement between the calibration mapping predic-

tions of the Bingham parameters and the bootstrap predictions for both reconstruction

algorithms. In particular, the agreement between the calibration estimates of̄ζ2 and

bootstrap estimates ofζ2 is improved. For PASMRI, the Bingham anisotropy appears

to agree with the bootstrap estimates in the crossing fibre voxels, fanning voxels and

some of the grey matter voxels both before and after outlier rejection. In comparison,

QBall underestimates the Bingham anisotropy, although theagreement is worse after
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outlier rejection.
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Figure 6.5: Comparison of uncertainty estimates from maximum-likelihood calibration

mappings with bootstrap estimates for PASMRI (top two rows)and QBall (bottom two

rows). Each plot compares bootstrap estimates of the uncertainty to the mean esti-

mate from the calibration mapping. The left column shows plots comparing estimates

of the anisotropy of the Bingham parameters, the centre column shows plots compar-

ing estimates ofκ1 and the right column shows plots comparing estimates ofκ2. For

each reconstruction algorithm, we plot results before (upper row) and after (lower row)

outlier removal. All mappings use the ‘all’ dataset and thebm1 mapping.

6.5.2.2 Unconstrained vs constrained calibration mappings

Next, we test the hypothesis that the constrained (bm2) calibration mapping is more

robust than the unconstrained (bm1) calibration mapping. If this is the case, the agree-

ment between the bootstrap estimates of uncertainty and calibration estimates should

be at least as good for thebm2 mapping as it is for thebm1 mapping. We use the ‘noFP’

dataset and separate mappings for one- and multi-fibre voxels for all of the calibrations.

Figure 6.6 shows plots bootstrap estimates of the measures against calibration es-
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timates from the ‘noFP’ dataset for PASMRI (top two rows) andQBall (bottom two

rows). For PASMRI, the unconstrained mapping predicts a large range of Bingham

anisotropy (top row, left panel) and there is a good agreement with the bootstrap esti-

mates of anisotropy for crossing and fanning voxels although the calibration underesti-

mates anisotropy for some voxels, particularly grey matterand high FA. There is also

good agreement between the calibration estimates ofζ̄1 and bootstrap estimates ofζ1

(top row, centre panel) as well asζ2 andζ̄2(top row, right panel). The constrained map-

ping gives far higher estimates of anisotropy than the bootstrap for most grey matter

and crossing fibre voxels (second row, left panel). One reason for this is that thebm2

mapping is unable to modelκ1 = κ2. This is demonstrated by the example mappings

in figure 6.7. In this illustration the blue surface represents the calibration mapping for

κ1 and the green surface represents the mapping forκ2. Sinceλ1 < λ2, only the parts

of the mapping that meet this requirement are used. Both calibration mappings predict

high uncertainty when peaks are broad (log(λ1) = log(λ2) = 0) and low uncertainty

when the peaks are sharp (log(λ1) = log(λ2) = 15). However, the surfaces should

intersect whereλ1 = λ2 (i.e. the Bingham distribution should be isotropic when the

peak shape is isotropic). However, due to the constraint onκ2, the surfaces forbm2

will predict a large amount of anisotropy, even whenλ1 = λ2. This problem is less

apparent for thebm1 mapping.

The QBallbm1 mapping estimates of̄ζ1 andζ̄2 agree with the bootstrap estimates

of ζ1 (third row, centre panel) andζ2 (third row, right panel). However, the mapping is

does not capture the full anisotropy in the uncertainty (third row, left panel) except for

the grey matter voxels and a few of the crossing fibre voxels. The QBallbm2 estimates

of ζ̄1 and ζ̄2 agree with the bootstrap estimates ofζ1 (fourth row, centre panel) andζ2

(fourth row, right panel). One outlier with̄ζ2 = −14 has been removed from the QBall

bm2 plot to improve visualisation. Estimates ofη̄c are smaller thanηb, although asηb

increases,̄ηc tends to increase as well. However,η̄c is always greater than 0 (i.e. the

calibration always predicts some anisotropy).

Overall, the full (bm1) calibration mapping shows closer agreement to the boot-

strap than the constrained (bm2) mapping. Therefore, we recommend using thebm1

mapping to map between peak shape and uncertainty.



6.5. Experiments 137

se
p

a
ra

te
 c

a
li

b
ra

ti
o

n
 d

a
ta

se
ts

ζ 2

¯ζ2

ζ 2

¯ζ2

ζ
2

¯ζ2

ζ 2

¯ζ2
ζ 1

¯ζ1

ζ 1

¯ζ1

ζ 1

¯ζ1

ζ 1
¯ζ1

η
η

η̄

η

η̄

η

η̄

η̄

PAS noFP

(constrained)

PAS noFP

(full)

QBall noFP

(full)

QBall noFP

(constrained)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Figure 6.6: Comparison of uncertainty estimates from maximum-likelihood calibration

mappings estimates against bootstrap estimates for PASMRI(top two rows) and QBall

(bottom two rows). Each plot compares bootstrap estimates of the uncertainty to the

mean estimate from the calibration mapping. For each reconstruction algorithm, we

plot results using thebm1 mapping (upper row) andbm2 mapping (lower row). All

calibrations use the ‘noFP’ dataset and generate separate mappings for one-fibre and

multi-fibre voxels.

6.5.2.3 Separate vs combined calibration mappings

Finally, we test the hypothesis that ‘separate’ mappings are more flexible than ‘com-

bined’ mappings. If this is the case, there should be better agreement between the

calibration estimates of uncertainty and bootstrap estimates, especially for voxels with

a single fibre orientation (i.e. high FA and some fanning voxels). For all variants we

use thebm1 mapping with outlier rejection and the ‘closer’ dataset.

Figure 6.8 shows plots comparing both ‘separate’ and ‘combined’ mapping esti-

mates of uncertainty to the bootstrap estimates for PASMRI (top two rows) and QBall

(bottom two rows). Estimates of̄ηc for PASMRI using ‘separate’ calibration mappings
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Figure 6.7: Examples of the original unconstrained calibration mapping (left) and the

constrained calibration mapping (right). For both mappings we plotlog(−κ1)) (blue)

andlog(−κ2) (green). Thelog(−κ2) surface in thebm2 mapping has a lower limit of

log(−κ2) = −2 imposed on the surface for visualisation.

(top row, left panel) agree with the bootstrap estimates,ηb for most of the fanning vox-

els and around half of the crossing voxels. However, the calibration give large estimates

of anisotropy for the high FA voxels. The calibration estimates ofζ̄1 show good agree-

ment withζ1 (top row, centre panel). The calibration estimates ofζ̄2 agree with the

bootstrap estimates ofζ2 in most voxels, although the calibration gives low estimates

of ζ̄2 for many of the high FA voxels. The combined mapping for PASMRI (second

row) shows similar agreement with the bootstrap.

The QBall ‘separate’ mapping estimates ofη̄c (third row, left) show little agree-

ment to the bootstrap estimates,ηb, although the calibration does capture some

anisotropy in the fanning and crossing voxels. Estimates ofζ̄1 and ζ̄2 generally agree

with the bootstrap estimates,ζ1 andζ2 for all voxels except one grey matter voxel. The

‘combined’ mapping estimates of̄ηc are low compared to the bootstrap estimates,ηb,

although there is agreement in the general trend. Calibration estimates of̄ζ1 and ζ̄2

generally agree with the bootstrap estimates,ζ1 andζ2.

There is little difference between using ‘separate’ and ’combined’ mappings for

PASMRI, although estimates of̄ζ1 are in closer agreement withζ1 for the ‘separate’

mapping (both PASMRI and QBall). Both the ‘separate’ and ‘combined’ PASMRI

calibration mappings overestimate the anisotropy in uncertainty for high FA voxels, al-

though the Bingham distribution will be highly concentrated for these voxels, so this
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Figure 6.8: Comparison of uncertainty estimates from maximum-likelihood calibration

mappings with bootstrap estimates for PASMRI (top two rows)and QBall (bottom two

rows). Each plot compares bootstrap estimates of the uncertainty to the mean estimate

from the calibration mapping. For each reconstruction algorithm, we plot results from

calibrations using ‘separate’ mappings (upper row) and a ‘combined’ mapping (lower

row). All mappings use the ‘closer’ dataset and thebm1 mapping.

anisotropy is unlikely to have a large effect in practice. Incontrast, the ‘combined’

mapping estimates of anisotropy in uncertainty for QBall show a better agreement to

the bootstrap estimates than those from the ‘separate’ mappings. This may be because

the dODFs from QBall models many of the complex fibre configurations with a single

peak. Therefore, the extra anisotropy information encodedin the ‘combined’ mapping

provides a more accurate relationship between peak shape and uncertainty. In conclu-

sion, both the ‘separate’ and ‘combined’ calibration mappings have similar agreement

with the boostrap, although there is a slight advantage in using the ‘separate’ mapping

for PASMRI.
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6.5.2.4 Conclusions

For PASMRI, using separatebm1 calibration mappings and the ‘noFP’ dataset appears

to generate a calibration mapping that is in closest agreement with the bootstrap. In

contrast, the QBall mappings appear to yield similar results, although outlier rejection

significantly improves agreement between calibration and bootstrap estimates of the

Bingham parameters (see figure 6.5, third and fourth rows). However, the QBall ODFs

still underestimate anisotropy in the distribution regardless of the calibration procedure

used.

6.5.3 Tractography

In this section, we perform a qualitative comparison of tractography results using the

different calibration options. We hypothesise that the PICo maps from the maximum-

likelihood calibration will look similar to those presented in the previous chapter, al-

though the calibration procedure here is more robust. In addition to this, we hypothesise

that the PICo maps will broadly agree with those from an approximation to bootstrap

tractography.

6.5.3.1 Methods

We run multi-fibre PICo tractography on human brain data using maximum-likelihood

calibrations for PASMRI and QBall. The PICo connectivity maps obtained using the

maximum-likelihood calibration should be similar to thosefrom the previous chapter,

although the maximum-likelihood approach is more robust and requires less parameter

tuning and user intervention. For each reconstruction algorithm, we compare the results

from the maximum-likelihood calibrations to those from a bootstrap approximation

(described below), which we can use as a reference. As in chapter 5, we manually

define seed regions at the base of the corticospinal/corticopontine tracts.

Bootstrap approximation PICo The bootstrap estimates of fibre orientation and un-

certainty from section 6.5.2 provide us with a measure to which we can compare the

calibration mapping. Ideally, we would like to be able to usethe bootstrap method

for probabilistic tractography. This would involve generating bootstrap data for every

voxel encountered by the streamlines and then reconstructing to obtain fibre-orientation

estimates. However, the method is too computationally heavy when using methods like

PASMRI to reconstruct. We therefore propose using an approximation to the bootstrap
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for evaluation purposes. Instead of generating bootstrap data for a large number of

voxels, we generate bootstrap data for a small subset of voxels and reconstruct. The

Bingham distribution is then fitted to the fibre-orientationestimates from all bootstraps,

which gives an estimate of uncertainty in the voxel. A linearcalibration mapping is then

fitted between the mean peak shapes and the corresponding uncertainty estimates. Al-

though this method only approximates the full bootstrap, itis able to provide a measure

against which we can qualitatively compare the other tractography results.

For each voxel in our bootstrap dataset we have two pieces of information: the

Bingham parameter estimates, calculated from the 50 bootstrap samples, and the peak

shapes for each bootstrap sample. By fitting a linear mappingbetween the uncertainty

estimates for each peak direction and the mean peak shape we are able to approximate

the bootstrap for computationally heavy reconstruction algorithms such as PASMRI.

The approximation method assumes that any anisotropy in theuncertainty is aligned

with the peak anisotropy of the reconstruction. As with multiple-fibre PICo, we cali-

brate for one-fibre and multi-fibre voxels separately. Each voxel of the brain data set in

the ROI is classified as single-fibre if the mean number of peaks in the bootstrap recon-

structions is less than 1.5, otherwise the voxel is classified as a multiple-fibre voxel.

6.5.3.2 Results

Figure 6.9 shows results of multiple-fibre PICo tractography using PASMRI (left) and

QBall (right) with the maximum-likelihood calibration procedures. PICo maps using

the bootstrap approximation calibration are also providedfor comparison (bottom row).

In all images, the connectivity maps are overlaid onto FA maps; the colour scheme used

for the connectivity maps indicates high connectivity in yellow/orange regions and low

connectivity in red/black regions. The PICo map from the bootstrap approximation

using PASMRI (bottom left) has a high connectivity index that is even across the tract.

The PAS-PICo tractography results using the ‘all’ dataset (top row) have a very low

connectivity index when using either thebm1 calibration (left) andbm2 calibration

(right). Using the ‘closer’ calibration dataset (second row) gives similar results. The

PAS-PICo results using the ‘noFP’ calibration have much higher connectivity index

when using both thebm1 andbm2 mappings. For both mappings (bm1 andbm2), the

connectivity indices are evenly spread across the tract. The PICo maps from the ‘noFP’
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Figure 6.9: PICo tractography results using a PASMRI reconstruction (left) and QBall

reconstruction (right) for several calibration variants.Bootstrap-derived PICo maps

(bottom row) are included for reference. All calibrations use a separate mapping

for one- and multi-fibre voxels. The connectivity maps are overlaid onto FA maps.

The colour scheme used for the connectivity maps indicates high connectivity in yel-

low/orange regions and low connectivity in red/black regions. The blue arrow indicates

a crossing-fibre region. Tractography is seeded using the same ROI used in figure 5.9.

dataset are in general agreement with the PICo map from the bootstrap approximation,

although the connectivity indices are higher. This doesn’tnecessarily mean a difference

in the quality of results, just that the streamlines are moredispersed in the bootstrap

approximation.

The QBall-PICo results are very similar to each other regardless of the variant of

the maximum-likelihood calibration procedure used, with the exception of the ‘noFP’

calibration with the ‘full’ mapping. When using the ‘noFP’ dataset with the full map-

ping, the connectivity indices are very high and the crossing fibre-region is clearly

visible as a black hole half way up the tract. All of the other calibrations also have

high connectivity indices, but the indices are more evenly spread over the tract and the

crossing fibre region is less apparent. The PICo map from the bootstrap approxima-

tions using QBall (bottom right) has a very even connectivity index across the tract

and is in general agreement with the calibration estimates (apart from the ‘noFP’bm1

calibration).
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Figure 6.10: Connectivity maps from PAS-PICo (left) and QBall-PICo (right) overlaid

onto an FA map. The colour scheme used for the connectivity maps indicates high

connectivity in white/yellow regions and low connectivityin orange/red regions. The

calibrations use peak sharpness to estimate uncertainty. Tractography is seeded using

the same ROI used in figure 5.9.

For comparison, and to demonstrate thewm1 mapping, figure 6.10 shows PAS-

PICo and QBall-PICo maps from maximum-likelihood calibrations that estimate un-

certainty from peak sharpness. As in figure 6.9, the connectivity maps are overlaid

onto FA maps for visualisation and white/yellow regions on the overlaid connectivity

maps indicate high connectivity For PASMRI, the Watson maximum-likelihood cali-

bration provides similar estimates of uncertainty to the estimates from the Bingham

calibration. However, the QBall PICo map gives very high connectivity indices. The

streamlines have been channelled through several regions to the cortex and the crossing

fibre region is clearly visible as a dark hole in the middle of the tract.

6.5.3.3 Conclusions

The PAS-PICo results show that even when outlier rejection is applied, the connectiv-

ity index is very low when using the ‘all’ and ’closer’ datasets to calibrate. The low

connectivity suggests that the calibration mapping overestimates the uncertainty. The

PICo maps using the ‘noFP’ dataset are similar to the PICo mapfrom the bootstrap

approximation.

The choice of calibration dataset has less of an impact when using QBall to re-

construct the data. This may be due to the limited range of peak shapes that can be

represented by the spherical harmonic implementation of the dODF. In addition to this,

SH-QBall is unable to model crossing fibres as accurately as PASMRI and, in many
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cases, models multiple fibre orientations with a single peak.

6.5.4 Conclusions and Discussion

In this chapter we have introduced a more robust procedure for calibrating multiple-

fibre PICo tractography. The maximum-likelihood approach can exploit all of the cal-

ibration data to generate the mapping between the peak shapeof multiple-fibre recon-

structions and the parameters of the distributions that model fibre-orientation uncer-

tainty. Furthermore, the new calibration procedure does not require the user to choose

an appropriate bin size. Outlier rejection helps improve the calibration mappings for

the complete and reduced datasets, although it does not remove enough of the outliers

to provide a useable mapping. Alternative approaches, suchas RANSAC [120], may

be more efficient at removing outliers from the calibration dataset. We found that us-

ing a ‘noFP’ dataset with a constrained mapping gives tractography results that are

comparable to those from the bootstrap approximation for both PASMRI and QBall.

We will improve the method in several ways. First, the Watsonmapping parame-

terizationwm1 allows the distribution parameterκ to be both positive and negative (i.e.

the mapping allows the full range of Watson distribution configurations). However, the

girdle distribution that results whenκ < 0 may not be representative of the uncertainty

of fibre-orientation estimates in multiple-fibre methods. Abetter approach may be to

constrain the mapping by taking the log of so thatκ ≥ 0. In addition to this, other

alternative parameterizations of the calibration mappingmay provide a more accurate

fit between peak shape and the distribution parameters.

Secondly, we will look at other features of the ODF, such as the peak magnitude.

Including additional information about the shape of the ODFmay improve the calibra-

tion mapping’s ability to deal with spurious peaks.

Finally, it is still unclear how best to exploit these uncertainty estimates in trac-

tography. Combining information about neighbouring voxels and uncertainty estimates

when performing the streamline tractography step may improve tractography results.

6.6 Exploiting the True Fibre Distribution

In chapter 3, we highlighted a distinction between the uncertainty of fibre-orientation

estimates and the distribution of white-matter orientations in a voxel. In some cases,
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the uncertainty of the fibre-orientation reflects the underlying distribution of white-

matter fibres. However, this is not always the case. For example, for a fanning or

bending configuration a reconstruction algorithm may provide a single fibre-orientation

estimate orientated towards the mean of the distribution offibres. In this case, the

uncertainty of this fibre-orientation estimate will reflectthe noise in the data rather than

the actual distribution of fibre orientations. In this section we present some exploratory

work where we attempt to predict the distribution of white-matter orientations using

the FA and 2D FA orthogonal toλ1 of the DT and the peak anisotropy of PASMRI. We

show that features of the reconstruction algorithms reflectthe underlying distribution

of fibre orientations. Finally, we show some tractography results when using the true-

distribution with DT-PICo and compare the results to those from standard DT-PICo.

6.6.1 Methods

In this section we present a new method for calibration that allows us to map directly

between some feature of the reconstruction and the true distribution of fibre orienta-

tions. To achieve this we employ a sub-voxel model [17] to generate synthetic data (see

figure 6.11). In contrast to the DT model we use in the previoussections, the sub-voxel

model explicitly encodes the distribution of fibre-orientations. In the remainder of this

section we introduce the synthetic data model and show how toexploit it using a new

calibration procedure.

6.6.1.1 Sub-voxel model

The model for the synthetic data is a 3D grid of sub-voxels each containing an instance

of Behrens ball and stick model [50] (see chapter 3). This 3D grid of subvoxels allows

us to encode information about the spatial distribution of fibre-orientations for com-

plex configurations such as bendings and fannings. In this work we limit the model

to represent different fibre dispersions. An illustration of the sub-voxel model, con-

figured to model fibre-dispersion, is shown in figure 6.11. Thediagram on the right

of this figure depicts a single slice through the centre of themodel. The orientation

of the anisotropic component for each ball and stick is alongthe radial line through

the centre of the sub-voxel from a point at distanced from the centre of the grid. The

parameterd controls the level of fibre divergence in the model. Asd increases, the

spread of fibre orientations decreases. We can introduce anisotropy into this spread
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of directions by removing the outer slices of the grid. To simplify the model, we fix

the volume fraction and diffusivity so that they are constant over the grid. To obtain

diffusion-weighted measurements for the voxel, we calculate the diffusion-weighted

measurements for each sub-voxel and then average them together. We then add Rician

noise to the measurements at a level comparable to the scanner data.

d

Figure 6.11: An illustration of the sub-voxel model showinga 3D representation (left)

and a single slice through the centre of the grid (right). The3D image on the left shows

a sub-voxel model for an isotropic distribution of fibre orientations. Removing the outer

slices in either the sagittal or coronal plane introduces anisotropy into the distribution.

In the illustration of a single slice, right, the orientations are aligned to the line that

passes through the centre of the sub-voxel from point at distanced from the centre of

the grid. Increasingd results in a smaller distribution of fibre orientations; decreasing

d produces a wider distribution.

6.6.1.2 Calibration procedure

The synthetic data model described above gives us two piecesof information: a set

of diffusion-weighted signals from the whole voxel and the true distribution of fibre

orientations. As with other versions of PICo, we reconstruct the synthetic data and

extract some feature of the reconstruction, such as peak shape. However, we now have

direct access to the true fibre distribution. We can model this distribution by collecting

the ‘stick’ components from all of the sub-voxels and fittingthe Bingham distribution.
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Finally, we fit a linear model relating the peak shape (or someother feature) to the

Bingham parameters, which we use during tractography to predict the true distribution

of fibre orientations from the shape of the diffusion tensor.The complete algorithm is:

• For each set of synthetic data model parameters

- create grid of sub-voxels.

- estimate signal from each sub-voxel.

- average signals from all sub-voxels to approximate signalfrom entire voxel.

- add noise to voxel data.

- reconstruct and calculate peak shapes/directions.

- collect together stick components from all sub-voxels andfit distribution.

• Fit a linear surface that maps from the peak shape to the corresponding distribu-

tion parameters.

6.6.2 Experiments

In this section we test the hypothesis that there is a relationship between the shapes

of the peaks of the reconstructions and the underlying distribution of fibre orienta-

tions. The fibre distribution provides useful information about the spread of the fibre-

orientation estimates that should improve tractography.

We assess our new method using two experiments. First, we show that there is

a relationship between shapes of the reconstruction and thetrue distribution of fibres.

We then perform tractography using the new true-distribution DT-PICo and compare

the results to the original DT-PICo.

6.6.2.1 Comparing estimates of anisotropy in the fibre distribution to

the true anisotropy of the distribution

In this section we hypothesise that the anisotropy of the reconstructed peak(s) will

reflect the anisotropy of the true fibre distribution.

We use the sub-voxel synthetic data model to compare the anisotropy of the true

distribution of fibre orientations in a voxel of data to the peak shape of its corresponding

reconstruction. For the synthetic data, we varyd ∈ {5, 8, 15, 200}. We generate data
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from grids with dimensions15 × 15 × n, wheren ∈ {2, 3, 4, 5, 7, 10, 12, 15} sets the

amount of anisotropy in the fibre distribution. To calculatethe anisotropy of the true

fibre-distribution, we fit the Bingham distribution and calculate the anisotropy of the

Bingham parameters,η. We reconstruct the resulting synthetic data using DTI and

PASMRI and plot the 2D FA of the DT and peak anisotropyν = FA(diag(λ1, λ2))

of the PAS against the anisotropy of the Bingham parameters fitted to the true fibre-

distribution (ηtrue).

Figure 6.12 shows anisotropy of the cross-section of the DT against the Bingham

parameter FA of the fibre distribution for various settings of d and for various numbers

of slices,n. For all settings ofd, as the number of slices decreases, the 2DFA of

the tensor increases. Whend ∈ {5, 8}, there is good agreement between the cross-

section anisotropy of the DT and the anisotropy of the fibre-distribution. However, as

d increases, the peak cross-section of the DT is less anisotropic.
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Figure 6.12: Plots the FA of the minor eigenvalues of the DT against the Bingham

parameter anisotropy,ηtrue, of the distribution of fibre directions for fanning structures

with d ∈ {5, 8, 15, 200}. For each setting ofd, the number of sagittal slices is set to

n ∈ {2, 3, 4, 5, 7, 10, 12, 15}.

Figure 6.13 shows a similar mapping for a PASMRI reconstruction. Whend ∈

{5, 8} there is a general agreement between the peak anisotropy of the dominant PAS

peak and the anisotropy of the fibre distribution. However, whend ∈ {20, 200}, the

PAS peak is isotropic.
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Figure 6.13: Plots the peak anisotropy of a PAS reconstruction,ν, against the Bingham

parameter anisotropy,ηtrue, of the distribution of fibre directions for a range of fanning

structures withd ∈ {5, 8, 15, 200}. For each setting ofd, the number of sagittal slices

is set ton ∈ {2, 3, 4, 5, 7, 10, 12, 15}.

There is general agreement between the 2DFA of the DT and the anisotropy of

the fibre distribution at low settings ofd. As d becomes large the agreement between

the anisotropy in uncertainty and the secondary FA of the tensor decreases. Although

there is still some agreement between the 2DFA andηtrue, asd increases the fibre-

distributions become tightly clustered around the mean orientation. This reduces the

effect of anisotropy, since the spread of fibre orientationswill be very small in relation

to voxel size. For PASMRI, there is agreement between the anisotropy of the fibre

distribution and peak shape whend ∈ {5, 8} but no agreement outside of this range.

Specifically, the dominant peak of the PAS is isotropic whend is outside of the grid.

6.6.2.2 Tractography

In this section we investigate the effect of using estimatesof the fibre-orientation dis-

tribution in the PICo tractography algorithm. Since PICo isattempting to model the

underlying fibre-orientations as opposed to the uncertainty, we would expect a larger

range of fibre-orientations in each voxel. This would lead more even connectivity

across fanning structures like the descending motor pathways. We compare results

from true-distribution PICo to those from the original PICoalgorithm.
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We fit the DT in each voxel of the brain data, compute FA and secondary FA and

use the mapping to predict the Bingham parameters of the fibre-orientation distribution.

Tracts seeded at the base of the descending motor pathways are generated for 5000

iterations. The experiment was repeated using Cook et als extension to PICo [36],

which estimates the fibre-orientation uncertainty.

Figure 6.14: PICo connectivity maps from PICo using a) the fibre-orientation uncer-

tainty and b) the fibre-orientation distribution. The connectivity maps are overlaid onto

an FA map for visualisation. High connectivity is indicatedby yellow/orange regions

and low connectivity by red/black regions. Tractography isseeded using the same ROI

used in figure 5.9.

Figure 6.14 shows results for standard DT-PICo (left) and true-distribution PICo

(right). The original PICo algorithm (left) has very high connectivity indices, but there

are dark holes in the tract where tractography has failed at crossing fibre regions. The

PICo map from tractography using estimates of the fibre distribution (right) show a

very even connectivity index across the tract and the crossing fibre region is far less

apparent. However, most of the streamlines fail to reach thecortex.

True distribution PICo shows a much more consistent connectivity index over the

entire motor pathway, although the connectivity drops-offrapidly. The connectivity

index is far lower when using the fibre distribution. There are two reasons for this.

Firstly, the DT fails in crossing fibre regions and will have misleading fibre-orientation

estimates. Secondly, connectivity indices will get lower when streamlines go through

fanning regions. This is a limitation of probabilistic tractography rather than the cali-

bration.

6.6.3 Conclusions and Discussion

We have introduced a method that extends the PICo tractography algorithm to exploit

the true fibre-orientation distribution in each voxel. Our results show that both DTI and
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PASMRI are able to predict the true distribution of fibre orientations to some extent.

When comparing the PICo map from our technique to the PICo mapfrom the method

described by Cook et al in [36], we see that there are structured differences between

the maps. PICo tractography performed using knowledge of the fibre-orientation dis-

tribution gives significantly different results to those from using uncertainty alone; the

connectivity map from our technique has a more even connectivity across the struc-

ture, although the connectivity index is a lot lower. The lack of a ground truth prevents

us from making any conclusions. However, the concept is worth pursuing. Here we

show only a simple application of the idea of using true fibre-orientation distributions

in PICo instead of models of uncertainty on individual fibre directions. The diffusion

tensor model is too simple to distinguish many kinds of complex fibre configurations.

Multiple-fibre algorithms are able to encode the true fibre-distribution to some extent,

although the relationship between peak shape and the fibre-distribution breaks down

whend is outside the grid. This may be a limitation of the sub-voxelmodel used to

generate the synthetic data. Switching to a simulation-based model, such as [121] may

improve the mapping. In future work we will include other complex fibre configura-

tions, such as bendings and crossings, in the calibration dataset and extend the mapping

procedure to estimate a distribution of distribution parameters rather than the parame-

ters themselves.



Chapter 7

Discussion and Conclusions

Multiple fibre reconstruction algorithms offer a great dealof useful information about

microstructure that is not recovered by the standard DTI approach. However, their

transfer to the clinical arena requires careful consideration of their performance and

limitations as well as redesign of tractography algorithmsto exploit their benefits.

This work makes the following contributions towards resolving the problems de-

scribed above:

Taxonomy of multiple-fibre algorithms A significant contribution of this work is

a classification of multiple-fibre reconstruction algorithms. This classification

gives us insight into how the different algorithms are related as well as the likely

performance and limitations of the different algorithms.

Comparison Framework The first algorithmic contribution is a standardised frame-

work that aims to quantify the performance and limitations of the multiple-fibre

reconstruction algorithms as well as the optimal parametersettings. The main

limitation of this framework is that it only considers voxels that contain two fi-

bre populations. The limitation can be resolved by generating one and three

fibre configurations in addition to the two fibre configurationcurrently used. The

framework provides a means by which researchers can comparealgorithms and

decide which methods are most suitable for their analysis.

Comparison of multiple-fibre algorithms We use the standardised framework to per-

form a rigorous comparison of some of the main multiple-fibrereconstruction

algorithms. Optimal parameter settings are given for each multiple-fibre recon-

struction algorithm. RBF-SD with a ‘spike’ response function gives the best



153

performance of the linear algorithms, although SH-SD usingthe same response

yields similar results and has far fewer parameters to set. Non-linear methods

perform significantly better than the linear methods. CSD gives the best perfor-

mance of the non-linear algorithms. The findings presented are only valid for the

acquisition scheme used here. However, the acquisition scheme was chosen to

be similar to those used clinically and the findings will therefore be applicable in

a lot of cases.

Peak anisotropy Although multiple-fibre algorithms are increasingly beingchosen to

reconstruct diffusion-weighted data, the only features from the ODF that are gen-

erally exploited are the peak orientations. In this contribution, we investigate

what other information is recovered by multiple-fibre reconstruction algorithms.

We demonstrate that the peak shapes of multiple-fibre reconstructions contain

useful information about the uncertainty of fibre-orientation estimates. Specif-

ically, that peak shapes can be used to model anisotropy in uncertainty, which

captures information about the underlying fibre configuration. The information

captured by the peak shapes is missed when looking at the peakorientation alone.

multiple-fibre PICo We exploit the information encoded in the peak shape in the PICo

tractography algorithm. We show that using the peak shape and sharpness to esti-

mate uncertainty in tractography results in structured differences when compared

to using peak sharpness alone. In particular, the connection indices in crossing-

fibre regions are higher when using both peak shape and sharpness. A limitation

of the calibration-based approach adopted by PICo is that itonly approximates

the relationship between the peak shape and uncertainty. However, comparisons

with bootstrap estimates suggests some agreement between the approaches. An

advantage of the calibration-based approach over the otheralgorithms is that the

mapping procedure only has to be performed once and is valid for all data ac-

quired using the same acquisition scheme. As a result PICo isnoticably faster

than probabilistic tractography using the bootstrap or MCMC approaches. The

calibration procedure described is now a standard tool for multiple-fibre PICo

tractography in the Camino toolkit.

Robust calibration of multiple-fibre PICo This contribution builds on the multiple-
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fibre PICo calibration by investigating an alternative, more robust, calibration

algorithm. The method provides similar tractography results to the original algo-

rithm but is more robust and requires less user intervention.

Estimating the fibre-distribution Finally, we present some exploratory work that

aims to predict the distribution of fibre orientations from features of recon-

structions. The ability to extract information about the distributions of fibre-

orientations from the ODF can potentially offer significantimprovements in the

segmentation of white-matter tracts. Early results are promising and estimates of

fibre dispersion from our method agree with those from the ground truth to some

extent.

We aim to extend the contributions described in this work in several ways. The

framework for comparing multiple-fibre algorithms currently uses the peak orientations

of the multiple-fibre reconstructions. However, as we have shown, the multiple-fibre

reconstruction algorithms not only recover discrete fibre orientations but also poten-

tially provide a wealth of information about the distribution of fibre orientations. In

future work we will adapt the framework so that we can comparemethods based on

this information. For example, we could combine more sophisticated methods for gen-

erating synthetic data (such as sub-voxel models of diffusion, physical phantoms, or

simulation) with measures of peak anisotropy. This would give us insight into which

multiple-fibre reconstruction algorithms recover the mostinformation about the under-

lying microstructure and inform our choice of reconstruction algorithm when using

multiple-fibre PICo.

An interesting question that remains is how the different techniques for estimat-

ing uncertainty affect tractography. Determining how wellprobabilistic tractography

performs using a range of uncertainty estimators would be ofgreat benefit when using

these methods clinically. We will compare tractography results from our calibration

approach to other approaches, such as MCMC and bootstrap.

The exploratory work on estimating the fibre distribution isencouraging but still

requires development. For example, the peaks of the dODFs from PASMRI do not ap-

pear to capture all of the fibre-distribution information for many configurations of the

sub-voxel model. This may not be a limitation of PASMRI but instead a limitation of
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the synthetic data model used. In future work we will investigate different approaches

to generating data, such as the use of simulation of diffusing particles through a 3D

mesh. We will also further develop the calibration procedure for predicting the dis-

tribution of fibre orientations by the method to include additional fibre configurations,

such as bending and crossing fibres. Exploiting the distribution of fibre orientations in

tractography will also require development of the tractography algorithm. In particular,

the process of deciding how to choose the next fibre-orientation estimate will need to

be refined to use the additional information in a more meaningful way. One approach

would be to use information in the local neighbourhood when choosing which direction

to follow at each step.

Diffusion MRI is a very active field of research. There remainmany unanswered

questions about distribution of fibre orientations within avoxel and how best to resolve

the ambiguities in the reconstruction of complex microstructural configurations. The

work presented in this thesis has attempted to address many of thesis shortcomings

but several avenues exist for further work. For example, incorporating more detailed

microstructural information, such as axon-diameter estimates, and models into fibre-

tract reconstruction may help to address problems such as kissing vs crossing fibres. In

conclusion, there is great potential for these methods bothpre-clinically and clinically.



Appendix A

Spherical Harmonic Implementation

The spherical harmonic of orderl = 0, 1, 2, ... and indexm = −l, ..., 0, ..., l is

Ylm(θ, φ) =

(

(2l + 1)

4π

(l −m)!

(l +m)!

)
1
2

Plm(cos(θ) exp(imφ), (A.1)

whereθ is the angle of colatitude, i.e. the angle with the z-axis,φ is the angle of

longitude andPl,m is the associated Legendre polynomial with orderm and indexl (we

omit the definition ofP here, but most mathematical programming languages, such

as Mathematica or Matlab, have built in functions to computethe associated Legendre

polynomials). The functions are waves on the sphere with frequency that increases with

harmonic orderl.

The spherical harmonics are the restriction to the sphere ofa normalized set of

solutions of Laplace’s equation in three dimensions. Each harmonic is a function of the

sphere and together they constitute an orthonormal basis for spherical functions. With

the definition in equation A.1

∫ π

0

∫ 2π

0

YlmYl′m′dθdφ = δll′δmm′ , (A.2)

whereδab is the Kronecker delta, which is one ifa = b and zero otherwise. We can

write any complex-valued functionf of the sphere as a sum of spherical harmonic

functions:

f(θ, φ) =

∞
∑

l=0

l
∑

m=−l

clmYlm (A.3)

whereclm is a complex number. Truncations of the series at finite ordergive low

frequency approximations off in a similar way to truncations of the Fourier series for
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rectilinear functions.

For real-valued functions,c∗lm = (−1)mcl−m, where∗ indicates the complex con-

jugate, so the number of scalar parameters that need to be estimated for spherical har-

monic orders up tol is (l+1)2 rather than2(l+1)2 for complex-values functions. Spher-

ical functions in diffusion MRI, such as the fODF and dODF, are often both real-valued

and antipodally symmetric, i.e.f(x̂) = −f(x̂). Functions with antipodal symmetry

require only even-order spherical harmonics, i.e.clm = 0 for oddl, so the total number

of scalars for an order-l approximation reduces still further to1
2
(l+1)(l−1). With these

observations it is simple to construct a linear mapping to obtain the best fit spherical

harmonic coefficients for a real-valued antipodally symmetric function from samples

of that function, for example, to fit a real-valued antipodally symmetric spherical har-

monic series to diffusion MRI measurements from a sphericalacquisition scheme [55].

A similar representation underlies spherical harmonic QBall [70, 71, 72] and spherical

deconvolution [77]. Descoteaux [122] gives a nice overviewof spherical harmonics

within the context of diffusion MRI.



Appendix B

QBall Implementation

First, the measurementsA(q) must be interpolated in order to obtain the equator points.

The interpolation is implemented as a sum of linear basis functionsψ(q),

A(q) =

J
∑

j=1

ξjψj(q) (B.1)

whereξj is a basis function weight. In matrix form this becomes

A = YΞ (B.2)

whereA = (A(q1), ..., A(qN))T , Ξ = (ξ1, ..., ξJ)T andYij = ψj(qi). The dODF can

then be calculated at a set of points over a sphere. The dODF isrepresented using a

second sum of linear basis functions, i.e.

φ(x̂) =

K
∑

k=1

βkθk(x̂) (B.3)

Substituting the basis function implementations back in Eqns B.1 and B.3 in Eqn 3.5

gives

ΘC = ΨΞ = ΨY′A (B.4)

whereΘlk = θk(x̂l), Ψkj =
∫

C(x̂k)
ψj(q)dq̂ andC = (β1, ..., βK)T . The matrix

Θ′ΨY′ is not dependent on the measurements(A(q1), ..., A(qN )) and therefore only

has to be computed once.

A range of basis functions can be used in the implementation of this method. Tuch

uses the radial basis function

θk(x̂) = exp(− cos−1(|x̂ · ŷk|)/σ
2) (B.5)

whereσ is a scaling parameter and theŷk, k = 1, ..., K, are unit vectors evenly dis-

tributed on the sphere. Others [70, 71, 72] use spherical harmonics.



Appendix C

Spherical Deconvolution

Implementation

If we represent the FOD using a linear basis so that

f(x̂) =
K
∑

i=1

βiθi(x̂) (C.1)

and substitute into Eqn.(3.7), we see that

A(qi) =

K
∑

i=1

βk

∫

θk(x̂)R(qi; x̂)dx̂ (C.2)

Deconvolution is then linear sinceB = X′A, whereA = (A(q1), ..., A(qN))T is the

set of diffusion weighted measurements in a voxel,B = (β1, ..., βK)T is the weights of

the basis functions that define the FOD andX′ is the pseudo inverse of the matrixX

with elementsXik =
∫

θk(x̂)R(qi; x̂)dx̂. Since theqi, i = 1, ..., N are the same for

each voxel, we need to computeX andX′ only once.



Appendix D

Constrained Spherical Deconvolution

Implementation

Constrained spherical deconvolution [78] is an iterative procedure that uses Tikhinov

regularisation [79] to reduce or eliminate neagtive lobes in the fODF. Tikhinov regular-

isation minimises the function

||XB−A||2 + λ2||L(B− B0)||
2 (D.1)

whereL is the constraint matrix andB0 is the initial estimate of the coefficients. To

calculateL, the fODF is first evaluated in a number of directions

u = PBi, (D.2)

whereP maps the basis function coefficients to amplitudes in a discrete set of direc-

tions. The elements of the constraint matrix,L, are then

Lm,n











Pm,n if um > τ ,

0 if um ≤ τ ,
(D.3)

whereτ is a threshold defined as a fraction of the mean fODF magnitude. Thus, the

fODF is constrained to zero in directions whereum ≤ τ . The estimates of the coeffi-

cients at the next iteration are

Bi+1 = arg min{||XBi −A||2 + λ2||LBi||
2}. (D.4)

After each iteration,L is re-calculated. The algorithm terminates when there is no

further change inL.



Appendix E

Threshold Plots

This appendix shows the effect of varying the threshold parametersg andh on c̄ for all

reconstruction algorithms used in Experiment 1. For each tile, the point at which̄c is

maximised is highlighted with a red marker.
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Figure E.1: Effect of changing threshold settings onc̄ for a) SH-QBall, b) RBF-QBall,

c) RBF-PASMRI, d) RBF-SD, SH-SD using e) the ‘DT’ response and f) ‘spike’ reponse

(right), g) MESD, h) PASMRI and i) CSD.



Appendix F

Details of Reconstruction Algorithm

Performance at Optimal Settings

Here, we show the numerical data used to generate the tile maps in Experiment 1.

Measures that have been estimated from a very small number ofsamples are in grey.

F.1 Results for SH-QBall
λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 5.4 0.16 0.92 3.7 0.47 0.24 1.9 1.3

10◦ 1 5.4 2.8 0.84 3.9 4.6 0.21 1.7 10

20◦ 0.83 5.5 5.3 0.31 4.3 5.8 0.15 1 22

30◦ 0 -0 90 0 0 59 0.063 0.98 61

40◦ 0 -0 90 0 -0 90 0.0069 1.6 66

0.6

0◦ 1 4.7 0.19 0.82 3.1 0.69 0.23 1.8 2

10◦ 0.95 4.7 4.8 0.6 3.3 4.5 0.26 1.6 4.8

20◦ 0.34 5.2 7.3 0.13 3.1 4.2 0.1 1.4 14

30◦ 0 -0 90 0 -0 90 0.035 1.2 42

40◦ 0 -0 90 0 -0 90 0.0069 1.8 56

0.7

0◦ 0.85 3.9 0.75 0.49 3.1 0.23 0.2 1.8 1.8

10◦ 0.36 4.5 3.8 0.15 3.2 3 0.15 1.7 8

20◦ 0.014 5.5 4.6 0.014 4.6 7.4 0.042 1.5 20

30◦ 0 -0 90 0 -0 90 0.014 1.8 42

40◦ 0 -0 90 0 -0 90 0 1.6 59
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F.2 Results for RBF-QBall

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 0.92 3.4 1.1 0.59 2.8 2.6 0.14 1.7 8.9

10◦ 0.79 3.3 4.1 0.48 2.7 6 0.15 1.6 12

20◦ 0.51 3.5 3.7 0.24 2.2 4.6 0.097 1.1 20

30◦ 0.13 3.6 2.1 0.09 2 5.2 0.069 0.85 61

40◦ 0 -0 90 0.021 0.76 35 0.042 0.88 63

0.6

0◦ 0.85 3.1 1.3 0.59 2.5 1 0.13 1.7 3.4

10◦ 0.78 3.2 3.5 0.48 2.4 5.1 0.17 1.7 7.7

20◦ 0.32 3.1 3.1 0.23 1.9 7.4 0.14 1.3 14

30◦ 0.056 3.6 2.1 0.069 1.8 14 0.076 1 35

40◦ 0 -0 90 0.014 2 24 0.035 0.93 42

0.7

0◦ 0.72 2.9 1.5 0.5 2.3 1.5 0.15 1.4 2.6

10◦ 0.52 2.8 1.6 0.35 2.2 2.7 0.13 1.4 8.4

20◦ 0.15 3.1 4.2 0.13 2.2 10 0.1 1.4 11

30◦ 0.021 3.1 7.4 0.035 2.4 17 0.042 1 37

40◦ 0 -0 90 0 2.5 41 0.028 0.96 42
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F.3 Results for RBF-PASMRI

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 0.99 4.8 0.16 0.91 3.7 0.36 0.17 1.6 2.8

10◦ 0.99 5 4 0.9 3.5 3.5 0.16 1.4 7.1

20◦ 0.95 4.8 6.5 0.79 3.3 6.2 0.1 1.3 12

30◦ 0.88 4.4 7.4 0.51 2.9 7.6 0.049 1.1 19

40◦ 0.15 0.87 8 0.15 1.4 8.1 0.035 0.73 36

0.6

0◦ 0.99 4.7 0.14 0.89 3.4 0.39 0.18 1.3 3

10◦ 0.99 4.7 4.9 0.85 3.4 4.3 0.17 1.4 5.2

20◦ 0.94 4.5 9 0.7 3.3 8.2 0.13 1.3 12

30◦ 0.67 3.7 13 0.37 2.3 12 0.042 1.2 18

40◦ 0.063 0.84 79 0.11 1 14 0.035 0.65 47

0.7

0◦ 0.97 4.3 0.3 0.7 2.9 0.66 0.18 1.2 2.9

10◦ 0.97 4.2 5.6 0.65 2.9 5.2 0.15 1.3 3.8

20◦ 0.75 4.2 12 0.43 2.5 10 0.1 1.2 13

30◦ 0.15 2.2 18 0.15 1.6 15 0.042 1 21

40◦ 0.0069 1.9 88 0.028 0.76 28 0.007 0.79 34
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F.4 Results for RBF-SD

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 4.9 0.1 0.99 4 0.4 0.37 1.9 1

10◦ 1 5.1 2.8 0.98 4 1.9 0.35 1.9 1.6

20◦ 1 5 4.3 0.9 4 3 0.31 1.8 3.5

30◦ 0.83 4.7 2.7 0.49 3.5 3.2 0.17 1.4 12

40◦ 0 -0 90 0.021 1.4 6 0.063 0.66 53

0.6

0◦ 1 4.8 0.1 0.97 3.7 0.24 0.35 1.8 1.9

10◦ 1 4.8 3.7 0.94 3.6 2.8 0.33 1.8 3.2

20◦ 1 4.7 6.1 0.83 3.5 4.9 0.29 1.6 7.3

30◦ 0.64 4.5 6 0.4 2.9 6.3 0.19 1.5 12

40◦ 0 0 82 0.014 1.6 28 0.049 0.91 25

0.7

0◦ 1 4.4 0.13 0.89 3.3 0.16 0.28 1.5 2.1

10◦ 1 4.4 4.5 0.84 3.1 4 0.25 1.5 2.4

20◦ 0.97 4.2 8.6 0.65 3 8.2 0.2 1.4 7.5

30◦ 0.43 3.7 14 0.2 2.3 13 0.13 1.2 13

40◦ 0 1.4 32 0 1.5 29 0.035 0.97 22
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F.5 Results for SH-SD (DT response)

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 5.3 0.19 0.95 3.9 0.41 0.24 1.7 2.1

10◦ 1 5.3 3 0.92 3.8 2.5 0.26 1.8 4.7

20◦ 0.99 5.1 5.2 0.85 3.6 4.3 0.21 1.6 8.4

30◦ 0.86 4.8 4.8 0.61 2.9 5.5 0.15 1.5 9.5

40◦ 0.021 0.89 23 0.097 1.4 10 0.042 0.86 28

0.6

0◦ 1 4.9 0.16 0.9 3.5 0.31 0.24 1.6 3.2

10◦ 1 4.8 4 0.88 3.3 3.4 0.24 1.6 6

20◦ 0.99 4.6 7.5 0.73 3.2 6.6 0.19 1.5 8.7

30◦ 0.77 4.1 9.4 0.48 2.4 9 0.13 1.3 13

40◦ 0.021 1.2 17 0.049 0.99 20 0.028 0.98 20

0.7

0◦ 0.99 4.3 0.12 0.74 3 0.86 0.2 1.3 3.8

10◦ 0.95 4 5.3 0.72 3 4.7 0.21 1.2 6.3

20◦ 0.78 3.8 10 0.51 2.7 9.2 0.15 1.2 11

30◦ 0.31 3.2 15 0.19 2.1 14 0.12 1.1 14

40◦ 0.0069 1.2 23 0.021 1.1 37 0.035 0.93 22
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F.6 Results for SH-SD (‘spike’ response)

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 5.4 0.16 0.98 4.1 0.35 0.27 1.8 2.2

10◦ 1 5.3 2.6 0.95 3.9 1.8 0.28 1.9 3.6

20◦ 0.99 5.1 4.1 0.84 3.8 3.3 0.25 1.7 2.8

30◦ 0.78 4.9 2.9 0.53 3.6 3.1 0.17 0.75 26

40◦ 0.014 1.2 16 0.028 1.1 11 0.063 1.1 17

0.6

0◦ 1 4.9 0.14 0.92 3.5 0.49 0.26 1.8 3

10◦ 1 4.8 3.5 0.9 3.4 2.8 0.26 1.7 5.7

20◦ 0.99 4.6 6.1 0.78 3.3 5.2 0.24 1.5 6.8

30◦ 0.63 3.7 7.2 0.34 2.6 7.7 0.14 1.3 10

40◦ 0 1 50 0.028 1.4 19 0.049 1.1 17

0.7

0◦ 1 4.3 0.14 0.75 3.1 0.76 0.18 1.4 2.4

10◦ 0.99 4.1 4.7 0.71 3 3.7 0.19 1.4 4.5

20◦ 0.88 3.8 9 0.52 2.9 8.1 0.15 1.2 9.3

30◦ 0.4 3.1 13 0.21 2.3 12 0.083 1.2 13

40◦ 0 1.1 37 0.0069 0.98 29 0.035 0.86 20
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F.7 Results for CSD

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 6.1 0.16 1 4.9 0.26 0.3 2 3.1

10◦ 1 5.9 0.41 0.99 4.7 0.51 0.28 2 3

20◦ 1 5.9 2.1 0.99 4.5 1.5 0.29 1.8 4.8

30◦ 0.82 5.8 2.1 0.87 4.3 1.3 0.29 1.8 7.1

40◦ 0 -0 90 0.11 3.2 3.5 0.2 0.95 14

0.6

0◦ 1 5.7 0.15 0.99 4.4 0.3 0.31 1.9 2.3

10◦ 1 5.4 1.4 0.98 4.2 0.96 0.27 1.9 3.6

20◦ 1 5.3 2.4 0.96 4 1.5 0.28 1.8 3.7

30◦ 0.91 5.3 3.8 0.88 3.9 2.5 0.27 1.6 8.7

40◦ 0.014 5.2 14 0.18 3.6 11 0.21 1.4 13

0.7

0◦ 1 5.3 0.15 0.96 4 0.18 0.26 1.5 1.4

10◦ 0.99 4.9 3.2 0.9 3.6 1.9 0.21 1.5 0.87

20◦ 0.96 4.5 2.6 0.82 3.5 1.5 0.21 1.6 4.5

30◦ 0.87 4.8 4.2 0.74 3.8 2.1 0.24 1.5 5.9

40◦ 0.085 4.6 11 0.19 3.7 11 0.19 1.3 9.1
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F.8 Results for PASMRI

λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 6.2 0.17 1 5 0.36 0.35 2.2 1.5

10◦ 1 6.1 1.1 1 5 0.7 0.31 2 4

20◦ 0.98 5.9 2.3 0.99 4.5 1.6 0.27 2 4.8

30◦ 0.49 5.2 3 0.83 3.4 2.8 0.18 1.8 8

40◦ 0 1.6 62 0.34 1.9 9.6 0.1 1.2 25

0.6

0◦ 0.98 5.8 0.13 0.99 4.6 0.37 0.33 2.1 1.8

10◦ 0.97 5.8 1.7 1 4.6 1.6 0.31 2 3.9

20◦ 0.97 5.6 3.8 0.97 4.1 4.2 0.25 1.9 8

30◦ 0.78 5 6.8 0.79 3.4 7.9 0.18 1.5 16

40◦ 0.056 3.7 24 0.29 2.3 17 0.09 1.4 19

0.7

0◦ 0.97 5.4 0.15 0.97 4.2 0.48 0.27 1.9 2.1

10◦ 0.97 5.4 2 0.97 4.1 3.1 0.24 1.9 3.3

20◦ 0.99 5.1 4.4 0.89 3.9 6.8 0.22 1.7 9

30◦ 0.87 4.6 9.9 0.59 3.3 13 0.16 1.5 17

40◦ 0.049 4 25 0.083 2.7 28 0.083 1.4 18
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F.9 Results for MESD
λ1 = 1.9 × 10−9 m2 s−1 λ1 = 1.5 × 10−9 m2 s−1 λ1 = 1.1 × 10−9 m2 s−1

a θ (deg) c γ(κ1) α (deg) c γ(κ1) α (deg) c γ(κ1) α (deg)

0.5

0◦ 1 6.3 0.12 0.92 4 0.54 0.09 1.8 2.3

10◦ 1 6.3 0.84 0.92 3.9 0.67 0.11 1.8 4.6

20◦ 1 6.1 1.8 0.9 3.9 0.93 0.076 1.8 5.8

30◦ 0.7 6.1 2.3 0.83 3.1 2.1 0.035 1.8 8

40◦ 0 -0 90 0.54 2.4 7.3 0.042 1.2 20

0.6

0◦ 1 5.9 0.1 0.93 3.7 0.14 0.11 1.9 2.6

10◦ 1 5.9 0.94 0.91 3.6 0.69 0.13 1.9 5.9

20◦ 1 5.7 2.1 0.89 3.7 1.7 0.1 1.8 6.4

30◦ 0.72 5.7 3.3 0.83 3.3 3.7 0.1 1.6 12

40◦ 0 -0 90 0.49 2.4 9.5 0.063 1.3 22

0.7

0◦ 1 5.3 0.14 0.85 3.4 0.63 0.097 1.6 3.6

10◦ 0.96 5.3 1 0.81 3.2 0.51 0.076 1.7 6.1

20◦ 0.99 5.1 2.2 0.81 3.3 1.7 0.09 1.6 6.7

30◦ 0.74 5.2 3.7 0.74 3 4.4 0.09 1.5 14

40◦ 0.021 5.4 12 0.32 2.3 12 0.056 1.3 22
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