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Abstract 

Systems using Ferroelectric (F) Liquid Crystal over Silicon (LC0S) Spatial Light Modulators 

(SLMs) have been limited, in the past, by the poor optical performance of the devices. The 

high degree of backplane flatness and hence LC layer thickness uniformity required have 

been very difficult to achieve due to stresses induced in the silicon wafer as a consequence of 

CMOS processing. Mirror quality and LC alignment are also major factors in determining the 

(F)LCoS SLM optical efficiency and contrast ratio. 

A process of forming "thin" high-quality mirrors was developed, using an intermediate metal 

chemical mechanical polishing process (CMP). An associated process was also developed in 

which the thin mirrors were fabricated flush with the surrounding oxide, using a novel 

interpixel gap fill process (flat to 2.5nm) which allowed a major improvement to be made in 

the liquid crystal flow front, during cell filling. 

We have successfully demonstrated a technique for reducing the backplane warpage from 

3.OX down to X/8, over a die, thus improving the LC layer thickness uniformity. 

The robust silicon dioxide spacers used in the die flattening experiments, above, were fully 

characterized and the deposition and patterning process optimized to consistently provide 

spacer layer thickness uniformities of <1% over a 75mm wafer. 

Issues relating to the transparent ITO layer were addressed. We have shown that the surface 

roughness of the granular "in-house" deposited ITO can be reduced by —40% (on a sub-

micrometer scale) using a slight variant of the oxide CMP process. The optical performance 

of LC devices was also found to be improved by optimizing the ITO and SiO layer thickness. 

Reflections from the ITO coated glass have been reduced by approximately 10% by 

optimizing the ITO layer thickness for a particular wavelength. 

In this study, I have sucessfully demonstrated processes which will allow the fabrication and 

construction of higher quality LCoS SLM's than have previously been produced. 
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Chapter 1. 

Introduction to Liquid Crystals & Spatial Light 
Modulators. 

1.1 	Liquid crystals 

It is well known that matter usually exists in one of three phases; solid, liquid or gas. 

Liquid crystals (LC), as their name suggests, are a less common phase in which the 

material is neither a solid or a liquid. They posess physical properties that are 

intermediate between conventional fluids and solids. The LC phase is also known as a 

mesophase. The molecules in all LC phases move about much like the molecules of a 

liquid, but as they do so they maintain some degree of orientational and, sometimes, 

positional order. As a result, there is anisotropy in the macroscopic mechanical, 

electrical, magnetic, and optical properties of the LC [Blinov, 1983]. A measure of 

the orientational order of a nematic LC (1.1.1) is given by the function (3cos2O - 1)/2 

which is called the order parameter (S), where 0 is the angle between the long 

molecular axis and the nematic director. An order parameter of 1 implies perfect 

orientational order, whereas the order parameter of an isotropic liquid is 0. There are 

essentially three variables which determine the phase which a liquid crystal material 

exhibits. LC materials in which the temperature (or pressure) determine the phase are 

classified as thermotropic LC. Where the concentration determines the phase of the 

material, the LC is classified as lyotropic. The remaining discussions will be on the 

former. The most common type of molecule that forms LC phases is a rod-shaped 

(calamitic) molecule. (i.e., one molecular axis is much longer than the other two). In 

fact it is the interactions between the anisotropic molecules which promote the 

orientational (and positional) order in an otherwise fluid phase. 

An electric or magnetic field causes the molecular director, of a LC, to change 

orientation The direction depends on whether the LC has a positive or negative 

1 



Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

dielectic anisotropy (i.e., whether the molecules try to line parallel or perpendicular to 

the electric field). Deformation of the liquid crystal structure with applied electric 

field strength is not gradual. At some threshold value of the field, the deformation 

begins and then gets greater as the field strength is increased. This transition from an 

undeformed to a deformed texture at a certain value of field is called the Freedericksz 

transition [Blinov, 1983]. 

1.1.1 Liquid crystal phases 

At the present time thermotropic LCs are divided into three groups-nematic, chiral 

nematic (or cholesteric) and smectic, figure I.I. Nematic LCs are characterized by 

long range orientational order, whereas smectic phases posses both long range 

orientational and positional ordering. There is still disorder within each layer. Many 

variants of the smectic phase exist; in some the molecules are tilted relative to the 

layers, figure 1.1(d), and in others there is additional ordering within the layers. The 

name Nematic comes from the Greek word for "thread". Chiral simply means 

"twisted" and Smectic, "soap like". 

\\F// 
\\ WM  

(a) 	 (b) 

1/111/ 
Pitch 

 

(c) 	 (d) 

Figure 1.1 	(a) Nematjc, (b) smectic A, (c) chiral, and (d) tilted smectic 
phase. 
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Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

The addition of a chiral component to the smectic C phase produces the chiral smectic 

C phase (SmC*), figure 1.2(a). This special phase differs from the previously 

mentioned phases in that it is ferroelectric', i.e., it now exhibits a permanent 

polarization in the absence of an electric field. The director of the SmC*  rotates in a 

cone in going from one smectic layer to the next. If the cell is thin enough, the 

interaction of the LC with the surfaces produces a texture in which there is no rotation 

of the director within the cell [Clark, 1983], known as surface-stabilized, shown in 

figure 1.2(b). 

Helical precession 

PS 

 fl 
PS 

Molecular orientation 
Smectic layer 

(a) 
	

(b) 

Figure 1.2 
	

(a) Chiral SmC phase, (b) surface stabilized (SS) FLC 
director has two stable states. 

Ferroelectric Liquid Crystals (FLCs) are allegedly susceptible to mechanical stress 

and thermal shock, poor contrast, ghost images and difficulty of alignment [Efron, 

1995]. The director distortions in NLCs decay exponentially with distance from the 

boundary, but the smectic layer structure propagates defects more extensively. 

Consequently, the smectic layered structure is, in general, more difficult to align than 

NLC. Although FLCs suffer from the problems described above, they have the 

desirable properties of fast switching (lO-lOOs of microseconds) and bistability. 

A new phase, only discovered in 1989, is the anti-ferroelectric phase [Ouchi, 1991]. This tn-stable phase 
differs from the ferroelectric phase in that its constituent molecules tilt in alternate directions from layer to 
layer, which produces a zero spontaneous polarization. This phase shows great potential in display devices as 
it offers better defined electric field thresholds and is less fragile than normal FLCs. 
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Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

Direct alignment of the smectic phase on cooling from the isotropic phase is possible. 

However, the most uniform alignment is achieved through the alignment of the 

precursor long-pitched N*LC,  which undergoes a SmA phase transition and finally 

SmC* transition with decreasing temperature. 

1.1.2 Liquid crystal alignment 

The liquid crystal orientation at the boundaries are very important as they determine 

the orientation of the liquid crystal molecules in the bulk. Depending on the 

combination of the surface preparation of the two bounding substrates, various 

orientations are possible. There are a wide range of LC molecular orientations; seven 

of the most common types being homeotropic, homogenous, tilt, hybrid, twist, planar, 

and focal conic. The mechanisms involved in liquid crystal alignment are discussed 

later. 

LC aligning layers can be formed by various methods, summarized in table 1.1, the 

simplest of which is commonly known as Chatelain's method. This method involves 

mechnically rubbing the glass/electrode surface with a cotton cloth or paper 

[Chatelain, 1943]. The rubbing creates a microrelief in the surface in the form of 

ridges and troughs which promotes the orientation of the molecules along these 

formations. Alternatively, the surface preparation can be preceded by coating the 

substrate(s) with a suitable film before the unidirectional rubbing. 

4 



Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

LC aligning method Comments 

Direct processing The substrate is coated with a solution of an 

aligning agent, the solvent removed leaving a thin 

film of the aligning agent on the substrate surface 

[Zhu, 1994]. 

Substrate surface transformation Rubbing, oblique evaporation, stamping [Lee, 

1993], etched gratings in SiO, photoresist, metal 

etc., [Newsome, 1998], [Smela, 1993]. 

Polymer matrix Photopolymerization [Jam, 1984a&b] 

Other methods Include flow, shear alignment and the adsorption, 

onto the substrate, of an aligning agent dissolved 

in the LC [Krekhov, 1993], [Leslie, 19941, 

[Calmers, 1996], [Chevallard, 1997], [Derfel, 

1997]. 

Table 1.1 	Some of the main methods of aligning LC's. 

The main methods of aligning LC, which are commonly used by microdisplay 

manufacturers, at the time of writing, are the oblique evaporation and rubbing 

techniques. 

ObliQue evaporation 

Oblique evaporation of metals or oxides onto the surface, sometimes referred to as the 

Janning method, after its discoverer [Janning, 1972], offers a big advantage over 

rubbing techniques, for Spatial Light Modulators (SLMs) or displays based on active 

silicon backplanes, as electrostatic damage in Complementary Metal Oxide 

Semiconductor (CMOS) backplanes is minimized. The angle and rate of deposition 

are both important in determining the tilt angle of the columns [Geszti, 

1987],[Goodman, 19761. Grazing angle (phil) depositions 5200  are referred to as 

Small Angle Deposition (SAD), and produce an inclined or tilted orientation of the 

5 



Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

LC directors. Larger angles (phi2) of deposition (20-45°) are called Medium Angle 

Deposition (MAD), which yield a parallel alignment of the LC. Figure 1.3. 

L. 	 H 
SAD 

MAD 

\, 

	

Phil 

\ 	/ Evaporant 

LIi 

Figure 1.3 	Schematic illustration of SAD and MAD oblique evaporation. 

Many materials, which can be obliquely deposited, have provided liquid crystal 

alignment with differing results. For example Cr, Pt, Au, and SiO provide 

homogeneous alignment, whilst Cu gives homeotropic alignment. The oblique deposit 

causes a film growth in a preferred direction, which results in a "sympathetic 

alignment" of the nematic liquid crystals when applied [Janning, 1972]. 

Mechanism of liquid crystal alignment at a boundary 

A uniform surface alignment is essential for many device applications. The bulk 

orientation of a LC is controlled by the alignment of the surface region. Mechanisms 

responsible for the orientation of LC on solid surfaces can be divided into two basic 

kinds, physical and chemical [Guyon, 1976]. In their analysis of the alignment of LCs 

on solid films deposited at grazing incidence, Guyon et al., explained the 

6 
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Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

experimental results by a physical mechanism - the orientation dependeilce of - the 

elastic energy. They assumed that the director was locally parallel to the surface 

everywhere, i.e., chemical bonding. Although there are many publications, [Faetti, 

1991], [Xiao, 1997], [Yokoyama, 1984], on the subject of liquid crystal alignment at 

boundaries, it is still poorly understood. One well known model which attempts to 

explain the planar or perpendicular alignment of nematic liquid crystals on a grooved 

surface is given by Berreman [1972]. As an explanation of the planar orientation 

along the direction of the rubbing it is suggested that the ends of the molecules all 

have the same affinity for the surface and the molecules tend to arrange themselves 

parallel to the surface. Comparing figures 1.4(a) and (b), it can be seen that 

orientation of the director perpendicular to the surface relief (a) requires elastic 

energy deformation of the medium, whereas positioning the director along the troughs 

in surface (b) is not accompanied by such a deformation. A similar argument is used 

for homeotropic or tilted orientation on columnar topologies. Several other theories 

have been proposed to explain surface alignment of LC's including; the surface 

tension model [Nakano, 1995], van der Waals force model [Seo, 1997], excluded 

volume effect model [Okano, 1983] and frictional rubbing [Mada, 1993], [Sugimura, 

1993]. 

(c) Minimum energy 

Figure 1.4 	The directors (n) tend to align along the direction which minimize the 
elastic energy.(a) This orientation is energetically less favorable than (b) or 
(c). (b) Medium angle deposition leads to planar and (c) small (grazing) 
angle deposition to perpendicular/tilted LC alignment. 
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Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

angle deposition to perpendicular/tilted LC alignment. 

1.2 	Modulation of light 

There are essentially four variables in an optical wavefront which can be modulated 

as a function of spatial coordinates and time (i) intensity (amplitude), (ii) phase, (iii) 

polarization and (iv) spatial frequency (texture). It should be noted, however, that 

intensity (amplitude) and phase are the most commonly used representations in an 

optical computing system. The latter two are often used as intermediate 

representations that are converted into intensity or phase modulation before the 

information is used in the next stage of the optical computing system [Neff, 1990]. 

Surface stabilized FLCs (1.1.1) can operate in any of the first three modes described 

above, i.e., amplitude, phase or polarization modulation. 

(1) 	Amplitude modulation 

A transmission mode SSFLC cell is placed between two crossed polarizers, figure 

1.5, such that the FLC no  axis is parallel to the input polarizer. In the "off' state, the 

path length experienced by the light, is (27t/X)n0t, where no  is the refractive index 

experienced by plane polarized light traveling along the ordinary axis of the material 

and t is the material thickness, and the two orthogonal components of plane polarized 

light experience no phase retardation, and the exiting plane polarized light is blocked 

by the crossed analyzer. If the state of the director is then switched, the FLC director 

rotates through an angle, 0. The plane polarized light entering the FLC now 

experiences a phase retardance as the two orthogonal components propagate along ne 

and no respectively. If the thickness of the FLC layer is correctly set, a it phase 

retardance can be achieved and the emerging waveform is plane polarized, but rotated 

by 7t/2. The light is then transmitted through the crossed analyzer. 

8 
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no 

-- 	- analyzer axis 

fle 

- -- 	 LC orientation 

polarizer axis 

"OFF" 

analyzer axis 

no 
- 	LC orientation 

polarizer axis 

"ON" 

Figure 1.5 	Amplitude modulation in transmission mode. Where the optimum 
cone angle of the SSFLC is 22.50. no  and n0  are the refractive 
indices along the ordinary and extraordinary axes respectively. 

(2) 	Phase modulation 

To achieve phase modulation (which is the relative shift in phase between the two 

orthogonal components of the plane polarized light), cell is oriented such that the 

incident plane polarized light bisects the angle between the two director orientations, 

figure 1.6. If the correct FLC thickness (see chapter 4) is correctly set, the 

polarization can be rotated either clockwise or anti-clockwise upon switching. 

-- analyzer axis analyzer axis 

/ne101 

no 
- 	- 	LC orientation 

polarizer axis 

ne 

- 	LC orientation 

polarizer axis 

 

	

Zero phase difference 
	

P1 phase difference 

	

Figure 1.6 
	

Where the cone angle should be 450 
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The same ideas can be applied to reflective mode devices. Figure 1.7 illustrates the 

operation of amplitude modulation in reflective mode. 

"Off state 
No rotation 

Mirror 	SSFLC Cell 
Polarizers 

"On" state 
90 degree 
rotation 

Figure 1.7 	illustrates reflective amplitude mode of operation which requires 
only half the LC thickness of transmissive mode due to the double 
pass of the transmitted light. The configuration for phase 
modulation is the same except that the orientation of the LC cell 
is as shown in the previous figure. 

1.3 	Spatial Light Modulators 

Any device that spatially controls the light that passes through it is called a Spatial 

Light Modulator (SLM). This ability of SLMs to modulate spatially, as well as 

temporally, a 2-D optical wavefront gives optics a degree of parallelism not found in 

electronics. 

1.3.1 SLM technologies 

SLMs exist in many forms [Fisher, 19851. Light modulation may be carried out by 

many mechanisms including electro-optic, acousto-optic and mechanical effects 

[Underwood, 1997] a selection of which are given in table 1.2. 

10 
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Mechanism Technology 
Electro-optic Self-electro-optic effect 

(SEED)[Liveai, 1988], [Millar, 
1993] 
Liquid crystal (LC) [Underwood, 
19861, [McKnight, 1989],[Cotter, 
1990] 
Ceramic based (PLZT) [Land, 
1974],[Smith, 1972] 

Magneto-optic Bismuth-substituted iron garnet 
film[Davis, 1988]. 

Mechanical Elastomer[Hess, 1987], [True, 1987] 
Membrane [Vdovin, 1995] 
Cantilever mirrors [Younce, 1993] 
Acousto-optic Bragg cell [Pape, 
1992] 

Table 1.2 	A selection of light modulation mechanisms. 

The most important characteristic of LCs, compared with other modulator 

technologies, are their low power consumption, low voltage operation and large 

number of pixels. LC SLMs can be broadly divided into transmissive and reflective 

mode devices. The major advantages and disadvantages of the reflective mode are 

listed below, for both electrically and optically addressed pixels, section 1.3.2. 

Advantages of the reflective mode 

Doubled depth of modulation of the electro-optic modulator (electrically 

addressed EA and optically addressed OASLM's), for a given thickness (by 

double passing). 

Isolation of the input write beam from the output, readout beam (OASLM's). To 

avoid having it write over the image, the read light must differ from the write 

light in wavelength, intensity or timing. 

Independence of the particular substrate used for growth of the modulator array 

(OASLM's) i.e., the substrate need not be transmissive at the particular read out 

wavelength used [Efron, 1995]. 

11 
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Reflective BA also permits the use of large fill-factor minors over the active pixel 

electronics. 

Disadvantage of the reflective mode 

Added complexity in optical readout system. If polarization rotation is employed, 

a polarizing beam splitter can be used to achieve an efficient readout operation 

(EA and OASLM's). 

The reflective-mode device is considered, by some investigators to be the preferred 

configuration [Efron, 1995]. For our application (LC over silicon), figure 1.8, we are 

constrained to operate in the reflective mode, in the visible. 

Polaroid 

ITO 
Alignment Layer 
Liquid Crystal Layer 
Pixel Mirrors 

CMOS Substrate PIOFFU 	 "ON" 

Figure 1.8 	Cross-sectional illustration of a LCoS SLM. 
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1.3.2 Liquid Crystal SLM addressing. 

LC SLM addressing falls into one of two categories; (i) electrical and (ii) optical 

addressing. 

Electrical addressing 

There are three main types of electrically addressed SLMs, figure 1.9: direct 

addressed, matrix addressed and active backplane addressed SLMs [Efron, 1995]. 

The area taken by the interconnects in direct addressed SLMs increases rapidly 

with the number of pixels, limiting arrays to having approximately 16 x 16 pixels 

[Collings, 1989]. 

A passive matrix of transparent electrodes is formed to address lines deposited on 

one substrate, and a perpendicular set deposited on the other substrate. A "strobe" 

voltage pulse is applied to each row, selecting it for a particular period. Strobe 

voltage, "data" voltage pulses are then applied to all the columns simultaneously. 

In active matrix (backplane) SLMs each pixel has its own active circuit elements 

which drive it. Unlike the matrix addressed devices, it is not necessary to wait for 

the SSFLC to have switched before moving along to the next row. Active matrix 

addressing is used to overcome inherent difficulties due to slow response times of 

the modulating medium. It is the preferred approach especially when panels with 

large numbers of rows and columns are involved [Sherr, 1993]. There are several 

potential functions of the circuitry at each pixel, including charge storing. 
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Data 

Pixel electrode 

CD 

(1) 
	

(2) 	Transparent 
Data 	 addressing electrode 

electrode 

Active pixel element 

(3) 

Figure 1.9 	Graphical 3x3 matrix illustration of the addressing methods. 
(1) Direct, (2) passive and (3) active addressing. 

Because the frame rate of passive matrix (2) addressing is low compared to active 

backplane devices (3), their chief applications are flat panel displays, whereas active 

backplanes are better suited to optical processing and high resolution projection 

displays. 

Optical addressin2 

In this study we are only interested in electrically addressed SLMs but this section 

will provide a brief introduction to optical addressing for completeness. 

Several types of photodetector have been developed by various groups, including 

ZnS, ZnO, US, Se, CdSe, c-Si and a-Si:H [Efron, 1995]. The Huges liquid crystal 

light valve [Beard, 1973] incorporated a US photosensor and TNLC. Most recently 

developed Huges OASLM's incorporated an a-Si:H photoconductor [Sterling, 1990]. 

Hydrogenated amorphous silicon was used as an OASLM photosensor with nematic 

LC [Samuelson, 1979], and has become the most commonly used photosensor in LC 

OASLMs [Moddel, 1991]. 
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The pin diode is formed from a-Si:H layer, figure 1. 10, where the p-region is doped 

with boron. When the pin diode is under a reverse bias, an incident photon creates an 

electron-hole (e-h) pair in intrinsic layer. The photocurrent varies linearly with light 

intensity over a wide range of intensities because one e-h pair is collected for each 

absorbed photon. 

Write beam 

F 	
Glass 

	- 	

TCO 

:: 
----------- Reflector 

n 

FLC 	 . Alignment layers 

Glass 	 TCO 

Read beam 	 Reflected read beam 

Figure 1.10 	a-Si:HIFLC OASLM. 

It should be noted that although OASLM's process information at higher rates and 

exhibit a higher optical resolution than EASLM's (addressing information arrives in 

parallel), the EA (LCoS) LC over silicon can posess smart pixels which enables the 

SLM to perform logic functions. LCoS also combines two mature technologies; 

namely liquid crystals and Very Large Scale Integrated (VLSI) circuits. 

1.3.3 DRAM vs. SRAM Pixels 

Active backplane EASLM's are based upon two types of memory used VLSI circuits: 

Dynamic Random Access Memory (DRAM) and Static Random Access Memory 

(SRAM). Where dynamic logic differs from static logic that the logic values are 

represented by the presence or absence of a charge stored isolated on capacitors, 

whereas static logic values are pulled firmly to Vss or Vdd via MOSFET's. 
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The DRAM pixel 

The 1T-DRAM is the simplest memory element, figure 1.11. DRAM pixels require 

that there is sufficient charge stored in the pixel capacitor during the addressing part 

of the cycle to allow for charge redistribution, equation 1, induced by the dipole 

rotation [Johnson, 1993]. 

Q=2PA 	 (1) 

Where P is the spontaneous polarization of the PLC, A is the pixel area and Q is the 

charge. So enough charge must be stored in the pixel capacitor to ensure complete 

switching of the FLC. 

From nMOS theory, the maximum drive voltage, from an nMOS DRAM pixel, is 

Vo = Vdd - Vt 

Where Vt is the threshold voltage and Vdd is the drain voltage. Therefore in an 

nMOS device, the output voltage (high) is degraded [Underwood, 1986]. This results 

in a lower PLC drive voltage and hence a reduction in switching speed. 

Data 	 T Vito 

Address 

Cflc 

Csub 

Figure 1.11 	A single transistor DRAM pixel, where V 0  is the voltage applied to the common 
ITO electrode, CFLc  is the LC capacitance and CSUB  is the substrate capacitance. 
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The SRAM pixel 

With the SRAM memory element once the pixel has switched, electrical power 

remains connected to the LC for the entire frame time. Therefore limitations imposed 

by dipole switching are irrelevant [Collings, 1989]. The XOR-SRAM pixel is used at 

present, figure 1.12. 

Clock 

Figure 1.12 	XOR-SRAM pixel [Burns, 19951. 

Data is loaded into the SRAM latch when enable is at logic high. Charge balancing is 

achieved through the XOR part of the circuit, table 1.3. When DATA is at logic "1", 

the output of the XOR gate toggles between logic "1" and logic "0". When DATA is 

at logic "0", the output of the XOR gate is the same clock. 

in clock out 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 1.3 XOR truth table. 

17 



Chapter 1. Introduction to Liquid Crystals & Spatial Light Modulators. 

The table below provides a summary of the DRAM and SRAM pixels used in LCoS 

devices. 

DRAM SRAM 
Small area Large area 

Easy connectivity Complex connectivity 
High power consumption switching 

transients 
Poor driving voltage Full rail voltages to drive FLC 

Needs refresh no refresh 
Charge leakage, charge balancing Charge balancing in circuitry (XOR), 
required (inverse frame) therefore Constant illumination 

pulsed light source 
nMOS pixel transistors CMOS-latchup 

Table 1.4 	 Characteristics of DRAM and SRAM backplanes. 

Charge balancing 

Liquid crystals always contain ionic impurities, which drift under the influence of an 

applied electric field, to the insulating LC alignment layer. These charges then 

accumulate at the LC bounding plates introducing an electic field, which must be 

overcome during switching. One way around this problem is to ensure that the time 

averaged voltage across the LC layer is zero. 

DC balancing, in FLC devices, is generally achieved at the pixel level as follows. A 

frame of data is written onto the array and optically interrogated to produce a bit 

plane image. This is immediately followed by a complementary frame, i.e., an inverse 

of the image. This complementary image is not usually optically interrogated 

[Underwood, 19971. 

SRAM pixel devices achieve charge balancing using XOR circuitry, figure 1.10, as 

described earlier. 

Charge balancing in nematic LC displays is achieved by applying a sinusoidal 

voltage, as the LC responds to the root mean square (mis) of the driving voltage. 
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Charge leakage 

The voltage across the LC layer in DRAM pixel/backplane devices, decays as 

described above, require refreshing periodically. This is due to the charge in the pixel 

capacitor, which maintains the voltage across the liquid crystal layer, decaying, figure 

1.11. It is also important to avoid the reduction of the decay time due to 

photoconductivity in the silicon backplane [Johnson, 1993]. 

_ 	Cflc

Csub 	 i leak 

Figure 1.13 	Equivalent circuit, where CRC is the capacitance of the 
FLC layer and CSUB  is the substrate capacitance. 
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1.4 	Applications of LCoS SLM's 

A complete review of the applications is beyond the scope of this thesis. Instead, a 

brief introduction of some of the main applications of LCoS SLM' s will be given. 

Efron [1995] provides a more detailed review. 

1.4.1 Optical information processing 

Many specialized optical information processing systems have been reported, which 

make use of the physics of light propagation through various optical components to 

perform transformations on input datasets. Examples include optical corellation 

[Turner, 1993], and Fourier plane image processing [Lin, 1996]. 

In optical correlation an object at the first focal plane of a thin lens is illuminated with 

coherent light, the Fourier Transform (9)  of the object is obtained at the second focal 

plane. Filtering operations on the transform can allow a variety of image processing 

operations to be performed such as frequency filtering, matched filtering, pattern 

recognition, image recognition, image compression and feature extraction. The 

inverse Fourier Transform F' can be performed by a second lens, i.e., 

5{F(fx,fy) }=f(-x,-y). 

Optical correlation between two images f(x, y) and s(x, y), is written as 

c(x, y)=f(x, y)® s(x, y), 

Where ® represents the correlation operation. This equation can be re-written as 

Where F(f,f ,,) is the Fourier Transform (F) of f(x,y) and S*(f,f ,,) is the complex 

conjugate of the 5of s(x, y). 

Two well known optical architectures for finding c(x,y) are; 

(1) the Joint Transform Correlator (JTC) 
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(2) and the VanderLugt correlator. 

Joint Transform Correlator 

The JTC consists of two spatially separated images f(x, y) and s(x, y), which are 

simultaneously displayed on an input EASLM. A lens takes the analog F  of the two 

images which is then recorded on an OASLM. A second lens performs the inverse T 

(9 1 ) of the intensity pattern and spatial filtering to yield the correlation function. 

VanderLugt Correlator 

In the VanderLugt correlator the images f(x, y) and S*(f,f ,) are encoded onto two 

separate EASLMs. 

Performance limitin2 factors 

The main factor which influences the performance of an LCoS based correlator is the 

backplane flatness and LC layer uniformity, 4.0. 

The relative phase and absolute phase introduced by LCoS modulator depends on the 

LC layer thickness. Also a backplane flatness of X/16 to X/20 is required [Gourlay, 

1995 and Lee, 1995]. 

Other requirements often include a high contrast ratio and very high switching speeds 

(in the microsecond range or better). 

1.4.2 Optical computing and switching 

The key concept for optical computing and switching is that light beams are used to 

encode and relay information, in place of flows of electric charge. In the case of 

optical computing, light can be used to route data around a system consisting of many 

separate electronic processors [Hart, 1998] in a flexible and changeable way. Fibers 

are used to carry information. To route this information from one fiber to another, the 
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optical signal is often converted to an electronic signal, routed electronically and then 

converted back to an optical signal. It would be much faster and more efficient to 

route signals optically, i.e., without converting to electronic signals and back again. 

Crossbar switches 

Optical switching refers to the process of routing light beams carrying streams of 

information, to a number of destinations, in a dynamic, user defined way [Ichikawa, 

1992].An optical crossbar is a means of achieving routing where the information 

remains in an optical form. N input channels require a 2-D array of N2  pixels to fully 

connect to N output channels. 

Performance limiting factors 

The optical information is fanned out by diffractive or refractive optics. The main 

criteria for the modulator is a high contrast ratio, as a low contrast limits the number 

of channels routable due to cross-talk [Lee, 1995], and efficiency. 

1.4.3 Displays 

LCoS miniature displays are emerging as an important new class of displays. They 

are the engines that power electronic view finders, projection products and head 

mounted devices and are potentially the largest market for LCoS SLMs is displays 

[Chinnock, 1996]. 

Performance limiting factors 

In displays, spatial frequency is one key factor of image quality. Other desirable 

properties include high light throughput efficiencies and a moderately high switching 

speed, to avoid visible flicker and ghosting. The typical requirements for reflective 

LCoS include a large pixel count, high pad reflectivity, good contrast ratio (100:1 or 
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better), the ability to produce grey scale and modulate incident light of multiple 

wavelengths (color displays), see table 1.5. 

1.4.4 Requirements for some of the main applications of LCoS SLMs 

Contrast Switching Optical Flatness and Space- 

ratio speed throughput uniformity bandwidth 

(efficiency) product' 

Optical High CA Video rates Low insersion Flatness 	of High (parallel 

information desired for real time loss 	required. V16 to 2120 data 
optical Especially 	as required processing) 

processing processing multiple 
[Lee, 1995] SLM's 	are 

cascaded 
together, 
further 
exacerbating 
the problem. 

Digital Needs to 	be High (video Low insersion Similar as Low (few 
optical high as there rates) loss required. requirements lOOs of pixel 

is an intrinsic for display elements) 
computing/ fan-out/fan-in 

swithing and (1/N) loss  

routing 

Displays Require CA's High 	(frame Broadband LC 	thickness The 	human 
of ~!100: 1 rate in kHz for antireflectance uniformity eye 	is 	most 

color displays) coating over 	device sensitive 	for 
typically <lOOnm spatial 

offers —1% frequencies 
reflectance near 	2-4 
from top cycles 	per 

surface of degree 	[lee, 
coverglass 19951 

Table 1.5 	 Summary of the more important LCoS specification requirements for 
optical systems. 

All of the above, except the SBWP, can potentially be improved using the custom 

post-processing techniques described in this thesis. 

Number of pixel elements 
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1.5 	Chronicle of LCoS Spatial Light Modulators development 

The development of Liquid Crystal over Silicon (LCoS) SLM's was pioneered by the 

A.O. Group at the University of Edinburgh from 1983 with a 16x16 pixel guest-host 

LC [Underwood, 1986], and then a 50x50 NLC in 1988 [McKnight, 1989]. Later a 

collaboration between Displaytech and the Georgia Institute of Technology resulted 

in the design, fabrication and analysis of a 64x64 SRAM [Cotter, 1990] and a 

256x256 DRAM SSFLCoS SLM. In 1993 Jared et al. and McKnight et al. from the 

University of Colorado developed 64x64 and 256x256 devices, respectively [Jared, 

1993], [Mcknight, 1993]. In a collaboration between the University of Edinburgh, 

BNR Europe and GEC Marconi a 176x176 device was built [Underwood, 1991]. 

Table 1.6 summarizes the SLM's produced by the A.O. Group (or as part of a 

collaboration). The main current state of the art LCoS SLM's, including the 

1280x 1024 DRAM AFLCoS SLM being designed at the University of Edinburgh, are 

listed in table 1.7. 
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Device Pixel! Year Fill factor' Frame Comments/ref 
pitch before/after rate (design house) 

planar- 
__________  ization  
16x16 SRAM 1986 30/96 5Hz nMOS [Underwood, 

200 gm  1986] (EU) 
50x50 SRAM 1988 31/not 60Hz Nematic 

72j.tm applicable. [McKnight, 1989] 
(EU) 

176x176 DRAM 1990 26/75 1KHz Planarized 
30tm [Underwood, 1991] 

(HPSLM) 
64x64 DRAM 1992 3KHz High voltage (fault(s) 

80pm 30/88 found) 
[Seunarine, 

1998 19991  Faults corrected (EU) 
256x256 SRAM 1995 23/81 4KHz Planarized (EU) 

40.tm  
512x512 DRAM 1995 16/75 250Hz Light protected 

20prn  [Rankin, 1997] (EU) 
1024x768 DRAM 1997 5kHz Light tight [Worboys, 

12j.tm  19981 (SLIM1DIS) 

Table 1.6 	Summary of the backplanes produced by the UoE (or as part of a colaboration 
described below). 
EU—Edinburgh University 

FIPSLM—*Edinburgh University, GEC Marconi and STC Technology 
SLIMDIS—Edinburgh University, GEC Marconi, Admit Design Systems, Davin 
Optical Holdings and Swindon Silicon Systems. 

Does not include deduction for contact/via holes. 
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Pixel pitch Pixel fill Contrast Frame 
Manufacturer Model Resolution (p.m) factor(%) ratio rate Comments 

(Hz)  
Microdisplay MD640G2 640x480 15.7 >85 >50:1 30-90 NLC, each pixel is a triad of RGB diffraction 

MD800G6 800x600 10 91 >50:1 180 gratings. 
MD1024G5 1024x768(XGA) 12.5 >89 >50:1 30-180 Available 1999 

SpatiaLight M4-704x512 704x512 20  Available 1995 
Three-Five Systems 640x480 (SVGA) >200:1 
Inc. 
MicroPix  1024x768 12 >75 180 DRAM, FLC 
IBM 2048x2048 

 800x600 (SXGA)

t

17 74 1OV CMOS, DRAM, NLC, Light absorbing 
layer, planarized. Available 1998 

Siliscope  800x600 ________ Available 1998 
Colorado 800x600 12 80 75-90 NLC 
Microdisplay (CMD)  
Darpa 320x240 180 Available 1997 

1280x1024 60 
2560x2048  60  

Motorola MCVVQ410 320x240  80:1 72 CMOS SOl TFT 
Displaytech LightcasterTM 2560x1024 13.2  60 PLC 
Varitronix Ltd. (HK) VL704 VL1024 704x576 9.6 88 70:1 NLC 

1024068 13.3 91 70:1  NLC 
JVC DLA-G10 1365x1024 13.5 >93 >250:1 50-78  
S-Vision MicroLCDTM 1024068  Available 1999 
Boulder Non-linear 256x256 21.6 60 70:1 
Systems Inc. (BNS)  5 12x5 12 15  
MOSAREL (ESPRIT TFCG Micro-display 2560x2048 15 Light shielding layer, PDLC 
IV project)  
University of MINDIS 1280x1024 —10.tm Analog, anti-ferroelectric liquid crystal (under 
Edinburgh  development) 

Table 1.7 	A selection of the current' state of the art LCoS microdisplays (a full description of the acronyms is given on page ii). 

1 Compiled from manufacturers web pages listed at http://www.microdisplayweb.com/developer/index.html  
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1.6 	Aims of the project 

Very Large Scale Integrated (VLSI) circuits and Liquid Crystal Displays (LCD's) 

are, independently, two very mature technologies. Unfortunately, difficulties arise 

when these two technologies are bought together in the form of a reflective Liquid 

Crystal over Silicon SLM: LCoS SLM's have generally been constructed using 

techniques "borrowed" from the LC display fraternity, since the first prototype was 

developed by Underwood [1986]. 

At the start of this research, the state of the art Liquid Crystal over Silicon SLMs 

were characterized, primarily, by a significant backplane warpage, poor LC layer 

thickness uniformity, poor optical quality mirrors and difficulty in maintaining the 

smectic layer structure in the PLC. These problems have hindered the construction of 

devices which offer an acceptable performance for applications such as those 

described in 1.4. Although vast improvements have been made to the quality of the 

mirror layer by previous workers in the field, they were still intolerably thick and the 

texture granular and there remained much room for further improvement. 

The goal of my work was therefore to develop processes based on custom 

microfabrication processes which would significantly improve the LCoS SLM 

backplane flatness, uniformity (LC thickness and alignment texture), device contrast 

ratio, modulation efficiency and pad reflectivity. 

An outline of this thesis. 

In chapter 1 of this thesis I have introduced the main classifications of LCs and 

SLMs. In chapter 2, relevant LCoS microfabrication techniques will be discussed. 

Chapter 3 discusses the post-processing procedures which are under development or 

that have been developed by others. I also describe the work that I have carried out, 

with a colleague, to develop a process of patterning high reflectivity/pixel fill factor 

mirror electrodes and a novel inter-pixel trench filling process. In chapter 4, I present 

a novel die flattening technique, and cell assembly process, which has been used, 
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along with custom microfabricated spacer layers, fully characterized in chapter 5, to 

reduce significantly the backplane warpage and improve the LC layer thickness 

uniformity of assembled LCoS SLM's. 

Chapter 6 describes some work that I have performed related to the transparent 

conductive ITO coated cover glass, in which I have suggested improvements which 

can be made to the inner surface coatings of the cover plate, which would lead to 

higher modulation efficiencies. 

In the concluding chapter, the implications of such custom microfabrication processes 

on future LC based SLM's are discussed. 
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Chapter 2. 

A Review of Relevant Microfabrication Techniques. 

2.1 	SLM Post-processing 

LCoS Spatial Light Modulators backplanes are fabricated in silicon foundaries using 

conventional silicon semiconductor processing techniques. These techniques produce 

devices which have a poor optical quality and are significantly warped so are 

therefore not ideally suited for use as LCoS SLM' s. Further backplane and coverglass 

processing is usually required, to enhance the devices optical quality for use in many 

of the applications, discussed in chapter 1. 

Post-processing usually involves the deposition and patterning of thin films. In this 

chapter I will describe some of the most commonly used processes in detail before 

going on to discuss the specific post-processing procedures used by the Applied 

Optics Group/Silicon Technology Research Group, University of Edinburgh and 

others. 

In the first part of this chapter I will define wafer bow/warp and describe some of the 

main thin film properties which we are interested in. I will then introduce the main 

thin film deposition methods which are used during the post-processing procedure for 

silicon backplane SLM's. An introduction to photolithography will be given followed 

by a discussion of planarization techniques, with an emphasis on chemical mechanical 

polishing (CMP), which is the only method to date of achieving global planarization 

(defined in 2.9). Various methods of patterning will then be introduced, including lift-

off and the damascene process. 
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2.2 	Wafer bow and warping 

Since one of the aims of this work is to reduce the silicon backplane warpage and 

bow in assembled SLMs it will be appropriate to define these detrimental effects. 

Wafer bow is defined as the concavity due to sawing, or the deformation from 

thermal processing of the wafer centerline. It is measured according to ASTM' std. F-

534-84. Warpage, on the other hand, is defined as the deviation (difference between 

the maximum and minimum distance) exhibited by the centerline of a wafer from a 

planar condition, where such a deviation includes both concave and convex regions. 

Warpage is measured according to ASTM std. F-657-80 [Biddle, 1985]. 

Bow 

Iarp 

Figure 2.1 	Wafer bow and warp. 

The stresses that lead to warpage, in silicon wafers, originate from the temperature 

transients, which occur during insersion of the wafers into and the extraction of 

wafers from furnace tubes in high temperature processing. Following high 

temperature processing the periphery of the wafers cool at higher rates than the 

center, which leads to a temperature gradient and hence stresses in the wafers. When 

the stress in the wafers exceeds the yield point of silicon, dislocations form and 

plastic deformation occurs to partially relieve the stress. When the wafers have been 

cooled to room temperature, a reversed stress distribution, which cannot be relieved 

by plastic deformation, will be present. This stress causes the wafers to buckle. It 

should be noted that these stresses are also cummulative, which means that the 

warpage gets progressively worse through more processing. The parameters that 

influence warpage the most are [Einspruch, 1981]: 

American Society for Testing and Materials. 
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Growth method of the starting material. 

Diameter / thickness ratio of the wafer. 

The nature of the cummulative thermal processing i.e. temperature, temperature 

gradients, heating and cooling rates etc. 

Amount and form of precipitates (oxygen) and the direction and magnitude of the 

initial bow. 

Nature of the films grown or deposited on the wafer surface. 

	

2.3 	Thin film properties 

When deciding on a thin film deposition technique to deposit the various materials 

required for post-processing the LCoS SLM's it is important to consider properties of 

the film such as thickness uniformity, step coverage over features, adhesion to 

underlying films, film purity, film grain size and density. Obviously, a good thickness 

uniformity is required for most applications to ensure that the film thickness is 

maintained over the entire wafer. The step coverage, which is a measure of the film 

thickness uniformity over steep features, may or may not be a desirable property, 

depending on the application. The film adhesion to any underlying films and 

substrates should be high to avoid the film peeling away during subsequent 

processing. Other properties such as the purity, stoichemistry, grain size and density, 

again, may or may not be important, depending on the application. 

	

2.4 	The glow discharge 

A plasma is a partially ionized gas in which the following processes may occur 

[Chapman, 1980]; dissociation, atomic ionization, molecular ionization, atomic 

exitation and molecular exitation. 

The term "glow discharge" refers to the light given off by plasma sources due to the 

atomic/molecular exitations. Plasmas can be used in place of thermal techniques to 
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drive some chemical process [Chapman, 1980]. The radiation flux impinging on the 

deposition surface from the discharge consists of photons, electrons, and ions. 

If the glow discharge is driven by an rf electric field, the electrons and ions move 

about the plasma, ionizing and exciting the gas, but few strike either electrode. Glow 

discharge plasmas are usually created at pressures in the 0.01 to 0.1 Ton range by the 

action of an electric field on the contained gas molecules. This causes the breakdown 

of the gas molecule into a variety of reactive species. The electric glow discharge 

which is usually generated by an if source can also be created by ac, dc, or 

microwave sources [Levy, 1989]. Although the reactive molecules are near ambient 

temperature, the effective electron temperature can be 1-2 orders of magnitude 

higher. 

2.5 	Physical Vapor Deposition 

Most layer deposition processes are carried out in the vapor phase. If the material to 

be deposited does not react chemically during deposition, then the process is referred 

to as physical vapor deposition (PVD). There are two types of physical vapor 

deposition (PVD); evaporation and sputtering. All PVD processes proceed according 

to the following sequence of steps: 

Converting the condensed phase into a gaseous or vapor phase. 

Transporting the gaseous phase from the source to the substrate. 

Condensing the gaseous source on the substrate, followed by the nucleation and 

growth of the film. 

2.5.1 Evaporation 

Evaporation is the simplest method of PVD. In this method the deposition material is 

vaporized in a ultra high vacuum (typically 10 5  to 10 6  Ton) [McGuire, 1988] from 

its liquid (or solid) phase, and the vapor is then transported and deposited onto the 
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substrate. There are several methods of heating the evaporants, including resistive, 

inductive, e-beam and laser methods, some of which are shown in figure 2.1. 

(a) 	 (b) 

heater 	sublimation rod 

-w 
	

radiation
shield 

\ 

(c) 	 (d) 

Figure 2.1 	Methods of resistive heating (a) Wire, (b) metal foil, 
(c) crucible and (d) sublimation. 

Wetting of the wire or foil surface by the evaporant is desired in order to achieve a 

good thermal contact. The most commonly used support materials are tungsten, 

molybdenum and tantalum. Crucible sources, figure 2.2, are required to support 

molten metal in quantities of a few grams or more. Sublimation sources remove the 

problem of contact between the evaporant and foreign support materials, thereby 

reducing contamination of the deposited film. 

Molten metal 

Figure 2.2 	Inductive or rf heating. 
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Substrate(s) 

e-beam source 

N 

Vacuum 

Figure 2.3 	E-beam evaporation high evaporation rates and high purity deposits. 

An electron beam (e-beam) can be used to heat the source, figure 2.3. Since the beam 

is concentrated on the evaporating surface, while other portions of the evaporant are 

maintained at lower temperatures, the evaporant can form its own crucible. Hence, 

interactions between the evaporant and support materials are greatly reduced. 

2.5.2 Sputtering 

Sputtering is the primary alternative to evaporation for metal film deposition in 

microelectronics. A target material is bombarded by inert, energetic ions, such as 

argon ions, to release some atoms from the target (into the vapor phase). Sputter 

deposition is very well controlled and provides a better step coverage  than 

evaporation [Wolf, 1986]. The two main disadvantages of this type of film deposition 

are that (a) the substrate is exposed to ion bombardment, which causes substrate 

damage and (b) the film trap small quantities of the sputtering gas. 

2  Uniform film thickness across the substrate and on steep sidewalls. 
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Gas feed 

Cathode 

Ion 	
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/ Substrates 	L 
supply 

Plasma 	 L 	1+ 

Vacuum 	L1_i Anode 

Figure 2.4 	The simplest sputtering configuration is the planar diode type sputtering 
system, where the target is on the cathode [McGuire, 19881. 

There are various methods of sputtering. 

Direct current (DC) sputtering, generally used for elemental metals, figure 2.4. 

Radio frequency (RF) sputtering, for insulating materials. 

Magnetron sputtering. 

In both dc and rf sputtering, most of the secondary electrons emitted from the target 

do not cause ionization events with the Ar atoms. Magnetron sputtering can be used 

to increase the percentage of electrons that cause ionizing collisions, by utilizing a 

magnetic field to help confine the electrons near the target surface. The magnetic field 

applied to the plasma causes electrons in the plasma to spiral around the direction of 

the magnetic field lines. This orbital motion of the electrons increases the probability 

that they will collide with neutral species and create ions. The increased ion density 

decreases the Crooke's dark space [McGuire, 1988] and increases the rate of ion 

bombardment of the target. 
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2.6 	Chemical Vapor Deposition 

Chemical Vapor Deposition (CVD) is a method of depositing thin films, used 

extensively in the microelectronics industry. In our applications it is used for 

depositing dielectrics only as metal CVD films suffer from an extremely high surface 

roughness. CVD is a process where one or more gaseous species react on a solid 

surface and one of the reaction products is a solid phase material [Sherman, 1987]. 

The temperature of the surface must be high enough to cause a decomposition 

(pyrolysis) of the gas molecules. Most CVD processes are heterogeneous, that is, they 

take place at the substrate rather than in the gas phase. 

The steps that must occur in every CVD reaction are: 

Transport of reacting gaseous species to the surface. 

Absorption, or chemisorption, of the species on the surface. 

Heterogenous surface reaction catalyzed by the surface. 

Desorption of the gaseous reaction products. 

Transport of the reaction products away from the surface. 

Typical reactions which occur in the formation of SiO2  and SiN (materials used 

extensively during post-processing) are shown below, by equations 2 and 3, 

respectively. 

SilT4  + 4N20 - 	Si02  + 4N2  + 2H20 	(2) 

SiH4  + N2 	- 	2SiNH + 3H2 	 (3) 

To prevent homogenous gas phase nucleation, which causes particulate contamination 

on the wafer, the silane is diluted in an inert gas, typically He or N2. 
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2.6.1 CVD techniques 

The main methods of heating wafers during CVD are irradiation, direct resistive 

heating and inductive heating. Optical heating has one advantage over the other two 

methods of heating; the wafers can be heated from both sides enabling the wafer to be 

uniformly heated [Sherman, 1987]. CVD reactors come in a variety of forms, the 

nature of which depends on the tradeoffs made between performance criteria for a 

particular application. These criteria can include total wafer loading (i.e., throughput), 

uniformity, sensitivity to particulates, sensitivity to contaminants, ultimate vacuum 

requirements, and so on. The form of the reactor also depends on the sensitivity of the 

process to temperature and flow conditions [Einspruch, 1987]. 

Atmospheric Pressure CVD 

Chemical Vapor Deposition was originally developed as an atmospheric pressure 

process- APCVD. It is the simplest type of CVD process, as no vacuum pumps are 

required. The reactant gases are introduced into the reactor at close to atmospheric 

pressure and the temperature and gas flow rates determine the rate of film deposition. 

Chemicals 

Vent 

I I I 	 I 	

IPurge 

-------------- 	 -Belt 

Figure 2.5 	Simple Continuous feed APCVD reactor [Wolf, 1986]. 
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Low Pressure CVD 

A major drawback of APCVD is particle formation. While particle formation in the 

gas phase can be controlled by adding a sufficient amount of N2  or other inert gas, 

heterogeneous depositions can also occur at the gas injectors. Instead of a dilutent 

gas, the use of low pressures (0.1 to 1.0 ton) reduces gas phase nucleation. This 

process is commonly called LPCVD. 

Pressure sensor 

Quartz reactor tube 

Exhaust pump 

Gas outlet 

Gas inlet 	 3 zone furnace 

Figure 2.6 	One of the common LPCVD reactor geometries [Wolf, 1986]. 

Plasma Enhanced-CVD 

In many applications, it is necessary to deposit films at very low substrate 

temperatures. To accomodate these lower temperatures, an alternate energy source 

must be applied to the gaseous and/or adsorbed molecules. Plasma Enhanced CVD 

(PECVD) is a combination of a discharge process and low pressure chemical vapor 

deposition (LPCVD) in which highly reactive chemical species are generated from 

gaseous reactants by a glow discharge, 2.4, and interact to form a thin solid film 

product on the substrate [Levy, 1989]. 
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Gas injection ring 

Figure 2.7 	Parallel plate radial flow reactor [Wolf, 1986]. 

While photo-enhanced deposition has been experimentally demonstrated, the primary 

non-thermal energy source used to drive CVD reactors is the rf plasma [Campbell, 

1996]. 

A summary of the main CVD techniques is given below in table 2.1. 

Advantages Disadvantages 

APCVD Fast deposition, low temperature. Poor 	step 	coverage, 	particulate 
contamination. 

LPCVD Excellent 	purity 	and 	uniformity, High temperature, low deposition rate. 
conformal. 

PECVD Low temperature, fast deposition rate Chemical and particulate contamination 
and good step coverage. I 

Table 2.1 	Summary of CVD techniques. 
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Deposition method Typical deposition rates Comments 

Sputtering ~!1 .67nmIs for Al. Ion damage to substrate, better step 

coverage than evaporated film, 

entrapment of small quantity of 

sputtering gas (poor optical quality 

films), good adherence of film to 

substrate. 

Evaporation 0.1nmls to 0.75nmJs for SiQ, and Extremely directional vapor flux, pure 

7nni/s to 23nm/s for Al. films (high vacuum 10 	to 106 ton), poor 

thickness uniformity at high evaporation 

rates. 

ECR-PECVD 0.1 67nm/s to 0.58nm/s for SiO Excellent thickness uniformities and step 

coverage, 	film 	stoichemistry 	easily 

controlled. 

Table 2.2 	Summary of our "in-house" film deposition methods. 

2.6.2 Electron Cyclotron Resonance 

A subset of the PECVD type reactor is Electron Cyclotron Resonance-PECVD, figure 

2.9. This type of reactor permits the deposition of thin films at much lower 

temperatures than with the standard PECVD reactor. The density of ionized species in 

the plasma can be greatly increased by application of a magnetic field. The ECR-

PECVD reactor forms a plasma using a perpendicular static magnetic field along with 

an alternating electric field, E0coscot. The electric field increases the magnitude of the 

electrons velocity, and the magnetic field changes the direction of the velocity vector. 

As the electron moves to the left, figure 2.8, the magnetic field deflects the electron 

toward the top of the page. If the frequency of oscillation is set to the electron 

cyclotron resonance frequency, equation 4, the deflection caused by the magnetic 

field is just enough to turn the electron by 180 degrees as the electric field changes 

sign. This resonance enables the electrons to gain much more energy than if no 

magnetic field were applied. Although ECR enables the plasma to be generated at 

very low temperatures, the actual ECR electron temperature is about 20,000K. 
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qB 
w = 	= 	 (4) [Campbell, 1996] 

M 

Where w is the angular frequency of the electron, q is the electronic charge, m is the 

electron mass and B is the magnetic flux density. 

RF power 

E 

Magnets 

N Bin N 
qv x B 

. 	/Electron path 
Vo'-------- 	in ECR plasma 

Figure 2.8 	Electron cyclotron resonance. Where q is the electronic charge, v is the 
velocity vector of the electron in a magnetic field of flux density B and m 
is the mass of an electron. 

2.6.3 ECR-PECVD 

The ECR-PECVD reactor, figure 2.9, consists of two chambers. The first chamber is 

where the ECR plasma is formed, section 2.4. The second chamber, which contains 

the wafer(s), is where the reaction takes place. A shower ring directly above the table 

introduces the Sill4JHe mixture. The intense degree of ionization which occurs in the 

plasma chamber, is located away from the wafers. The ionized gasses are then, fluid 

dynamically, transported to the plenum chamber where the silane is introduced and 

the reaction takes place on the wafer surface [Sherman, 1987]. Magnet coils, placed 

underneath the wafer can also shape the extracted plasma into either a cusp shape, for 

good uniformity, or mirror shape, for filling high aspect ratios. A planar or 

compacted deposit can be obtained by introducing argon into the reaction chamber 

and providing rf power (typically 180 to 200W) to accelerate the argon ions into the 

depositing film causing compaction or even sputtering (if the RF power is high 

enough). 
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Figure 2.9 	Schematic of an ECR-PECVD reactor. 

2.7 Photolithography 

The films deposited, as described in the previous sections, usually require patterning. 

All patterning processes are preceded by a photolithographic stage which involves the 

printing of an image onto a photoresist layer and removal, by some means, of the 

unwanted areas of the thin film. Photoresists for microelectronics are typically spun, 

sprayed, roller coated, or vapor deposited onto the substrate. 

2.7.1 Photoresists 

The primary requirement of the photoresist is that it should be capable of resolving 

the minimum feature size required. The resist should also have a high sensitivity, 

since this reduces the required exposure and good adhesion to the underlying film 

[Einspruch, 1981], [Ghandi, 1983]. 

Photoresists can be broadly divided into two classes - positive and negative resists. 

Positive photoresists are usually made up from a photosensitive dissolution inhibitor, 
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novolac resin and a solvent. The dissolution inhibitor prevents the novolac resin from 

dissolving in the alkaline developer. Following exposure to light the dissolution 

inhibitor concentration is reduced in the selected areas, which makes these areas more 

soluble in the developer. Negative resist, on the other hand, become less soluble in the 

areas exposed to light due to cross-linking in the base polymer. Negative resists are 

not in widespread use today due to their limiting characteristics. The main reason is 

that the resist suffers from swelling during the develop cycle. Removal of positive 

resists is relatively easy by means of a chemical solvent such as acetone. 

Unfortunately, negative resists are much harder to remove. One method of removal is 

to boil the wafers in concentrated sulfuric acid for about 20 minutes, followed by 

mechanical agitation [Ghandi, 1983]. Prior to coating the silicon substrate with the 

organic photoresist an adhesion promoter, Hexa-Methyl-Di-Silazane (HAMS) is 

applied. The HMIDS molecules have two ends, one organic and the other inorganic. 

Upon spin coating (or vapor priming) the inorganic end of the molecule bonds to the 

silicon wafer, while the organic end is exposed, forming a monolayer with which the 

photoresist can easily bond. 

2.7.2 Printing 

The printing process consists of imaging a patterned mask3  onto the photoresist 

coated substrate. The photoresist layers are usually exposed by means of a collimated 

UV light source shadowed by a photomask. The most common methods of printing, 

described below all have their own strengths and weaknesses in terms of 

performance. The four main parameters which affect the performance of a printer are 

resolution, level to level alignment accuracy, throughput and depth of focus. 

Contact and proximity printing 

In contact and proximity printing, the mask is pressed against or brought close to the 

wafer. When the distance between the mask and the wafer is less than the wavelength 

of the exposing light diffraction effects may be ignored. Contact printing, therefore, 

A typical photomask may consist of a quartz plate, which is transparent to the exposing light, with a 
patterned opaque layer such as chromium. 
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offers a greater resolution (providing there is uniform contact between the wafer and 

mask) than proximity printing, which has a wafer mask separation of 20 to 50pm. 

Unfortunately, contact between the mask and the wafer usually produces defects 

which limit the useful lifetime of the mask. 

Projection printing or step-and-repeat 

In projection printing, the image of the mask is projected onto the wafer through a 

high resolution optical lens, whose de-magnification can vary between 1 and 20 

times. The resolution of projection printing technique is comparable to that of 

proximity printing, but it also offers greater flexibility of wafer handling. Because the 

wafer is printed in a step and repeat process, the throughput of the wafers can be very 

low. 

Other types (e-beam and X-ra 

One limitation of the printers described above is the lack of resolution due to 

diffraction of the exposing light. One way around this is to use shorter wavelength 

sources, indeed this has been done with deep UV systems. The diffraction effects can 

be further reduced by use of non-optical printing methods such as electron beam and 

X-ray techniques. 

2.8 	Layer registration 

Each level of an integrated circuit must be accurately positioned on the surface of the 

substrate/wafer. For this to occur, each level must be aligned to the previous, 

underlying, level. 

2.8.1 Global & local alignment 

Wafer alignment, in a stepper, can be performed both globally and locally. Global 

alignment performs rotational and translational alignment of the entire wafer [Wolf, 
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1986]. Following this "global alignment" the wafer is stepped and exposed (or blind 

stepped). Local alignment provides alignment to a target within the particular die 

which is in position for immediate exposure [Wolf, 19861. Note: Local alignment is 

always preceded by global alignment. 

Figure 2.10 	Target for automatic alignment. 

In one type of automatic alignment procedure, figure 2.10, two rectangular patterns 

are set at 450,  to the directions of the stage motions on the wafer. Two corresponding 

rectangular patterns are located on the reticle and illuminated by a He-Ne laser. The 

diffraction pattern produced by the edge of these marks is then detected by 

photosensors in the stepper, and the mask movement automatically adjusted until the 

response, from the photosensors, is equal, indicating a good geometrical alignment. 

Of course a good geometrical alignment does not necessarily mean that the layers will 

be perfectly aligned (registered) one on top of the other. 

There are two main causes of mis-registration during printing. They are as follows; 

variations in line sizes across a mask (not significant when used in a reduction 

stepper). The resist image on wafers may vary due to non-uniformities in resist 

thickness, variations in develop cycle etc. 

uncertainty in aligning the image, summarized in figure 2.11. 

The five types of image mis-alignment are [Wolf, 1986]; translation, rotation, 
magnification, trapezoidal and distortion. 
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(a) 
	

(b) 
	

(c) 

Ei 
(d) 	 (e) 

Figure 2.11 	illustration of the five types of image mis-alignment. (a) Translation, (b) rotation, 
magnification, (d) trapezoidal and (e) distortion. 

2.8.2 Registration accuracy of the optimetrix 8600 series 5X stepper 

We are ultimately aiming to produce spacer features which would be positioned 

between the pixel mirrors of the SLM. The main reasons for deciding to print the 

spacers on top of the mirrors, were that; 

the sputtered aluminum, which is patterned to form the mirror/electrodes (chapter 

3), has to fill the vias and for this reason the mirrors are 1-2pm in height and 

the lateral spacing between the mirrors is around 1.6 to 3j.im, depending on the 

mirror layer reticle used and the etch process. 

Obviously these high aspect ratio inter-pixel gaps place severe restrictions on any 

subsequent post-processing. Even without the problem of the 1-2j.im high mirrors, 

there are limitations on the aspect ratio of the patterned photoresist layer, 4.3. One 

way around this is to produce mirrors whose top surface is flush with the surrounding 

oxide. This maybe achieved with the damascene process or via polishing/thin mirrors, 

3.2. From section 5.2, we can see that thin film growth rates vary with substrate 

material. If the cell spacing is set from the spacer on the surrounding oxide layer, it 
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must not be permitted to overlap onto the Al mirrors, even if the mirrors are "flush" 

with the oxide. To allow for any misregistration of the projected image, during 

printing, the registration uncertainty must be known and accounted for in the spacer 

layer design. 

Image re2istration uncertainty 

This registration uncertainty places even more restrictions of the geometry on the 

spacer layer. The best alignment which can be achieved using the Optimetrix 8600 

series 5X stepper is about +/-0.5jtm, but to account for the other factors such as 

magnification, rotation etc. (2.6.1) this value should be doubled to +/-1pm 

[Stevenson, 1998]. 
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2.9 Planarization 

As the number of metalization levels in integrated circuits increases the topography of 

the top surface become more uneven. The depth of focus limitations of steppers, 

requires that the layers are made planar'. Obviously, the larger the planarization 

distance, the better the planarity of the layer. Typically, local planarization (<lOjtm) 

is a result of smoothing and filling, figure 2.12, whereas planarization beyond 10tm 

is regarded as global planarization [Cook, 1995]. The conventional planarization 

techniques, described in the following sections, only provide planarization in the 

micron range. Chemical Mechanical Polishing (CMP), on the other hand, can provide 

planarization in the millimeter range [Cook, 1995], section 2.9.2. 

 

No planarization Local planarization 

Smoothing 	 Global planarization 

Figure 2.12 
	

Planarization capability. 

2.9.1 Local planarization techniques 

Some of the more common local planarization techniques are discussed below. 

LCoS SLM' s require post-processing planarization for different reasons, see section 3.1. 

48 



Chapter 2. A Review of Relevant Microfabrication Techniques. 

Spin-on technkjues 

A liquid material is spun onto a wafer in a spin coater and cured by heating, typically 

on a hot plate. Materials used include polymers, such as polyimides and photoresists 

and spin-on glass (SOG). Before curing the material is allowed to level out to provide 

some degree of planarization. SOG materials are well known for their ability to fill 

small gaps. 

Thermal flow 

Phosphosilicate glass (PSG) is reflowed at high temperatures (900-1100°C) to achieve 

planarization. The softening point of the glass may be reduced if it is suitably doped 

with boron, to produce borophosphosilicate glass (BPSG), which softens at up to 

300°C lower than that of PSG. 

Bias-sputtered dielectrics 

The SiO2  dielectric layer deposition can be modified such that an rf bias causes 

simultaneous resputtering during deposition, see section 2.4.4. The substrate is biased 

so that back-sputtering is facilitated on the surface. This sputter deposition and back-

sputter etching occur simultaneously across the sample. Backsputtering is asymmetric 

and is favored at sharp corners and edges in such a manner that, when optimized, it 

gives excellent step coverage of the deposit, ending up as a flat surface. Bias sputter 

deposition rates are, however, low. Also ion damage may occur during these 

depositions. 

Etch back 

A very thick layer dielectric layer (-- 3 times the original step height) is deposited by 

CVD and as the thickness of this layer increases the surface becomes more planar. 

The surface is then coated with a thick layer of photoresist, which covers all the steps 

leaving a planar surface. The photoresist and dielectric layers are then etched back to 
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the desired thickness in a planarizing anisotropic etch, such as RIE or plasma etching, 

in a suitable chemistry. The dielectric and phototresist layer should have similar etch 

rates to ensure a planar surface. 

Oxide spacer approach 

Phosphosilicate glass (PSG) is deposited over metal and then anisotropically etched. 

This leaves portions of unetched PSG by the vertical sides of the conductor, called 

oxide spacers. These spacers are also formed at the bottom of steep steps. After this a 

second layer of PSG is confonnally deposited, which provides a semiplanarized 

topology. 

Self-aligned silica spacer particle method 

A layer of silica spacer particles with a diameter equal to that of the height of the 

patterned metal layer, is deposited onto the patterned substrate. The particles fill the 

gaps between the metal lines, leveling the substrate for a subsequent P-TEOS Si02  

deposition and SOG coat [Ohkura, 1995]. 

2.9.2 Global planarization - Chemical Mechanical Polishing 

Chemical Mechanical Polishing/Planarization (CMP), figure 2.13, is an extremely 

complicated process involving removal of the sacrificial dielectric layer material, to 

obtain a high degree of planarity, by both mechanical and chemical means. The 

abrasive slurry, used in the polishing process, is dispersed in an alkaline solution. The 

polishing process is essentially the result of a combination of material removal by 

direct (abrasive) contact of the slurry particles and by chemical reactions mediated by 

the local conditions of contact, that is, elevated pressure and temperature. The 

material removal rate depends on various parameters, such as polishing pressure, 

speed, slurry chemistry and temperature, pad type and condition, film material and 

topology and materials under layer being polished [Islamraja, 1995], [Ohtani, 1995], 

[Wang, 1995]. CMP is the only method, to date, of achieving global planrization. 
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Planarity is measured over distances ranging from micrometers to millimeters and is a 

gauge of die flatness. Uniformity is measured over milimeters or centimeters and is a 

gauge of film thickness variation across the wafer. Thus a wafer can be planar but not 

uniform and vice versa. The recipe for good planarity requires opposing tool settings 

and pad characteristics than are needed for good uniformity. For example, planarity 

requires a hard pad and low pressure to prevent the pad from conforming to the 

device features and thus polish low spots as well as high. Conversely, uniformity 

requires a soft pad and high pressure to conform to variations of the wafer surface. 

Most device manufacturers now compromise by using a stacked pad consisting of a 

hard pad with an underlying soft pad [DeJule, 19961. 

Slurry 

Polish pad 

Figure 2.13 	Key tooling elements of CMP equipment, where the table rotates as indicated. 

The CMP process 

Abrasives in the slurry play the very important role of transferring mechanical energy 

to the surface being polished. The slurry provides both the chemical action through 

the solution chemistry and the mechanical action through the abrasives. The most 

commonly used abrasives include silicon dioxide, alumina and cerium oxide. The 

most frequently referenced expression for polish rate is the Preston equation [Preston, 

1927], equation 5. 
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=K (( 	 (5) 
At '*AAAt) 

Where AHIAt is the removal rate of the material, L/A is the pressure between the pad 

and polished surface and As/At is the relative velocity of the polish pad with respect 

to the surface and K is the Preston coefficient. 

The concepts discussed next are broadly applicable to all types of CMP. 

Models of abrasion 

The main difference between grinding and polishing is the abrasive size, table 2.3. 

Polishing (as opposed to microgrinding) may occur by either Hertzian indentation or 

by fluid-based wear [Steigerwald, 1997]. During Hertzian indentation, the abrasives 

are dragged across the surface and act as cutting tools. During fluid based wear, 

however, abrasive particles are not dragged across the surface but rather impinge on 

the surface at some velocity and angle. As particles collide with the surface they 

impart energy to the surface resulting in strain, weakened bonds, and eventually 

material removal. There is still some debate whether the polishing occurs as a result 

of Hertzian indentation or fluid-based wear. The polishing mode and role of the fluid 

layer is poorly understood at this point in time. 

Abrasion mode Mass removal via Scale of mass removal 

Grinding Crack propagation fracture Macroscopic particles 

(l.tm) 

Ductile grinding2  Crack initiation plastic flow, Colloidal particles (nn) 
densification 

Polishing Bond breakage chemical Atomic clusters 
reaction (Angstoms) 

i arne z.i 	summary of abrasion modes from Cook, 1995]. 

2  Ductile grinding refers to the plastic deformation of t 	during polishing. 
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Role of chemistry in CMP 

Chemistry plays a significant role in the CMP process. Each material has a different 

chemistry as far as chemical interactions with the slurry are concerned. Slurry 

chemicals affect primarily the chemical components, e.g., etch rate. However, 

chemical reactions modify the mechanical properties of the film, pad, and abrasive 

surface, which in turn affects the mechanical component. 

Some of the variables, which affect the polishing process, are; 

the chemical composition of the surface being polished, 

formation of the passivating layer at the solid surface caused by the oxidizer, 

dissolution of the solid surface or the mechanically abraded solid fragments or 

atoms/molecules of the original passivating layer, 

the isoelectric point related to abrasive and solid surface charge layers, 

effective removal or re-deposition of the polished material etc. are all determined 

by chemical interactions induced by the chemicals in the slurry and the solid 

surface. 

In general, metal CMP slurries are more chemically active than oxide CMP slurries 

[Steigerwald, 1997]. 

Slurry contamination 

KOH based coloidal silica slurry is a major source of silica particles, and 

agglomeration of the silica particles during CMP is known to be a source of particles. 

Particles generated during CMP can either adhere to or become embedded into the 

wafer surface. The adhesion forces become increasingly significant for fine particles. 

The principle interactions that are encountered in the particle adhesion include 

molecular adhesion, electrostatic interactions, liquid bridges, double layer repulsion 

and chemical bonds such as polar and metallic bonds. Chemical bonding of the silica 
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particles to the oxide surface occurs when it dehydrates. Once this occurs, the 

bonding is so strong that conventional chemical and mechanical cleaning of the 

surface is ineffective [Roy, 1995]. 

A low concentration hydrofluoric acid (HF) can be sprayed onto the wafer, during 

scrubbing, to remove a thin oxide layer. This not only removes the adhered and 

mechanically embedded particles but also the metallic and ionic contaminants. 

2.10 Layer patterning 

Fabrication of circuits and/or structures on silicon substrates requires layers to be 

patterned into the desired geometries. There are essentially four methods of patterning 

layers, which will be described in this section. 

2.10.1 	Chemical etching 

Chemical etching involves the dissolution of a material in a solvent as well, as the 

conversion of the material into a soluble compound which can be disolved by the 

etching medium. Chemical etching can be divided into wet and dry etching 

techniques. Wet etching is isotropic whereas dry etching techniques such as Reactive 

Ion Etching (RIE), which combines the effects of energetic species and ion 

bombardment, are anisotropic. The main advantage of chemical etching, over 

techniques such as lift-off, is the resulting square profiles of the patterned features 

[Wolf, 1986]. 

Simplified equations for chemical etching of Al (6) and silicon dioxide (7) are given 

by 

Al+ 30 	- 	A1C13 	(6) 

SiO2  + 4F 	- 	SiF4  + 02 	(7) 
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2.10.2 	Lift-off 

Lift-off was first developed in the late 1960's with the advent of e-beam lithography. 

The most important part of lift-off is the overhang in the photoresist which is 

essential for maintaining the discontinuity in the patterned film figure 2.14. E-beam 

lithography utilizes the fact that electron scattering in the resist and backscattering 

from the substrate produces a pear shaped energy absorption profile in the resist 

[Collins, 1982] in which an undercut profile results after developing. 

The absorption profile of conventional optical (UV) lithography differs from that of 

e-beam lithography in that most of the energy is absorbed at the top surface of the 

photoresist layer. Obviously this type of exposure will not provide the overhang, in 

the photoresist layer, required for the lift-off process. A way of achieving this 

overhang, with UV exposure, is to use multi-layers of photoresist, described later. 

The diagram below, in figure 2.14, shows how chemical etching differs from liftoff. 

In chemical etching the material to be patterned, in our case oxide, is deposited, 

followed by the photoresist. The photoresist layer is then patterned and developed 

prior to either isotropic wet etching or anisotropic dry etching of the material. 

Patterning by liftoff differs in that the photoresist layer is put down first. Again the 

resist is patterned and developed, but prior to developing some form of surface 

modification is carried out to achieve the liftoff profile. The material (oxide or metal) 

is then blanket deposited over the patterned photoresist layer, followed by removal of 

the photoresist layer and unwanted material. 
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Photoresist 
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Figure 2.14 
	

(a)-(c) Chemical etching and (d)-(g) liftoff. 

Multi-layer resists for lift-off 

The main advantage of multilayer resist schemes is the higher resolution which is 

possible. Planarization is necessary in photolithography for printing at diffraction 

limited dimensions .in thick resist films. Organic and inorganic processing layers 

beneath a thin imaging layer was invented to surmount step coverage problems. Two 

or more layers of photoresist with different solubility's in the developer have been 

used to provide the lift-off profile. Unfortunately it is difficult to spin coat two layers 

without excessive mixing of the PRs at the interface. This mixing occurs when the 

first layer is re-dissolved by the solvent in the second layer [Hatzakis, 1980. 
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Surface modification for lift-off 

Chlorobenzene, or similar compounds, have been used in industry, for many years, to 

provide a lift-off profile in the PR and to also increase the resolution. The softbaked 

photoresist is either soaked in chlorobenzene before or after printing. The depth of the 

modified layer depends on the soak time and temperature and the resist pre-bake 

cycle [Collins, 19821. Chlorobenzene works by removing the residual solvent and low 

molecular weight resin, thereby reducing the solubility of the modified layer in the 

developer solution [Hatzakis, 1980], [Halverson, 1982]. 

2.10.3 	Damascene 

The Damascene process derives its name from the practice used by the ancient 

artisans of Damascus for patterning metal inlays [Singer, 1997]. This process involves 

patterning a layer such that it is flush with the surrounding dielectric. This method is 

useful for patterning materials which are difficult to etch chemically, such as copper. 

In this method, the dielectric layer is etched, instead of the material to be patterned. 

The material is then blanket deposited and polished back to the dielectic layer. This is 

explained in more detail in section 3.14. 

Etch substrate 	Blanket deposition Polish back to substrate 

Figure 2.15 	The interlayer dielectric is etched with the pattern 
of the metal, followed by a blanket deposition of 
metal and polishing back to the substrate. 

Problems exist with this technique which will be described in detail in chapter 3. 
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2.10.4 	Plating or selective deposition 

This method differs from the conventional subtractive etch methods, described above, 

in that it is totally additive. A common deposition method is selective CVD 

[Amazawa, 1998] other methods include the use of an electron beam to alter the 

nature of a polymer film so that nucleation of a subsequent evaporated metal layer 

occurs only in the desired regions. 
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SLM Backplane Post-processing. 

3.1 Introduction 

Probably the most important issues which we have found to affect the optical 

performance of LCoS devices are the liquid crystal thickness uniformity, backplane 

warpage and LC alignment. In this section I will discuss the custom fabrication 

techniques, developed in the past. These improvements can be broadly divided into 

two areas; (1) increasing the pixel fill factor for increased optical efficiency and 

improved LC alignment, and (2) introducing a light blocking layer to improve the 

stability of the PLC, by reducing light induced charge leakage in the silicon. I will 

then go on to discuss the problems which still exist with the current mirror forming 

processes. An alternative method of fabricating minor electrodes will be presented 

and a novel inter-minor trench filling technique discussed. Most of the work 

discussed on thin minor processing was carried out, approximately equally, by the 

author and D.W. Calton. 

3.2 	Planarized SLM 

The early PLC/VLSI SLM's were characterized by low pixel fill factors' and very 

poor optical quality mirrors [O'Hara, 1993, 1994 and 19951. The only way of 

drastically increasing the fill factor of the pixel minors is to fabricate the pixel minor 

over the circuitry using a multi-level metalization technique. By depositing an 

intermediate layer of dielectric material, conducting minor-electrodes can be 

Defined as the pixel area divided by the pixel pitch squared. 
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deposited over the circuitry, figure 3.1. Various dielectric materials have been used, 

but we have found that polished silicon dioxide layer produces the best results 

[O'Hara, 1996]. This polished silicon dioxide has the advantage of being optically 

flat. A problem which affected the minor optical quality was hillock formation. This 

well known phenomenon [O'Hara, 1993], [Pico, 1993] occurs during the heating and 

cooling cycle of the sintering2  process. 

Irregular surface depressions, on the LC bounding substrates, locally alter the 

alignment of the LC on the bounding surfaces, required for a good SSFLC device. 

They disturb the formation of parallel smectic planes, vary the surface molecular tilt 

angle and randomly induce defects from the device ideal. Ideally, the surface energy 

of the LC should be uniform across the bounding plates of the PLC device. If large 

enough, any perturbation from this uniformity will unduly affect the molecular 

alignment in the bulk PLC material. Therefore, minor quality will directly determine 

structure and may undermine any post-filling PLC cell treatment techniques 

[Gourlay, 1994]. 

The relatively low melting point of the aluminum (660°C) therefore limits the 

interlayer dielectric material to one which can be deposited at low 

temperatures(<100°C). It has been reported that hillocks begin to form in the 

aluminum at temperatures of —200-300°C [Ross, 1999]. Fortunately ECR-PECVD 

silicon dioxide, section 2.4.4, offered the characteristics which made it the ideal 

interlayer dielectric material for this application. A compacted form of the silicon 

dioxide was deposited and polished by Chemical Mechanical Polishing (CMP)3  to 

provide a high quality planar surface for the subsequent pixel minors. Although a 

local surface variation of less than lOnm rms had been quoted [O'Hara, 1995] the 

author remains sceptical as to the validity of this figure due to the measurement 

technique used. 

2 
 Sintering is carried out to provide a good adhesion of the metal to the dielectric layer. 

Early CMP was performed using the Logitech PS2000 polisher rather than the Presi 460 now used. 

Dektak 8000. 
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(a) 
	

(b) 

Figure 3.1 	(a) Non-planar 512012 pixel and (b) planarized 512012. 
Courtesy of A. O'Hara. 

3.3 	Light blocking layer 

The light blocking layer has been developed [O'Hara, 1995], [Huang, 1996] to act as 

a light shield to prevent light reaching the silicon substrate. The gap between the pixel 

mirrors of the 256x256 pixel SLM [Burns, 1995] and 512x512 pixel SLM are 

currently 3pm and 1.6tm, depending on the mask set used to pattern the mirrors. 

Obviously, with the underlying dielectric being silicon dioxide, which is optically 

transparent, there is a danger that incident photons will reach the underlying pixel 

circuitry of the device. This can then lead to charge leakage in DRAM devices (1.1), 

and the potentially destructive situation of latchup5. To overcome this problem 

additional processing steps require specially designed masks, figure 3.2. These are 

incorporated into the post-processing procedure in which a metal or black matrix 

layer is used to block the gap between the pixels. 

The formation of lateral and vertical bipolar, parasitic transistors is intrinsic to the bulk CMOS process. 
These transistors contribute to the effect known as "latchup", which is undoubtedly the most destructive 
event that can take place in CMOS circuitry (during device operation). 
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Light blocking layer 

L 

Figure 3.2 	 An additional metallization level is used to shield the underlying 
CMOS circuitry from the incident light through the gap between 
the pixel mirrors. 

An attempt to characterize these layers was made by M. Sussiek, of the Department 

of Electrical Engineering, University of Edinburgh. Test structures consisting of two 

metal layers representing the light blocking and mirror layers were deposited and 

patterned onto glass wafers. The metal layers were separated by a layer of ECR oxide, 

which had been planarized by CMP. It is expected that light propagation in the "light 

guiding" structure should not be supported when the thickness is less than half the 

wavelength of the incident light. The results of this experiment indicated that the 

Huygens-Fresnel diffraction dominated, but his expermental results could not dismiss 

the mode propagation between the metal layers in the planarized oxide [Sussiek, 

1998]. 

3.4 	Damascene process 

The next logical progression from planarization of the silicon backplane was to 

introduce processes which would enable us to produce mirrors which were flush with 

the surrounding oxide. This would provide a substrate which is more conducive to LC 

and in particular SSFLC alignment, as described earlier. In the conventional multi-

layer metallization process used to fabricate mirrors on the planarized device, the via 

and final metal layer are deposited simultaneously in aluminum. To ensure that there 

is an electrical contact between the vias and mirrors layer, a 1-2tm thick layer of 

aluminum is sputter deposited. This meant that the mirror layer formed was 

excessively high. This unfortunate situation meant that the liquid crystal flow front 

encountered very large obstacles (gaps between pixel mirrors) during cell filling, 

which lead to capillary pinning [Bodammer, 1998] and may have contributed to the 
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flow defects, evident from the work carried out by W. Zheng [1998]. Of course, these 

large, high aspect ratio steps, also have huge implications for the spacer layers 

discussed in chapter 4.0. It was therefore desirable to develop a method of forming a 

mirror layer which was flush with the interlayer dielectric, i.e., with no large steps. A 

method of patterning the aluminum pixel mirrors is currently being investigated by 

D.W. Calton using the damascene process, section 2.6.3, for this purpose. 

Technique Description Comments 

Planarization Optically flat mirrors produced by Si02  Excellent results achieved, under 
CMP. SCIOS6  project. 

Light shielding Intermediate layer of metallization. DRAM pixels.Under SLMIDIS 
project. 

Damascene Aluminum CMP to produce mirrors which A long way from implementation. 
are flush with the substrate. 

Table 3.1 	 Summary of recent performance enhancing processes. 

3.4.1 Issues hindering the implementation of the Damascene process 

Despite the report of successful fabrication of DRAM memory devices using 

aluminum damascene structures, widespread adoption of aluminum damascene 

processes is not expected due to the immaturity of aluminum CUT processes and the 

rapid transition to copper damascene structures [Peters, 19981. The major problems 

with aluminum CMP, figure 3.3, are; 

the severe dishing which tends to be worse on the large area, aluminum pixel 

mirrors, 

erosion of the oxide in the array and 

poor surface finish of the polished aluminum. 

The poor finish of the polished aluminum comes about from scratching of the mirror 

surface, figure 3.4, which reduces the reflectivity of the mirrors. The culprit of some 

of the larger scratches was thought to be large grains of silicon dioxide which had 

Scottish Collaborative Initiative in Optoelectronic Sciences 
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been dislodged from the polish pad. In fact, although pure aluminum sputter targets 

were available, the aluminum targets which had been used in the past by the EMIF, 

had contained about 1 atomic percent silicon dioxide, and this may have been a 

significant source of the grains [Calton, 1998]. 

Pixel 

He 

Figure 3.3 	Schematic illustration of dishing, pitting and erosion. 

Damascened 176x176 pixel .test cells filled with FLC by Zheng et al. although 

suffering from the effects mentioned above, exhibited a surprisingly uniform 

alignment texture. As a more achievable alternative we have investigated the use of 

via polishing and thin mirrors, which will be discussed next. The initial polishing was 

performed on a Logitech 2000 polisher by the author and D.W. Calton, and later it 

was performed by D.W. Calton on the Presi 460 system. All of the investigations into 

the evaporated aluminum mirrors were performed by the author. 
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(a) 
	

(b) 

Figure 3.4 	Polished 176x176 mirror and bond pads. Polishing aluminum by CUT introduces 
(a) scratching and pitting of the mirror surface and (b) dishing (dark patches in the 
center of the bond pads) of the individual mirrors as well as erosion (not shown) of 
the array. Courtesy of D. W. Calton. 

Dishing, figure 3.3, during CMP is the tendency to remove metal in preference to the 

surrounding harder dielectric. The polisher removes the soft metal and combined with 

pad deformation, the metal in the middle of a feature is preferentially removed. 

Dishing is defined as the difference in height between the surface of the metal at the 

center of the feature, which is the lowest point of the dish, and the point where the 

interlayer dielectric levels off, at the edge of the feature. Erosion, on the other hand, 

comes from the tendency of the polisher to remove the dielectric during metal 

polishing, i.e., the interlayer dielectric has a non-zero polish rate. This effect is more 

pronounced in regions with densely packed narrow regions of dielectric, such as 

between the pixel mirrors in a damascened SLM. It is defined as the difference in the 

interlayer dielectric thickness before and after polishing. Other types of polishing 

defects are sumarized below in table 3.2. 
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Oxide CMP defect types Metal CMP defect types 

Residual 	slurry 	following 	post- Puddles 
CMP cleans 

Surface 	voids 	from 	dislodged Surface voids 
particles 	or weak 	points 	in 	the 
oxide 

Microscratches from particles 	or Residual slurry 
debris 

Surface particles Surface particles 

Metal-filled microscratches and 

Cored metal plugs [SCI, 1997]. 

Table 3.2 	Other types of oxide and metal CMP defects. 

3.5 	The thin mirror process 

As most metals in standard fabrication processes are alloyed with silicon and copper 

to help prevent electromigration7  and spiking8, the texture of the aluminum layers is 

somewhat grainy and not as reflective as a more pure metal electrode would be. The 

need exists for metallization of a higher optical quality than that available through 

normal wafer fabrication processing. A reduced grain size, freedom from hillocks and 

high reflectivity are all required. There are techniques available to achieve these, but 

not necessarily pursued in the industry at large as optical quality is not of prime 

importance. From the standard process flow described next, it quickly becomes clear 

why the method of depositing mirrors used is not desirable. The processed wafers 

received from the foundry are usually coated in a passivation layer, which may have a 

non-uniform thickness over the wafer. For this reason the via contacts are generally 

over etched to ensure that they have all cut through the passivation layer. There are 

generally two methods of forming the metal via plugs; selected CVD or blanket 

deposition and etching. As we do not have the capability of depositing metal by CYD 

at Edinburgh we use the latter method. 

Electromigration describes the movement of atoms in a metallic conductor induced by the passage of a direct 
current. 

8 Spiking, or pitting, is a process of mass transport across an interface that takes place in the absence of an 
applied bias, and results in metal penetration deep into the junction. 
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The vias, which now vary in aspect ratio from die to die, are filled by blanket 

deposition of a sputtered aluminum layer, which also serves as the top mirror 

electrode layer when patterned. Electrodes formed in this way have the major 

disadvantage of a very large step height, which leads to capillary pinning during LC 

cell filling [Bodammer, 1998] and possibly flow defects. To reduce these effects it 

was proposed that following the blanket deposition of the final metal layer, instead of 

patterning the mirrors, the metal is polished back to the substrate, by CMP, table 3.5, 

such that the only metal remaining is in the vias, and it is flush with the substrate (i.e., 

damascened via contacts), figure 3.5. This then enables us to deposit a much thinner 

layer of aluminum, which has not been damaged by the polishing process. 

The polished vias, like the polished mirrors still suffered from dishing, but with the 

vias being only 2-31im in diameter, as opposed to tens of microns in the case of the 

mirrors, the dishing was much less severe. Since this work was carried out the author 

has discovered that a group at IBM have published a paper describing their use of 

polished tungsten via plugs followed by thin mirror deposition on their NLCoS 

SLM's [Colgan, 1998]. However due to the higher resistivity of W compared to Al 

(pw=7-8tcm and pA1=3-4J.Lcm respectively) and problems that arise from the 

W/Al interfaces, there is now an emphasis on replacing tungsten plugs with aluminum 

alloys. 

The final mirror layer deposition method need not be limited to sputtering, as it has 

been in the past. Indeed deposition by evaporation, 2.1.1, produces purer and hence 

higher optical quality films than sputtering [Levinstien, 1949]. The surface roughness 

of aluminum films varies with sputter conditions and film thickness [Lee, 1996], 

[Nagata, 1995]. The aluminum grain size, which affects the reflectivity of the layer, 

may be reduced by limiting the film thickness [Colgan, 1998]. Also as a general rule 

an evaporated metal film will be more pure and less granular the more rapid its 

formation [Holland, 1961]. The reflectivity of an aluminum film can be related to its 

surface roughness by equation 8. 
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(4\ 2 

R oc 	 (8) [Campbell, 1996] 

if X>>. 

Where R is the reflectivity of the surface, cy is .  the rms roughness and X is the 

wavelength of the incident light. 

- 	I 	 - 

(1) 	 (2a) 	 - 

Pattern vias and blanket deposit aluminum. 	Traditionally, the minors are patterned into M3. 

(2b)  

Polish aluminum back to oxide 

(3) 	 - 	1 

Evaporate thin aluminum mirror eletrode. 

Figure 3.5 	Via plug polishing. Note no additional masking steps 
are required as in the case of the damascened mirrors. 

Some advantages and disadvantages of sputtered and evaporated aluminum films 

deposited "in-house" are summarized in table 2.2. 

Wafers fOr thin-mirror process development 

Product SLM wafers were very expensive, so the development of this post-processing 

technique necessitated the use of dummy wafers processed in such a way that they 

mimic the surface of the actual SLM wafers. This was achieved as follows: 
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Four inch silicon wafers are coated with 0.5j.tm of compacted oxide, using the 

Oxford Plasma Technology ECR-PECVD reactor, table 3.3. 

Wafers coated with photoresist and patterned. 

Vias were then etched, in the usual manner, with the Plasmatherm PK2440 RIE 

(5.6.4). 

Resist de-scum in asher. 

. lj.tm of aluminum was sputter deposited, with the Baizers BAS 450 sputterer, 

onto the wafers filling the vias. A cross section of a via on the finished wafer is 

shown in figure 3.6. 

SiH4JHe flow rate 100sccm 

N20 flow rate 35sccm 

Ar flow rate 30sccm 

RF power, 180W 

Microwave power 350W 

Magnets 1& 2 current 120A, 65A 

Table 3.3 	Compacted oxide deposition recipe for Oxford plasma 
technology ECR-PECVD reactor. 

Figure 3.6 	Cross section of a 5tm wide aluminum filled via 
hole (—I gm deep), etched into an oxide layer. 
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3.5.1 Preliminary experiments into polished vias 

The early experiments, which we had carried out, into polished vias were performed 

using a Logitech PS2000 polishing system with reasonable results, figure 3.7 and 3.8. 

The recipe used in these early experiments is described in table 3.4. 
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Figure 3.7 

Figure 3.7 	Optical micrograph of a small section of polished 256x256 SRAM vias. The pitch 	V 

between the via plugs is 401tm. 

Figure 3.8 	SEM of an individual polished (Logitech system) aluminum 5jm wide via. Note 	
V 

the dishing. 	V 	 • 	 V 

The in-house CMP experiments, using a Logitech PS2000 polisher, for both metal 

and oxide polishing were, plagued by scratching, poor uniformity, planarity, and 

repeatability. The scratching issue was dealt with by ensuring that all consumables 

V 	 were thoroughly cleaned prior to use. The slurry autofeed components were cleaned 

and rinsed ensuring that no loose dried slurry agglomerates were present, which could 

find their way onto the polish pad. The polish pad, which clogs up during material 

removal, was conditioned before use. In our first attempt at polishing aluminum a 

new pad was used, see table 3.5. Little could be done regarding the uniformity and 

planarity of polishing with this system. Following polishing the wafer was given a 

post-polish buff by replacing the slurry feed with de-ionized (DI) water and allowing 

the platten to continue to rotate for —1 minute. The wafer was then removed and the 

wafer holder replaced by a stainless steel ring to clean the pad. The machine was 

allowed to run for about 1 hour, with a constant supply of DI water, to ensure that the 

70 



Chapter 3. 	SLM Backplane Post-processing. 

pad was thoroughly cleaned and that all potentially damaging particles were removed. 

The machine was then switched off and all surrounding surfaces wiped down with 

clean tissues to prevent the drying slurry from flaking off and contaminating the pad. 

Logitech PS2000 

Slurry -95g ammonium persuiphate (oxidizer) & 
lOOmI of ultra fine (0.05 gm) A1203 powder in 

500m1 DI water. 
Pad Rodel Politex Supreme 
Platten speed -70 rpm 
Wafer/pad 
pressure  

0.5 PSI 

Table 3.4 	 Aluminum polishing parameters. The polish duration is typically 0.5-1hr. 
depending on the initial film thickness. The wafer is inspected periodic-
ally, with increasing frequency as the oxide layer starts to "break" through 
the aluminum. Note: the slurry is continuously rotated in the auto-feed to 
prevent the particles from settling. 

Aluminum CMP on the Presi 460 polisher, preliminary results. 

Since these initial experiments the new Presi 460 polisher was aquired, at the end of 

this study, by the department, and the new machine provided much more controllable 

and reproducable results. Evaluation damascene mirror samples polished by Presi 

exhibited very little dishing, only 600 A over an 80tm bond pad, but the oxide in the 

high feature density regions of the arrays had eroded by about 0. 12.tm [Calton, 1998]. 

The vias should not have this problem as the feature density is very low. Also 

Kallingal et al. [1998], have recently aquired data which shows that the dishing of 

aluminum patterns increases in a non-linear manner with feature width. The polishing 

pad used, by Presi, was a rigid IC14009  stack from Rodel, rotated at low speed 

(-20rpm) and with light down force on the wafer (-0.5bar over a 4" wafer) [Calton, 

1998]. 

IC 1400 is a stacked pad composed of an IC 1000 (rigid microporous polyurethane material) and foam base. 
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3.5.2 Pre-deposition substrate cleaning 

The main disadvantages of evaporated aluminum films in this process was its poor 

adherence to the silicon dioxide substrate. To obtain the most durable and adherent 

coatings on Si02 the surface had to be free from contaminant films such as grease, 

absorbed water, etc. Various methods exist for removing gross surface contaminants, 

but they are not capable of freeing the substrate from mono-molecular films of water, 

and hydrocarbons [Holland, 1961]. On exposure to the atmosphere, even for a short 

period, the surfaces rapidly become dirty. Such surface contaminants condensing 

from the atmosphere, or remaining after chemical cleaning can be removed from 

substrates prior to deposition by raising the temperature of the substrate under 

vacuum, or by exposing the surface to bombardment of high velocity ions. The final 

mirror metallization should be capable of withstanding the spacer layer fabrication, 

described in chapter 5. As the final stage in the fabrication of the spacers involved 

ultrasonic scrubbing in solvents and DI waterfNeutracon (@60°C), it was decided to 

use this as a qualitative measure of the films adherence to the substrates. It was found 

that with no pre-deposition plasma clean, the aluminum film peeled away quite 

drastically, figure 3.9, whereas films deposited onto substrates held in the air plasma 

for> 20 minutes, prior to film deposition, exhibited much less damage. 
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Figure 3.9 	 500 A aluminum evaporated onto a silicon wafer and scrubbed for 10 
minutes (a) with no pre-deposition clean, (b) with 10 minutes pre-
deposition clean, and (c) with 20 minutes pre-deposition clean. In future 
an argon plasma may be used to obtain cleaner surfaces. 
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3.5.3 Thin mirror deposition and patterning 

As discussed at the start of the section, evaporated aluminum films produce extremely 

high optical quality mirrors and in fact evaporated aluminum films are frequently 

used for front surface mirror coatings [Kingslake, 1965]. Following the via plug 

formation and substrate cleaning the aluminum mirror layer was deposited. With the 

current polishing characteristics the vias and importantly, the local aligning marks 

were quite visible through the thin aluminum layer. It was important that these 

aligning marks remained visible even after the polishing optimization to reduce the 

dishing, erosion, scratching etc. Fortunately these defects, which had dissuaded the 

semiconductor industry from using polished aluminum, were likely to remain to an 

extent, in the larger features such as the aligning marks, figure 3.10. This produced an 

aligning target which had a contrast high enough for the stepper to detect. Following 

the blanket deposition of the aluminum, the wafer was coated with photoresist and 

patterned in the usual manner, described later. 

Figure 3.10 	 Damascened aluminum aligning mark with over- 
lying evaporated mirror layer aligning mark. 

3.5.4 Characteristics of thin mirrors deposited by evaporation 

For the purpose of cell filling (LC alignment) and spacer layer fabrication (4.0) the 

more flush the the mirror layer is with the substrate the better. Unfortunately, if the 

aluminum mirrors are too thin they will no longer be completely opaque to the 

indident light. This results in a loss in the reflectivity of the mirror as well as an 
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increase in the transmittance of the incident light into the underlying circuitry, 3.2. To 

determine the minimum acceptable thickness, in terms of light transmission/ 

reflection, various thicknesses of aluminum were evaporated onto glass slides. The 

relative film transmittances were measured with a 10mW HeNe laser and 

photodetector (type OSI5K Centronic), as illustrated in figure 3.11. We found that the 

minimum thickness of the evaporated aluminum mirrors, before the transmittance 

started to increase rapidly, figure 3.12, was -25-30nm, but ideally the mirrors should 

be around 60-70nm thick to be completely opaque at 632nm. This value was 

significantly less than the thickness suggested by Colgan et al., who stated a lower 

limit (dictated by agglomeration of the film during annealing) of 150nm [Colgan, 

19981. 

Figure 3.11 	The intensity of the incident HeNe on the sample is s& 
to a level which prevents the photodiode from saturating. 
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Figure 3.12 
	

Evaporated aluminum film transmittance vs. thickness 
(X=632nm),which is in close agreement with 
Walkenhorst [1941]. 
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Figure 3.13 
	

Sheet resistance of an evaporated aluminum film 
as measured by Veeco Inst. Inc. FPD5000 four 
point probe. 
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Obviously the thinner the Al film, the greater the light transmission and the higher the 

film sheet resistance. From figure 3.13 we see that an evaporated Al electrode 

thickness of 50nm has a corresponding sheet resistance of 1.1 /square', which is 

about 60 times higher than that of the 1-2tm sputtered aluminum used for 

conventional mirrors. One should, therefore, be mindful of all the effects mentioned 

above when deciding on the pixel mirror electrode thickness, as a gain of a better 

liquid crystal alignment may be offset by poor switching characteristics. 

Another concern regarding evaporated aluminum films is that of thickness 

uniformity. When the film is deposited at high rates, the vapor pressure in the region 

immediately above the source can be high enough to place the region in a viscous 

flow regime. Operation in this regime affects the deposition uniformity by creating a 

virtual source at some distance above the filament. 

The reasons for being concerned with the thickness uniformity of the aluminum over 

the wafers were as follows; 

Thickness non-uniformities in the mirror layer may alter the FLC layer thickness, 

assuming that the cell gap thickness of the cell is set from the plananzed oxide 

layer. 

We need to be sure that the mirrors are optically opaque over the entire wafer. 

The sheet resistance of the mirrors may vary across the wafer. 

The optical quality of the mirrors is dependent on the evaporation rate of the 

aluminum, which in turn affects the uniformity of the deposit. 

To obtain the best uniformity2, the evaporator must be run at low rates and these low 

rates require an extremely high vacuum to avoid contamination of the film. The E306 

aluminum evaporator was characterized to determine the uniformity of deposition at 

various deposition rates. This particular evaporator was very difficult to control, as it 

had no feedback control, and as such the results obtained must only serve as a guide. 

Three 4-inch diameter wafers were coated with aluminum to approximately equal 

thicknesses, as shown below, at the power settings indicated. The deposition times 

Typical sheet resistance of commercially available ITO film (45nm thick) is 60Isq, see appendix B. 
2  Both the angular dependence of the emission law (.-cosp) and the orientation of the film-gathering surface 

contribute to uniformity problems. 
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were recorded and the thicknesses of the films were calculated from the sheet 

resistance values obtained at the three locations, the center the edge and midway 

between the center and edge, of the wafer, using a four-point probe, figure 3.14. 
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Figure 3.14. 	Evaporated aluminum thickness uniformity across a four inch wafer. 

Low tension power supply 30 40 50 
(%)  
Average 	deposition 	rate 1.6 ±0.13 3.7 ±1.1 23.7 ±3.6 
(nm/s) __ 
Average %age uniformity 7.2 11.8 12.4 

Table 3.5 	Evaporated aluminum film thickness uniformity versus film evaporation rate. 
Note that in increasing the aluminum evaporation rate from 3.7nm/s to 23.7nm/s 
there was only an very small decrease in the deposition uniformity. 

From the results above in figure 3.14 and table 3.5 we see that evaporation at very 

low rates yields the best thickness uniformity, but at higher rates (which would 

provide the best optical quality films) the film uniformity was much poorer, but 

remains fairly constant. 

It can be seen that the deposition non-uniformity (over a 4"diameter wafer), with the 

Edwards system, would not adversely affect the transmission of the aluminum. For 

example, using the results shown in figure 3.12, we saw that an aluminum thickness 
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of >35nm was required for the mirrors to be optically opaque. If the aluminum was 

evaporated, to this thickness, at a high rate, to produce the best optical quality 

mirrors, we could expect the thickness at the edge of the wafer to be -27nm. This 

would give a variation in the aluminum thickness of only 7.7nm over the entire 4" 

wafer. LC thickness variations of 7.7nm are negligible. It was therefore possible to 

evaporate the aluminum at high rates (-20nm/s) without being concerned by the 

thickness non-uniformity. Of course with future batches possibly being fabricated on 

the larger 6" diameter wafers it will not be physically possible'to coat the wafers by 

evaporation using the present Edwards system, and the disscussion above will not 

apply. To coat these larger diameter wafers it will be necessary to aquire a larger 

evaporator system with a rotating substrate holder. 

Figure 3.15 	Optical micrograph of the new thin (50nm) evaporated 
aluminum mirrors over polished vias. 

Following metal patterning the mirrors were examined, figure 3.15, with a phase 

contrast microscope. Bearing in mind that this sample was a first attempt at polishing 

aluminum via plugs on the new Presi polisher a visual inspection of the vias showed 

that they were barely visible, compared with the planarized 512012, figure 3.1(b). 

Also the evaporated aluminum mirrors in this particular case were wet etched, real 

LCoS mirrors will be etched in an anisotropic dry etch where there will be very little 

if any under cutting of the photoresist. As the metal was polished back to the oxide, it 

should be possible to sinter the aluminum (which had proved problematic in the past) 
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before CMP, to improve the electrical contact of the vias to metal 2. No additional 

ECR oxide capping layers, discussed in 3.2, would be required during this sintering 

process. 

3.5.5 Inter-pixel mirror gap filling 

As with conventional 1-2.tm thick mirrors the problem of capillary pinning, figure 

3.16, and the subsequent destruction of the linear LC flow front could still be seen on 

the thin mirrors, albeit, to a lesser extent, figure 3.24. This linear flow front is 

important as the alignment of NLC's, under certain conditions, has been reported to 

be along its flow direction during cell filling [NE, 1998]. The anchoring of nematics 

on a solid substrate, in most cases, is determined during the wetting of the substrate 

by the nematic liquid crystal [Jerome, 1988]. As reported by Bodammer [1998], 

capillary pinning, figure 3.25, could be avoided by eliminating the trenches between 

the pixel mirrors. 

LC flow front Mirrors Trench 

Figure 3.16 	The LC filling the cell fills along one column of pixels mirrors before 
proceding to the next column of pixels. 

Prior to the thin mirror development, researchers in the Applied Optics Group, 

including the author, had contemplated the problem of the deep inter-pixel trenches 

present on conventional mirrrors. Any method involving lift-off to fill the 1-2j.tm 

deep trenches was considered by the author to be impractical due to the photoresist 

step coverage (defined in 2.5.2) problems, and was therefore dismissed. 

79 



Chapter 3. 	SLM Backplane Post-processing. 

Since the thin mirror technology became a likely candidate to replace conventional 

mirror processing techniques (planarized), I proposed a novel technique of filling the 

trenches, see figure 3.17, using the existing, unaltered, photoresist layer used in 

patterning the aluminum. In the following investigations, the backplane preparation 

was performed by the author and D.W. Calton and the cell construction and filling 

was performed by the author. 
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Figure 3.17 	AFM image of the trench between the "thin" minors.. 
Note the z scale is lOOnmldiv. Courtesy of D.W. Calton. 

The idea behind this technique was to deposit oxide/dielectric material over the 

patterned wafer in a lift-off process (which is still coated with the photoresist from 

the mirror patterning), figure 3.18, to a thickness equal to that of the thin mirrors. As 

the mirror layer and hence the required oxide layer deposition were very thin (-1/10th 

the thickness of the photoresist) there would be very little step coverage of the 1 .2im 

thick PR layer from the oxide, which would enable removal of the photoresist. This 

technique will be referred to as the Self-aligned Insulator Filled Trench (SIFT) 

process, from this point forward. 
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Oxide 

I I I I I I I I I I I 

Photoresist 	 "Thin" mirror 

Figure 3.18 	Crossectional illustration of mirror gap fill process. Drawn 
approximately to scale. 

Experimental 

As a proof of principle, a dummy 4" wafer was coated with 80nm of evaporated 

aluminum and the layer patterned with the 512x512 mirror mask. Evaporated SiO 

was chosen by the author in the first instance due to its poor step coverage, which 

lends itself to the "lift-off' process. Later experiments by D.W. Calton justified the 

authors descision for using evaporated SiO rather than ECR-PEC\TD Si02. Following 

wet etching of the aluminum the wafer was diced to provide samples for 

experimentation. 

The silicon oxide was deposited by evaporation, using the Edwards Auto306 system. 

The samples were held —110mm above the source, and the SiOx  evaporated at a rate 

of 0.75nmlsecond. 

The sacrificial photoresist, which was also used in patterning the mirrors, was then 

removed by one of two methods; 

oxygen plasma ashing 

ultrasonic scrubbing in acetone. 
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The samples were then examined optically and using a surface profileometer, Sloan 

Dektak 200-Si. From the first run it was found that the photoresist on the samples 

stripped in the asher had been removed, but the overlying oxide remained. The 

second set of samples, on the other hand, which had been scrubbed in acetone were 

completely free of the unwanted oxide, figure 3.19. Following examination with the 

Dektak it was discovered that the oxide deposited in the first run was too thick (-2000 

angstroms), subsequently the duration of the evaporation on the second run was 

reduced by 2.5 times in an effort to hit the target thickness of 800 angstroms. Upon 

examining the samples from the second run it was found that the oxide filled trench 

was much closer to the mirror layer, figure 3.20(a). 

Figure 3.19 	Optical micrographs of a corner of the mirror array showing the various 
stages of overburden removal. The picture on the left of the figure 
shows the mirrors before scrubbing in acetone. The picture in the middle 
shows photoresist begining to clear from under the silicon oxide. The final 
picture, on the right, shows the mirrors when they have been fully cleaned. 

It was found that the deposition thickness of the evaporated silicon oxide was 

independent of the feature size, unlike the ECR-PECVD silicon dioxide, in which the 

deposition thickness did vary with feature size (see chapter 5). In the case of the 

evaporated silicon oxide layer the thickness of the deposit was the same in the array 

(between the pixel mirrors) and outside the array on the relatively bare parts of the 

die. 
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Figure 3.20 (caption below) 
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Figure 3.20 	(a) Surfaceprofileometer trace of mirrors from the second run in which the oxide 
deposition is only —lOnm above the mirror array, (b) from the third run in which 
the "trench" is indistinguishable from the mirror layer, (c) AFM image of (b). Note 
the z scale is 50nm/div. 

A third run was the performed in which the deposition time was further reduced, 

figure 3.20(b&c). Upon examination, again with the Dektak, all that could be seen 

was noise, i.e., the "trenches" and mirrors could not be identified. 

3.5.6 Improvement in the evaporated film thickness uniformity 

In the experiments described so far, the SIFT processed was performed on a die scale. 

This enabled us to obtain the desired silicon oxide thickness and thickness uniformity 

over the device, but risked particulate contamination between the mirrors. In order for 

the SIFT process to be performed on a wafer scale the deposition uniformity had to be 

improved. 
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We had seen that evaporated silicon oxide produced a much more planar surface 

profile in filling the inter-pixel gaps than ECR-PECVD silicon dioxide. The 

deposition rate in the evaporator depends on the location and orientation of the wafer 

in the chamber. So in an effort to improve the evaporated oxide deposition thickness 

uniformity an extension to the Auto306 chamber was used, figure 3.21. 

Figure 3.21 	Extension of the distance between the wafer and the source. 

By extending the distance between the wafer and source from 110mm to 410mm, it 

was found that the silicon oxide deposition thickness non-uniformity was reduced 

from >12% to 2.7%, respectively, over a 4-inch wafer. 
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3.6 	Cell construction and filling with Nematic liquid crystal 

A selection of backplanes, including the new SIFT processed backplanes, were used 

in the construction of test cells to observe the effect of the surface topology on the LC 

flow front. The cells were constructed with 3. 1tm spacer rods in Norland adhesive 

type N0A88. The empty cells were placed under a polarizing microscope, type 

Olympus BH2-UMA with a JVC TK-1070E RGB video camera, with the polarizers 

crossed and a small quantity of NLC (Merck E7) placed at the cell opening, at room 

temperature. The LC cell filling was then observed, with the 20X microscope 

objective. The images were "grabbed" using the Computer eyeslRT software. 

Conventionally nrocessed backolanes 

Initial observations of the LC flow front over the conventional mirrors, figure 3.22, 

were slightly different to that which we had expected. The LC flow front was 

observed to propagate preferentially along the rows of pixel mirrors rather than along 

the columns as described earlier. It had been suggested that the surface roughness of 

the 2tm thick mirrors may have been the cause for this unexpected filling 

phenomenon. To test this speculation an oxidized silicon wafer was coated with 2tm 

of aluminum and given a superficial polish on the Presi 460 before patterning. The 

cells constructed and filled using these backplanes then exhibited the predicted LC 

flow front shape, figure 3.23. 
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(a) 	 (b) 

	

Figure 3.22 	(a) Conventional "thick" mirror 512x512 SLM being filled, left to right. 
(b) SEM of the pixels mirrors. Note that poor quality mirrors such as this 
were a common occurrence (cell filling from left to right). 

Figure 3.23 	LC flow front over polished "thick" mirrors. The LC fills the 
columns (bottom to top) before progressing to the next column (cell filling 
from left to right). 

Thin mirror backplanes 

The LC flow front over the thin mirrors, figure 3.24, with 80-100nm deep inter-pixel 
trenches was much less severe than that of the conventional mirrors, above. 

87 



Chapter 3. 	SLM Backplane Post-processing. 

Figure 3.24 	A device with thin 5 12x5 12 mirrors (no SIFT processing) being filled with NLC. 
Although the wave front is not disturbed nearly as much as the LC over the 
conventional mirrors, a disruption can still be observed (cell filling from left to 
right). 

SIFT processed thin mirror backplanes 

Finally, the cells constructed using the SIFT processed backplanes were examined. 

The LC flow front propagating over the mirrors was seen to progress both parallel 

and later diagonally to the mirror sides, figure 3.25, in the desired manner i.e., with 

no sign of the capillary pinning reported earlier. 

Figure 3.25 	SIFT processed thin 512012  mirrors NLC filling the cell from left to right 
and filling from bottom left to top right. Note that the flow fronts appear 
to be unaffected by the pixellated backplane. 
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3.7 	Aluminum vs. silicon dioxide wetting by LC 

As the surface topology variations had been almost completely removed, we wanted 

to know what effect the differing substrate material properties would have on the LC 

flow front. The oxide layer between the mirrors of the SIFT processed backplanes 

were very narrow, typically 2-3tm wide and it was therefore impossible to 

satisfactorily observe the LC flow front over the oxide with the equipment available. 

To enable us to observe the effect of the differing substrate materials on the LC flow 

front velocity a silicon wafer coated with Si02  was patterned with 30nm thick 

aluminum gratings (with a pitch of lOOj.tm). Test substrates were cleaned using the 

standard process and cells constructed with rubbed Poly(vinyl alcohol) (PVA) coated 

cover glass and 3. 1jtm spacers. It was repeatedly observed that the LC flowed 

preferentially along the aluminum rather than the Si02  strips. It appeared that the LC 

propagating along the aluminum strips caused a flow front to spread out across the 

oxide leaving a visible LC contact line at the center of the Si02  strip. 
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Figure 3.26 	E7 filling 3.1 grn cell gap with 200 jtm wide (30nm thick) aluminum 
grating backplane (a) with an alignment layer on covergiass only and (b) 
with an alignment layer on both the coverglass and silicon backplane 
(filling from right to left). 

It was clearly evident that the NLC (E7) preferentially "wet3" the aluminum surface. 

Contact angle between the liquid and the substrate is <900. 
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The average speed (appendix D) of the LC flow front, filling the cell, is highly 

dependent on the substrate material and, for a specified substrate material, is given by 

-= ( -) 
V 	

6ri 1 	
(9) 	[Mi, 19981 

Where Ysv  is the surface tension at the substrate-air interface, Ysi  is the surface tension 

at the substrate-LC interface, 1  is the translational viscosity coefficient of the LC, 1 is 

the length of the LC cell and d is the LC layer (cell gap) thickness. On examination 

on cells filling which had a rubbed PVA alignment layer on both the coverglass and 

silicon backplane the wetting differential was much less pronounced. In fact, the non-

linearity of the flow front may have been caused by the slight undulations in the 

silicon substrate topology, due the the very thin aluminum strips. Unfortunately we 

were unable to measure the LC flow front speed due to the limitations of the video 

equipment. From these observations we see that it may be benificial to apply the LC 

aligning layer to the silicon substrate rather than the coverglass. Furtherwork is 

required to evaluate any potential gains in LC aligning quality before any conclusion 

can be drawn. 

3.8 	Preliminary investigations into cell filling with FLC 

Although NLC's are relatively easily aligned, the alignment of PLC's is a much more 

formidable undertaking. Cells, such as those described earlier, were filled with PLC 

(CS-1031) in its isotropic phase. The cells were filled and the flow fronts observed by 

placing a "blob" of PLC material at the opening of the cell and heating the device on 

a hotplate (to allow the PLC to reach its isotropic phase). When the cell was 

approximately half filled, the device was carefully lifted from the hotplate and 

allowed to cool. 

The PLC flow front over the conventionally processed backplanes was, as in the case 

of the NLC, severely disrupted. The FLC flow front over both the "thin" mirrors and 
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SIFT processed "thin" mirrors were, however, very difficult to differentiate, i.e., the 

flow fronts were similar to that of NLC over the "thin" mirrors. This suggested that 

the wetting properties, viscosity and, in particular, the phase of the LC materials used 

may be very important in determining the quality of the flow front in the cells. 

Another relevant observation was noted on conventional mirror electode cells filled 

with FLC, which has previously been reported [Blinov, 1983], [Bodammer, 1998]. 

The wavefronts shown in the figures below were preceded, by a much thinner 

(-20nm) [Bodammer, 19991 wetting layer, figure 3.27. 

Figure 3.27 	Although in its isotropic phase, the FLC can clearly be seen filling the cell gap 
from right to left (solid line). Not so clear is the "precursor" film (dashed line) 
which extends 5-10 pixel mirrors ahead of the main wave front, which may 
influence the orientation of the bulk FLC during filling. 

3.9 	SIFT experiment summary 

The important findings from the SIFT process investigations were that; 

The photoresist used in patterning the "thin" mirrors could be used as a sacrificial 

mask for patterning the subsequent silicon oxide layer, filling the inter-pixel 

trenches. 

The photoresist was easily removed following silicon oxide deposition 

(evaporation) by ultrasonic scrubbing in acetone. 

91 



Chapter 3. 	SLM Backplane Post-processing. 

The evaporated silicon oxide films suffered from adherence problems (so a pre-

deposition plasma clean is required) but an AFM investigation of the filled trench 

revealed an extremely planar surface (rounding of only 2.5nm from the center to 

edge of the filled trench). 

ECR-PECVD silicon dioxide was found to be sufficiently adherent to the 

substrate, but the silicon dioxide deposited in the gap was severely domed and 

burrs were present (21.8nm rounding). 

The technique had been demonstrated to completely fill the inter-pixel gap. 

The shape of the NLC flow front, which is extremely important for good LC 

alignment, was undisturbed by the mirror array, when the SIFT process was used 

in conjunction with thin mirrors. 

An LC aligning layer, deposited on the silicon backplane, can further reduce the 

LC flow front disruption. 

PLC filled cells produced very different results from NLC in that the effects of 

the thin mirrors and SIFT processed thin mirrors, on the PLC flow front, were 

very subtle. 

Work which is being continued includes; 

Implementing an argon ion pre-deposition clean process to improve the 

adherence of the SiO to the substrate (this will allow an extended pre-

alignment layer deposition substrate scrub) 

Filling SIFT processed cells with PLC and examining the flow fronts in more 

detail. 
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3.10 Post processing summary 

A revised post-processing procedure based on the polished viaJSIFTprocess is given 

below. This takes the "as-received" wafer through the custom fabrication processes to 

a stage where they can be used to construct full SLM's. 

The table, at the end of this section, provides a comparison between the three 

mirror/electrode forming processes discussed in this thesis. 

ECR-PEC\TD silicon dioxide is deposited to a thickness of 1.5-2.0 times the 

height of the tallest feature of the die/wafer. 

The silicon dioxide is planarized by Chemical Mechanical Polishing (CMP). The 

quality of the polished wafers are device dependent. The planarization process has 

been well characterized for the 512x512 SLM, but future generations of devices 

should contain dummy mirrors around the pixel array to avoid the effects of 

errosion [Seunarine, 1999]. 

The CMIP slurry residue is removed using a post-CMP wafer scrub. Early post-

CMP wafer scrubbing was inadequate, but with the PVA wafer scrubber being 

brought on-line shortly, the slurry residue problem will be reduced. 

Light shielding layer deposition and patterning. This is an optional 

procedure and requires an additional via layer. 

ECRPEC\TD silicon dioxide deposition. 

CMIP oxide/scrub. 

The via holes are etched by RIE ensuring that passivation layer is completely 

etched. 

The wafer is blanket coated with sputtered aluminum to fill vias to a thickness 

sufficient to completely fill the vias (1-2 micometers). 
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The metal is polished back by CMP (possibly using an etch back technique, 

appendix B) to polish aluminum back to vias. The CMP process still to be 

optimized on the Presi polisher. 

A post CMP wafer scrub is performed to remove slurry particles and degrease the 

substrate surface. 

Thin  mirror deposition by evaporation. A laboratory evaporator was used, but 

production equipment is required for >4" product wafers. 

The minors are patterned into the evaporated aluminum by a masked RIE. 

Before stripping the photoresist the wafer is coated (by evaporation) with a pre-

calculated thickness of silicon oxide, which fills the trenches between the mirrors 

leaving a planar array surface profile. 

The unwanted resist/oxide is then removed by ultrasonic scrubbing in acetone. 

Oxide spacer layer deposition, patterned by lift-off. The "best" geometry is yet to 

be decided. The usual thickness required for CS-1031 filled cells is 2.4tm or 

0.8j.tm. The latter is desired as it will allow the optimum electro-optic response of 

the PLC, and the spacers will be much easier to fabricate to small geometries. 

Spin coat wafer with protective photoresist layer. 

The wafer is diced using a scribe and break method. 
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Technology Advantages Disadvantages 

Conventional Simple, no slurry contamination. Thick aluminum layer (granular) and 

mirrors therefore 	deep 	trenches 	between 

mirrors, difficult (impossible) to pattern 

spacers by lift-off in interpixel gap. 

Dual damascened Mirrors "flush" with oxide, no Mirrors are etched into the oxide, with 

mirrors wet/dry aluminum etch required, no etch stop and then vias are etched 

small impact on LC flow front down to metal 2, scratching, dishing 

(mirrors dished in center). and erosion problem, slurry residue, via 

"dimples" 	present 	on 	real 	devices, 

considerable development required. 

Thin (via polished) High optical 	quality evaporated Evaporated 	aluminum 	adhesion 

mirrors mirrors 	possible, 	trenches 	are problem, 	slurry 	residue, 	post 	CMP 

easily 	filled 	using 	novel clean 	required 	before 	final 	metal, 

technique, 	liquid 	crystal 	flow excessively thin mirrors transmit %age 

front is unaffected by resultant of incident light, two metal depositions 

substrate, technology exists and required (one to form via plugs and the 

ready to implement, increased fill other to form the mirror layer), in-house 

factor due to negligible dishing of evaporation uniformity issues. 

vias. 

Table 3. 7 	Although the "thin" mirror technique has some disadvantages, they are all 
relatively easily overcome, and the potential gains on offer are unequalled 
by the other two methods at present. 

3.11 Discussion 

At the beginning of these studies the highest quality LCoS devices were achieved 

through planarization of the foundry wafers. Although the pixel fill factor of these 

early devices was greatly increased it was still far from ideal. One of the main 

problems which remained included via "dimpling". This via dimpling would have 

been a major problem for future LCoS devices, such as the MINDIS4  1280 x 1024, 

which is to consist of extremely small mirrors (<10x10.tm after post-processing). 

" Miniature Information Display Systems. Funded by the European Commission (project Esprit 26300). 
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Simple calculations show that a 1Otm x iO.tm pixel will have a maximum fill factor 

of 70.56% (assuming a 1 .6tm gap between mirrors stipulated by the EMF). A 2jtm x 

2.tm via, which is in reality much larger following etching (-3-5tm) will then 

degrade mirror efficiency further. Another major problem with the early planarized 

devices was that of the deep trenches present between the pixel mirrors. 

Via polishing has been shown to almost completely remove the via "dimple. The thin 

evaporated aluminum, which is patterned over the polished vias, provides an 

extremely high optical quality mirror layer which is relatively easy to etch. We have 

also demonstrated a novel technique of filling the thin mirror inter-pixel trenches (flat 

to 2.5nm) by using the existing photoresist layer, used to pattern the mirrors. Upon 

deposition of a thin layer of oxide (--80-100nm) we have sucessfully demonstrated the 

entire removal of the unwanted PR and oxide layers leaving a planar pixel array 

surface which obviates the need for fully polished (damascened) aluminum mirrors. 

Subsequent filling, with LC, of test cells constructed from these thin mirror, SIFT 

processed die shows that the surface of the pixel array has no detrimental effect on the 

LC flow front, in which the highly desired linearity is maintained. 
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Techniques for Backplane Flattening and Cell Gap 
Spacing. 

4.1 	Need for a flat backplane and accurate cell gap spacing 

The main limitation in LCoS device, figure 1.8, performance arises from the lack of 

uniformity in the PLC alignment, PLC layer thickness and backplane (die) flatness 

[Underwood, 1997]. The transmission of light, of intensity, I, at a point in a reflective 

mode PLC cell, equation 10, is dependent on the layer thickness, d. 

"\ 1(X)=10(X) sin  2(4O)  sin 
 2 2ditLn(X) J 

	
(10) 

Where, 

o is the cone angle of the PLC (defined in sectionl.3.1), 

An(X) is the birefringence of the PLC, 

and X is the wavelength of the incident light 10 . 

Any non-uniformity in the PLC cell gap may result in one or more of the following: 

Incomplete cell filling. 

The result of incomplete filling of the LC cell is disastrous, in that the device, 

or part of the device, cannot be used. 

Poor alignment, i.e., spatial variations in LC alignment. 

Non uniformities in the cell gap thickness usually mean that the liquid crystal 

flow, during cell filling, will not be as desired. As the flow of LC affects its 
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alignment, the direction of filling must be uniform, i.e., the flow front must 

proceed in a linear manner. Any deviation from this scenario may result in 

domains of the liquid crystal cell which have different LC director orientations 

(parallel to the substrate). 

Spatial variations in the optical path length of the LC layer. 

From equation 10, it can be seen that any variation in the liquid crystal layer 

thickness will affect the light transmission throught the display, resulting in colour 

fringing or even contrast inversion. 

Spatial variations in the switching characteristics of the LC. 

In a non-uniform cell the local electric field may vary considerably which will 

in turn affect the local liquid crystal switching characteristics. 

While a thicker cell gap makes cell assembly easier, it sacrifices display performance 

by requiring a higher backplane voltage (increased power dissipation) and hence a 

lower pixel density [Kazlas, 1996]. Ideally we would like d = 0.8tm, but in practice 

SLMs of this nominal PLC thickness can be difficult to produce with acceptable small 

thickness variations both within and between devices [Underwood, 1997]. Typically 

the maximum acceptable variation in the cell gap spacing is lOOnm over a 

10mmx10rnm device area [Kazias, 1996]. The alternative is to aim for an FLC 

thickness of 2.4p.m. SLM's which are used as optical elements in processors, 

correlators etc., have an additional constraint of requiring an extremely flat backplane 

to prevent spurious phase modulation effects. 

4.2 	Backplane flattening 

We have very little or no control of the CMOS processes used in the fabrication of 

our wafers, so SLM backplane flattening must be carried out as part of the post-

processing or cell assembly procedure. Methods reported (at the time of writing) of 

flattening optical device wafers and backplanes, are the electrostatic bonding 

technique, transfer bonding technique and the self-aligned solder technique. 

98 



Chapter 4. Techniques for Backplane Flattening and Cell Gap Spacing. 

Electrostatic bonding 

The electrostatic bonding technique involves bonding a 250-300tm thick high 

resistivity silicon wafer to a low thermal expansion glass (4.5.1) substrate. A high dc 

electric voltage (11V) is applied across the structure at a temperature close to the 

strain temperature of the glass (600°C). The resulting bond between the silicon wafer 

and glass substrate is chemical and therefore permanent. Following bonding the wafer 

can be polished to the desired thickness and flatness by standard lapping techniques 

[Sayyah, 1989]. 

Sayyah et al. have reported flatnesses of X/4 or better over a 5cm diameter area, using 

the electrostatic bonding technique. The main disadvantage with this technique is that 

the wafers are not processed before bonding, i.e., the technique cannot be used as a 

post processing procedure. 

Transfer bonding 

The transfer bonding technique is based on the adhesion of two very clean and flat 

surfaces, in contact with each other. The adhesion between the two surfaces is only 

physical and not chemical, so they can be easily seperated at a later stage in the 

process. The processed 125tm thick product wafer is contact bonded, on the top side, 

to a X/10 optical flat. Any non-uniformity in the thickness of the wafer is transposed 

onto the nonbonded backside, which is then bonded to a supporting optical flat with 

epoxy adhesive. After the epoxy has cured the wafer can be removed from the contact 

bonded flat for further processing [Sayyah, 1989]. 

Unlike the electrostatic bonding method, this technique can be applied after the high 

temperature CMOS processing, but not after final metallization. The glass supporting 

substrate in this method will prove problematic in that, depending on the glass 

substrate thickness, wafer handling will be affected and final wafer dicing will be 

severely complicated by the composite silicon-epoxy-glass structure. 
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Self-aligned solder technione 

A very different method is the self-aligned solder technique. This technique relies on 

the strong pulling forces of the molten solder joints between the cover glass, which 

overlaps the silicon die, onto the device package. The technique has been developed 

to achieve the following objectives (1) uniform cell gap and (2) align the cover glass, 

silicon and package (substrate) to a high accuracy (within 1O.tm). The best cell gap 

uniformity reported, with this technique, was -.312X over the device. The spacer layer 

used was reported to be on the glass cover plate. This technique may possibly benefit 

from microfabricated features in the pixel array, such as our robust ECR-PECVD 

Si02  spacer layers described later. The same group is also looking into using die 

attachment materials, sandwiched between the backface of the die and the device 

package, which when cured at various temperatures, control the VLSI chip warp. 

Initial results reported indicate that reasonable die flatnesses (X/2) can be achieved 

with this technique [Lin, 1993]. 

4.3 	Cell gap spacing 

There are many cell gap spacing methods reported. Some of these will be described in 

this section. The most common method used, and the only method used by the A.O. 

Group at this time, is spacer rods/balls blown across the substrate, or mixed with 

adhesive. The problems with such particles are: 

They are, in the case of blown spacers, randomly distributed across the device, 

figure 4. 1, which may cause light scattering and wipe out a large portion of 

individual mirrors. 

They are very fragile, i.e., easily crushed during cell assembly, see figure 

5.14. 
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Any lateral motion of the covergiass during cell assembly may cause the 

particles to tear the soft aluminum minors [Begbie, 1997]. 

They are only readily available in specific sizes [Bangs, 1998]. 

All of the above may potentially affect the cell gap and hence the LC layer thickness. 

It is apparent that a robust microfabricated spacer layer is required, which will enable 

us to deposit spacers on a wafer as opposed to a die scale. 

Figure 4.1 	Pressure exerted on the covergiass has been found to cause 
silica spacers to become embedded into the 1 .tm of sputtered 
aluminum. Courtesy of M. Begbie. 

The most recent developments in cell gap spacing has been described by two 

independent groups, Kazias at the University of Colorado and Lee at Samsung 

Display Devices, Korea [Kazlas, 1996], [Lee, 1997]. Both groups used a 

photodefinable Benzocyclobutene' (BCB) from Dow Chemicals. The BCB material is 

spin coated and patterned in a similar manner to negative photoresists. One interesting 

aspect of this material is that it can, under suitable conditions, act as an adhesive, to 

bond the cover glass to the silicon by thermocompression bonding. 

BCB has previously been used to planarize liquid crystal over silicon devices and flat panel displays 
[Perettie, 1992]. 
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Work carried out by A.W.S. Ross, of the A.O. Group, University of Edinburgh, into 

BCB has shown that this material is extremely difficult to use, in that the spin coater 

requires a suitable atmosphere to prevent "skinning over 2,,  of the material during 

coating. The minimum thicknesses possible with BCB were reported to be around 

2.4jtm [Ross, 19991. There are also significant reductions in the BCB thickness 

following the soft bake, exposure and developing, which makes calculating the final 

spacer height difficult. It also has the disadvantage of not being patternable (with the 

developer) to the dimensions required for spacers in the active area of the device. To 

achieve smaller feature sizes the cured BCB material has to be dry etched. To use 

BCB as an adhesive, the curing conditions are also found to be crucial. 

Other methods of cell gap spacing reported include posistive photoresist spacer dots, 

CVD diamond patterned dummy structures, screen printing and adhesive coated 

spacers [Yaniv, 19961, [Nakanowatari], [Sato], [Sletmoe, 1985], [Gourlay, 19941. 

Low melting temperature glass has also been used in much larger flat panel displays 

(FPD) in an effort to compensate for the diameter distribution of conventional silica 

spacers across the display [Kasahara, 1994]. Early investigations into spacer layers 

which were performed by the A.O. Group included evaporated SiO which was 

patterned by an aluminum mask or standard lithographic techniques, into pillars. The 

thickness of the spacer layer, measured by quartz crystal monitor during deposition, 

was found to be difficult to control, and the pillars also became very fragile at 

thicknesses exceeding ljtm [Gourlay, 1994]. Also to obtain the best uniformity, the 

evaporator must run at low rates [Aceves, 1992], but low evaporation rates mean 

extremely long processing times. 

An ideal spacer material for our work will be extremely robust, chemically inert to 

LC and patternable on a wafer scale by lift-off, to protect the high optical quality 

aluminum pixel mirrors. Fortunately silicon dioxide deposited by ECR-PECVD 

satisfies these requirements. Another important quality of PECVD Si02  is its low 

compressive stress and good adhesion to aluminum, which permits very thick films to 

be deposited, without the film blistering or cracking [McGuire, 1988]. 

2  Where a thin skin is formed on the liquid layer. 
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Spacing method Advantage(s) Disadvantage(s) 

Polyester sheet Readily available. Crude, layers greater than 
[Underwood, -50jtm, rough edges. 
19871  
Silica particles Readily available, choice of Limited choice (size), fragile, 

method of application, random distribution. 
Photoresist (PR) Well characterized standard Chemical impurities, attacked 

microfabrication process. during standard cleaning 
process. 

BCB Patternable as negative Large features, difficult to coat 
photoresist. Also acts as an (min thickness of -2.4tm), 
adhesive under certain height reduction on cure etc. 
conditions. High cure temperature 200- 

300°C (degrades optical 
quality), sensitive to solvents. 

Evaporated SiOx Simple, inert. Fragile. 
CVD diamond Robust High deposition temperature 

(>500°C) 
Dummy Uses existing circuitry. Can't planarize. 
structures  
ECR oxide/lift-off Well characterized, excellent Height pattern dependent, 

uniformity, robust, inert to i.e.,depletion of reactant gasses 
LC, low deposition temp., in deep, high aspect ratio, 
small features, no chemical trenches. 
etch.  

Table 4.1 	 Summary of the main cell spacing methods. 

4.4 	SLM construction 

In this section I give a brief description of the cell assembly procedure currently used 

by the group. Potential assembly problems are discussed and solutions proposed. 

Details of the alignment layer deposition and filling of the cell gap with FLC are 

described in detail in appendix D. 
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4.4.1 Substrate cleaning 

Clean substrates are crucial in the fabrication and assembly of LC devices. A rigorous 

cleaning regime must be adhered to as the LC alignment is affected by contamination 

section 1.1. Larger particulate contamination on the substrate during spacer layer 

patterning causes "comet tails" in PR during spin coating and may also become 

trapped in the oxide spacer layer during deposition. Even with ultrasonic scrubbing 

these trapped particulates are impossible to remove, see the example in figure 4.2. 

Figure 4.2 	Particulates trapped in the spacer layer during fabrication. 

4.4.2 Device assembly 

All liquid crystal test cells and SLMs were assembled in the A.O. Group LC 

cleanroom, on a bench in front of a laminar-flow HEPA filter unit. Prior to assembly 

all the equipment, jigs and work surfaces were cleaned to minimize contamination. 

The ITO coated side of the coverglass was identified visually or by resistance 

measurement using a multimeter before mounting in a jig. Aluminum evaporation, for 

the common electrode electrical contact was performed using an Edwards E306 

system at a pressure of <4x 10 4  Ton, as described in appendix D. The substrates were 

then removed from the jig and any loose particulates blown away in a filtered ionized 

nitrogen stream. The substrates, usually just the coverglass, were then mounted in a• 

second jig for evaporation of a SiO, LC alignment layer. The evaporation was carried 

out in an Edwards Auto-306 evaporator with the SiO beam incident to the substrate 

104 



Chapter 4.Techniques for Backplane Flattening and Cell Gap Spacing. 

at 60°. In order to minimize the amount of particulates being ejected into the 

evaporation chamber a baffled Mo boat was used for heating the SiO,, and any SiO 

which had flaked off the chamber walls etc., was removed using a vacuum cleaner 

nozzle located in the LC cleanroom. The film thickness was monitored by a quartz 

crystal oscillator monitor. The film deposition was then ended when the film 

thickness monitor measured a pre-set value, typically 30-60nm. 

In the early days of LC SLM construction the A.O. Group performed cell assembly 

after PGA packaging and ultrasonic gold ball wire bonding. From the group's 

experience with the 162  [Underwood, 1986] device, it was believed that when the chip 

was glued into the chip package, serious bowing of the backplane resulted. This may 

have been due to the fact that the package was not optically flat. Later it was decided 

to construct the FLC cell and fill the cell before gluing the chip to the chip package 

and wire bonding. To allow access of the bonding equipment to the chip bonding 

pads, a thin 12mm x 12mm x 1.1mm piece of ITO coated glass, supplied by Merck, 

see appendix D, was used as the coverglass [Gourlay, 19941. 

The appropriate size spacer rods/balls (2.4tm for display applications) could be 

applied to the substrate in three ways, (1) spin coat particles which were contained in 

DI water, (2) blown spacers on with nitrogen, and (3) mixed spacers with the UV 

curing adhesive. Obviously, the 3rd method only had spacing at edges of cell, but no 

random distribution of spacers in array. The exact cell construction details, in the 

group, varied from operator to operator, but they were all very similar. Ultraviolet 

(UV) curing adhesive was placed, usually at the corners of the ITO side of the 

coverglass. The coverglass was then placed, ITO side down, onto the chip and 

pressure applied to the coverglass, at various positions, until the white light fringes 

were circular and minimized. The orientation of the coverglass should be such that 

the direction of the evaporated SiO is perpendicular to the LC filling edge 

[Bodammer, 1996]. 

105 



Chapter 4.Techniques for Backplane Flattening and Cell Gap Spacing. 

(a) 

Figure 4.3 	 illustration of the white light fringes present following cell assembly (a) a 
maximum of one circular fringe was acceptable, and (b) a wedge caused 
by dirt meant that the cell was rejected. 

The pressurized die flattening assembly technique used 12mm x 12mm x 3mm A/b 

Pyrex 7740 cover glass, which could be ITO coated in-house. The actual device 

flattening/cell assembly was performed as described in earlier sections. 

4.5 	Backplanes for test cells. 

Product wafers were generally warped due to the thermal processing, described in 

detail in 2.2. 256x256 SRAM dice were examined with the interferometer and surface 

profileometer to determine the magnitude and direction of bowing. To emulate this 

severe bowing stresses were introduced into dummy silicon wafers. 3000A of thermal 

silicon nitride, which has a high tensile stress, was grown on 75mm wafers, in a 

furnace. The silicon nitride was dry etched from the surface of the wafer to have the 

convex bow, in our case the front surface. The bow produced was on the order of 50-

60p.m, which was comparable to that of the bow in a 100mm product wafer. The 

wafers were blanket deposited with 1 ji.m of sputtered aluminum prior to the spacer 

layer patterning and deposition. The spacer layer pattern used in these experiments3  

consisted of an array of 70.tm x 200p.m rectangles set in a diamond pattern on a 1mm 

pitch, deposited by ECR-PECVD as detailed in chapter 5, using a recipe optimized to 

produce high deposition uniformities. From the interferograms in figure 4.4 and the 

Designed by M.Begbie, Dept. of Physics and Astronomy, University of Edinburgh. 
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surfaceprofileometer traces we see that the direction and magnitude of bowing of the 

test die are similar to that of the actual 256x256 SRAM die. 

(a) 
	

(b) 

Figure 4.4 	 Interferograms of (a) 14mm x 14mm die from a 75mm 
silicon wafer (3000 Angstroms of thermal nitride on 
backface) and (b) 256x256 SRAM die. 
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4.6 	Backplane flattening and cell spacing investigations 

Three methods of backplane flattening were investigated in this study, which all 

utilized the robust silicon dioxide spacer layers described in chapter 5. These methods 

will each be described in the following sections, but first I will describe the method of 

inspection of the flattened devices. Initial experiments into cell assembly and die 

flattening were based on our usual SLM assembly procedure. It was quickly 

discovered that the silicon die was forced to conform to the covergiass, which was 

supplied by Merck (appendix D). This type of glass was found to be very flexible and 

of a poor flatness (X/2). It was apparent that a more suitable cover glass was needed 

before any progress could be made. Subsequently a supplier was found who could 

provide 12mm x 12mm x 3mm corning 7740 X/10 optical flats'. The pressure 

required to flatten a 380 gm thick 14mm x 14mm silicon die was on the order of 1-2 

bar. Note: The slightly thicker product die, 525 pm, may be thinned by backface 

grinding if needed. 

4.6.1 Flattened backplane inspection 

A Fizeau Interfire 633 interferometer was used to investigate the backplane flatness 

of assembled cells. In order for the interference fringes from the backplane to be 

examined, the fringe intensity must be high enough to prevent them being swamped 

by the fringes from the other interfaces. This was achieved by increasing the 

reflectivity of the backplane (aluminizing), and minimizing reflections from the first 

air-glass interface. A simple way of reducing the reflections from this first air-glass 

interface was by depositing a A/4 MgF2  coating on the front surface of the cover glass. 

The assembled cell was then mounted on a stage in which movement in the x,y plane 

and rotation about the x axis was possible by micrometer screw. The position of the 

cell was adjusted until the correct set of fringes were found. This was determined by 

If the covergiass is too thick, and/or the bond pads too close to the pixel array, the wire bonding process will 
be hindered, or made impossible. 
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comparing the fringes from the cell with those from the part of the backplane not 

obscured by the cover glass. 

4.6.2 Backplane flattening (Method 1) 

This method was based on bonding the bowed silicon backplane to a rigid supporting 

substrate. A quantity of adhesive was applied to the top surface of the supporting 

substrate, a 1.1mm thick covergiass. The adhesive was then left for 10 minutes, to 

allow gravity to force the adhesive "blob" to spread over the substrate, and to permit 

the adhesive to partially cure. The remaining two components making up the 

backplane flattening assembly were then cleaned and inspected as follows. The 

cleaned backplane with an optical flat resting on the top surface was placed on a 

cleanroom tissue. By pressing down on the optical flat with a pair of plastic tweezers 

the white light interference fringes were observed. Clean components were evident 

when the fringes were minimized. Components which were not satisfactorily clean 

were put through the cleaning cycle again. These two components, were then 

carefully lifted and placed facing upwards, on top of the adhesive coated substrate, 

figure 4.5. 

Optical flat 

acer pillars 
Silicon die 
Adhesive 

Figure 4.5 	Backplane flattening schematic. 

Pressure was then applied to the whole structure using the vacuum packer, shown in 

figure 4.6, and left over night to allow the epoxy adhesive to fully cure. 
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Vacuum 
pump 

Figure 4.6 	Cell held under pressure by vacuum packer. 

Upon examination of the top surface of the silicon die surface, with the 

interferometer, we found that the backplane was flattened from about 3X down to 

about 312X, figure 4.7, over the pixel array. 

Figure 4.7 Backplane flattened using method 1. 

These investigations have shown that this method (1) is a feasible method of 

flattening device backplanes, but major problems remained in the form of 

Particulate contamination. 

The components of the die flattening assembly need to be kept free from all 

particulates. 

Adhesive thickness uniformity. 

The adhesive should be spead uniformly over the substrate. 
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Adhesive viscosity/curing. 

The adhesive should have a high viscosity to minimize the material seepage from the 

sides of the structure. It should also be UV curable for convenience. 

Spacer layer geometry. 

We have found that the existing spacer layer geometry is inadequate for the purpose 

of die flattening and requires modifications as described in 4.6.6. 

It was also found that the UV curing adhesive did not adhere to the silicon nitride on 

the backsurface of the silicon die. So a layer of epoxy adhesive was used in the 

construction of the test device, above. 

4.6.3 Backplane flattening (Method 2) 

The idea behind this technique was to use the stresses in the cell assembly, indicated 

by the arrows in figure 4.8, to clamp the silicon backplane to the coverglass (optical 

flat). 

Optical Flat 

 .1 

Adhesive 
"Flattened" backplane 	Spacers 

Figure 4.8 	Internal stresses in conventionally assembled glass on silicon cells. 

The test cells were constructed in the usual manner, by applying small quantities of 

UV curing adhesive to the covergiass and placing the covergiass, adhesive side down, 

onto the silicon backplane. A uniform pressure was then applied to the cell assembly 

using the vacuum packer, shown in figure 4.6, whilst the adhesive was curing. 

Examination of the flattened backplane revealled much better results than was seen in 

method 1. The flatness achieved was estimated to be around X/3, figure 4.9. 

111 



Chapter 4.Techniques for Backplane Flattening and Cell Gap Spacing. 

1 7 
Figure 4.9 	Flattened backplane (unfilled), where the horizontal fringes are from the top surface 

of the cover glass. The diagram to the right shows the location of the fringe of 
interest. 

Upon filling the cells, however, It was discovered that the surface tension forces at 

the LC/glass interface caused the flexible silicon backplane to bend. 

Figure 4.10 	 The surface tension forces cause an elastic deformation of the silicon die, 
which results in incomplete filling of the cell gap (air gap is in center of 
cell). 

4.6.4 Surface tension forces in cell during filling 

On filling these assembled cells with nematic liquid crystal, the surface tension 

forces, which enable the cell to fill, also "pulled" the substrates together. The pressure 

differential, AP, at the LC-glass/air interface, equation 11, is dependent upon the 

surface tension of the LC-glass/air interface, a, the contact angle, e, and the 

seperation between the plates, x. Since 0 <90 degrees, the plates will be pulled 

together, equation 12. 
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LPPAtm PSurf 	 (11) 

F=(co
sO 	[Landau, 1967] 
I—) 

AP=(±L_) Cos  O 	 (12) 

Glass 

Liquid ( Atmosphere 
Crystal 

Figure 4.11 	Liquid crystal filling the cell by capillary action. 

It was observed that most of the fringing, in the unfilled cells, was around the 

perimeter of the pixel array, and this associated thickness variation may have been a 

contributing factor to the poor uniformity of the cells during filling, figure 4.10. 

4.6.5 Backplane flattening (Method 3) 

The final method developed independently by both the author and Begbie [1997], was 

a combination of the first two techniques, in that the coverglass and supporting 

substrate were simultaneously bonded to the silicon backplane. The early 

experimental devices constructed used an epoxy adhesive between the substrate and 

silicon die. At the same time, unknown to the author, Sanford et al. [1998] reported a 

similar assembly technique in which they used a UV curing adhesive with a bottom 

support substrate. Begbie, used a Rodel wafer insert2, cut to the required dimensions, 

sandwiched between the device and the supporting substrate, figure 4.12, to produce a 

2  Rode! Corporation, Scottsdale, Arizona. 

Part number A12610 
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restoring force on the backplane. Although flatnesses of X/8 have been reported using 

this technique [Begbie, 1997], the author has only achieved flatnesses of ~! X13 in cells 

constructed using either an adhesive or the Rodel insert in these investigations. The 

main cause for this poor flatness is, again, due to particulate contamination on the 

components. We also found that the pressure applied to the cell assembly was 

important. When the pressure was too low, the backplane was not flattened 

completely, and when the pressure was too high the silicon began to flex between the 

supporting spacers. A major disadvantage of this technique, using a Rodel insert, 

which must be addressed before it can be used on working devices, is the stability of 

the Rode! insert. There was some concern whether the Rodel insert would retain its 

desired mechanical properties over the operational life time of the device. Alternative 

materials, which do not deteriorate with aging and exposure to heat, should be sought. 

UV curing 

Transparent / conductive ITO layer 
Optical Flat 	

LiquId crystal 
Spacers 	 aligning layer 

bdë!lnsert 

P / 	 Substrate 

Adhesive 	 Flattened VLSI 
backplane 

Figure 4.12 
	

LCoS cell assembly cross section. 

4.6.6 Future metal and spacer layer geometry modifications 

To enable the backplane flatness to be improved the spacer layer geometry was re-

designed, to extend the area covered by the spacers, figure 4.13. This extended 

geometry spacer layer, should provide support for the cell over the entire cell area 

and, when used instead of the earlier geometry layers, designed by Begbie, may 

reduce the fringing at the edges of the cells. Up until this time, SLM backplanes, 
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made within the A.O. Group, were designed without giving consideration to the 

ramifications of planarization (especially CMP) of the device. So dummy structures 

should be included into metal 3 (mirror electrode layer), of current SLM' s, to ensure 

that the spacer layer can maintain the correct spacing across the entire display (as the 

first generation of spacers were to be fabricated on top of the pixel mirrors). Also, the 

level of planarization must be such that there is no step from the pixel array (before 

final metalization) to the surrounding substrate. Fortunately, this extremely high 

degree of oxide flatness may be achieved by use of a masking and etching step before 

polishing [Seunanne, 1999]. This mask and etch process was only regarded as a short 

term solution by the author as it entailed an additional photolithography step. 

Modification of the first two (foundry) metal layers, in future devices, where high 

spatial density dummy features are placed around the array in the relatively bare parts 

of the backplane (adhering to the specified CMOS design rules) will prevent the need 

for this device dependent mask and etch process. 

4.6.7 Thermal coefficient of expansion mismatch 

The procedure for filling the cell with FLC, appendix C, requires that the device and 

FLC are heated to above the Chiral Nematic-Isotropic transition temperature of the 

FLC, (--97°C for the CS-1031 material supplied by Chiso, appendix D). The phase 

transitions of CS-1031 are as follows: 

600C 850C 970C 

SmC* SmA—,  N*  Isotropic 

This immediately places a limitation on the materials used to construct the cells. 

Although, at the time of writing, low thermal expansion glasses were freely available, 

B.2, a suitable low thermal expansion adhesive was not. Clearly, an adhesive which 

expands at a different rate than the glass/silicon is undesirable. It would be desirable, 

therefore, to reduce the number of glass/silicon-adhesive interfaces to a minimum. 

We kept the adhesive bonding the cover glass to the backplane3, whilst investigating 

NOA81 is selected as it is rated to 125°C, compared to the previously used N0A68/88 adhesives, which are 
rated to only 90°C. 
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alternatives to bonding structures to the back of the device. Since this investigation 

was carried out the author has discovered that Micropix [1998] have used a matched 

thermal expansion glass on their devices. 

Technique Advantages Disadvantages 

Electrostatic bonding [Sayah, Excellent flatness over a wafer. No good for post-processing. 
19891 

?J4 

Transfer bonding [Sayah, Wafer handling and dicing 
19891 problems, thermal mismatch. 

Self-pulling [Lin, 1993] Self aligning. Within lOj.tm. Complicated, 0.3j.tm variation 
in cell gap across active area, 
wire bonding and cell filling 
obstructed. 

Die attachment [Lin, 1993] Relatively simple, no spacers in Flatnesses reported to date are 
array. poor for reflective SSFLC 

SLMs (X/2), requires backface 
polishing, thermal mismatch. 

Method 1 Flatness of about 3/2X4  Thermal mismatch. 
achieved. 

Method 2 Flatness of X/34  achieved. Little thermal mismatch and 
therefore the most compatible 
of the latter three methods for 
use with PLC. 

Method 3 Flatnesses down to X/8, with Thermal mismatch. 
80nm variation in LC thickness 

The author has only acheived a across device. 4 flatness of> A/3 

Table 4.2 	Comparison between various backplane/wafer flattening techniques. Note that 
Methods 1, 2 and 3 use robust oxide spacers which protect mirrors during cell 
assembly. The glass used in flattening the backplane acts as one plate of an 
interferometer, thereby allowing the operator to view the relative flatness of the die. 

Other methods of flattening the wafers/die such as depositing stress compensating 

layers (sintered aluminum) on the backface of the wafer were considered to be 

unfeasible as the stress distribution across the wafer/die varied from sample to 

sample. In order to flatten a sample in this way a complicated finite element analysis 

would need to be performed, to determine the geometry of the patterned stress 

compensating layer, and this would vary from die to die and possibly wafer to wafer. 

Potential for improvement. 
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4.6.8 Adhesive encroachment 

At present bonding of the cover glass to the silicon backplane with a UV curing 

optical adhesive was the only method used by the A.O. Group. Unfortunately, the 

capillary forces in the very small cell gap, caused the adhesive to spread considerably, 

before it was finally cured. Quite often this spreading reached the active area of the 

display, reducing the yield of useful devices. It was apparent that this problem would 

only worsen with the decreasing cell gap thicknesses. Although the quality of cells 

assembled depended on the operator skill, adhesive spreading could be reduced by 

controlling the above mentioned capillary forces. 

Perimeter trench 

In addition to using a continuous spacer layer to restrict the spreading of adhesive in 

the small cell gaps, a trench etched into the planar oxide, was shown to minimize the 

adhesive encroachment into the cell gap, as shown in figure 4.14. 

Figure 4.13 	 Modified spacer layer geometry and trench etch masks. The area 
enclosed by the spacer layer is also representative of the area covered 
by the cover glass. 
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Figure 4.14 	 Adhesive (left) spreading in the small cell gap, which would be 
exacerbated by the move from 2.41tm to 0.8.tm cell gaps, was 
controlled by a trench etched into the substrate. 

4.6.9 Spacer aligning mark issues 

The registration marks, used to align the reticles to the underlying layers on the 

wafer, were in close proximity to the pixel array, figure 4.13. As we will see in the 

next chapter, the height of any feature patterned by lift-off, depends on its lateral 

dimensions. The spacer aligning marks (local) are 20tm wide, figure 4.15, whereas 

the spacer pillars are 8.tm wide. This has serious implications if we are to place a 

cover glass over the array to form an accurate cell gap. If we are to move from an 

unrepeatable manual to a highly repeatable automated SLM manufacturing process in 

which the cover glass is positioned very accuratelly in some assembly jig, these 

alignment issues must be addressed. 

Local spacer aligning mark removal 

The perimeter trench, 4.6.8, and spacer layer local aligning mark removal were 

combined on a single mask, figure 4.13 and 4.15. Following spacer deposition and 

patterning, the wafer will be patterned with the mask which is aligned globally. As no 

automatic alignment will take place, the pattern is blind stepped, 2.8.1. The accuracy 

of registration of the perimeter trench and local aligning mark etch is not critical, so 

the relatively large registration uncertainty, of global alignment will be acceptable. 
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Figure 4.15 	 256x256 SLM spacer layer local aligning marks in close proximity to pixel 
array. The cover glass may extend past one or both of the local aligning 
marks shown. This problem is even worse for the 512x512 SLM as both 
sets of alignment marks are only 500.tm from the array. 

4.7 	Cell inspection 

The uniformity of the unfilled cells was measured by the white/monochromatic 

sodium light interference fringes observed between the two substrates. A visual 

inspection of the liquid crystal filled cells was carried out by placing the cell between 

two crossed polarizers, on a light box, if the cell was transmissive. If the cell was a 

reflective mode device, it could be inspected under an analyzer with a suitable 

ambient light. Further evaluations of the device quality could be made by measuring 

the LC switching speed and contrast ratio. Where the CR can be measured on two 

scales namely the "small area" and the "large area", where "small area" refers to pixel 

sized areas and "large area" to groups of pixels that may cover half the display. The 

"large area" CR is important as it includes the deleterious effects of the edges of the 

pixels. 
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4.7.1 Cell gap thickness 

Various methods have been reported of measuring the gap thickness. The simplest of 

which is to observe the fringes under white light. As the light is polychromatic, 

colored fringes can be observed (from blue to red). This allows the identification of 

which direction the variation is progressing due to the color variation (i.e., blue is 

thinner than red). 

A white light scanning interferometric method, developed by M. Hart [1997], had a 

nanometer resolution, but was only effective in transmission mode. Another method 

involved illuminating the cell at an oblique angle, using a monochromatic source. The 

reflected light, which was projected onto a suitable screen was in the form of 

interference patterns. The separation between the fringes at a known distance from the 

cell, could be equated to the cell gap, d. Unfortunately, this method was not accurate 

enough (+/-0.5tm) for our needs. Other methods such as capacitive measurements 

and measuring the state of polarization of light reflected through the unknown 

thickness of LC maybe possible. Kazlas [1996] used a 4mm diameter tungsten probe 

beam on transmissive glass-on-glass cells to measure the cell gap thickness, by 

plotting the optical transmission as a function of wavelength. 

A good indication that the LC thickness was equal to the spacer height, which we 

would expect to set the cell gap, was to examine the cells under a polarizing 

microscope. It was found in the early experiments, that on cells constructed from 

smaller backplanes which had not been pre-bowed, the liquid crystal had flowed over 

the spacer layer. Examining the larger cells, with the pre-warped backplanes, we saw 

that there was much less LC between the spacer layer and cover glass. In fact there 

was no observable LC on the spacers toward the edges of the cell and the cells 

assembled by Begbie [1998] showed no LC over any of the spacer pillars. 
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4.7.2 Spacer layer geometry 

Unlike conventional spacer particles and other spacer materials such as BCB (4.3), 

our SiO, spacers patterned by lift-off, could be patterned into almost any geometry 

down to sub-10pm, without etching with the harmful chemicals which attack the 

aluminum mirrors. Although pillars were sucessfully used in our method of flattening 

the device backplane and setting the cell gap thickness, they tended to cause defects in 

the liquid crystal during cell filling. Possibly, a better geometry of spacer layer would 

consist of a series of fences running the length of the display. These fences would 

section off the display into smaller cells, which fill simultaneously. As mentioned in 

section 4.4.3 the spacer layer geometry was extended to cover at least the same area 

as the covergiass. In the future, issues such as the spacer distribution density needs to 

be investigated to determine the effect of the spacer pillars on the texture of the LC 

(i.e., the number LC defects). Colgan et al. [1998] has used finite-element modelling 

to determine the optimum spacer distribution density required to produce the flatest 

possible backplanes. The spacers in our investigations were to be patterned on top of 

the mirrors for a number of reasons, the first due to the ability to fabricate 

pillars(features) between the mirrors. It was considered impossible to fabricate 

mirrors using lift-off into a high aspect ratio gap [Stevenson, 1998]. Other 

considerations such as ECR-PECVD deposited silicon dioxide growth rate and loss of 

pattern resolution during photoresist exposure due to light scattering futher made 

patterning a spacer layer between the pixels less feasable. Having said that, the thin 

mirror process, which has been developed, should eliminate most of these problems. 

Various authors have presented strong experimental evidence that the LC orientation 

is influenced by surface adsorption and hydrodynamic flow [Bodammer, 1998]. 

Therefore, in an effort to maintain the desired straight flow front during cell filling, 

we designed a spacer layer mask consisting of fences running the length of the 

display. These and other spacer geometries will be fabricated and tested by others in 

the A.O. Group. 
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4.8 Discussion 

I have reviewed the main LC cell spacing and backplane flattening techniques 

reported at the time of writing. At the start of these studies there were no working 

LCoS devices within the A.O. Group. One of the main issues hindering the group in 

the manufacture of devices with an acceptable optical quality was that of the liquid 

crystal thickness uniformity and backplane flatness. We have demonstrated three 

techniques of flattening bowed silicon backplanes. All three techniques rely on robust 

microfabricated silicon dioxide spacers on the silicon backplane which serve to 

protect the delicate pixel mirrors as well as setting the required cell gap. Although the 

flatnesses achieved and hence the cell gap uniformities were good, the backplanes 

produced were still not flat enough for use in coherent light applications. Particulate 

contamination and the spacer layer geometry were found to be the limiting factors in 

obtaining the flatnesses required. My studies have, however, demonstrated techniques 

which enable the construction of devices which can be used in non-coherent light 

applications (i.e., displays). This work has also served to highlight and address some 

of the problems present when assembling such cells. These problems included those 

of the potential for poor cell gap uniformities due to the thick ECR-PECVD deposited 

spacer layer aligning marks in the cell gap and adhesive encroachment into the device 

array during cell construction. There are still issues remaining which need to be 

addressed before it is possible to use these techniques for the manufacture of ELCoS 

devices, but these techniques will enable the A.O. Group to manufacture NLCoS 

devices with a level of LC thickness uniformity not possible before these studies. 
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Microfabricated Layer Characterization. 

5.1 Introduction 

A precise control of both the absolute value and uniformity of the LC cell thickness is 

required for high contrast and good uniformity. It is therefore very important that we 

can accurately set the liquid crystal cell gap thickness, chapter 4. In order to do this 

we must characterize the spacer layer patterning and deposition processes. This 

section will start by describing the spacer layer fabrication process in some detail. 

The results of the patterning characterization followed by the deposition optimization 

are then discussed. 

5.2 	Spacer layer fabrication by lift-off 

A lift-off procedure was used to pattern the silicon dioxide spacer layer because the 

presence of the underlying aluminum mirrors was not compatible with chemical 

etchants. Control of the step, edge and sidewall coverage was critical for providing a 

"weak link" to permit the seperation of the deposited silicon dioxide film. The silicon 

dioxide was deposited over a patterned sacrificial layer, which can be removed by 

mechanical, chemical or chemo-mechanical means, so "lifting" the unwanted material 

from the surface. Several methods of "lifting" the undesired material were available, 

but they all relied on a solvent or etchant to dissolve the sacrificial layer. Typical 

photoresists are quite soluble in acetone or other organic solvents. Subsequently, the 

unwanted material and the sacrificial layer are floated or scrubbed off the surface of 

the wafer with agitation, a high pressure spray or other mechanical means. 
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The wafers were thoroughly cleaned prior to the treatment with an adhesion 

promoting Hexa-Methy-Di-Silazane (ENDS) vapor prime and coating with 

photoresist, figure 5.1. The photoresist, Shipley SPR2, was spin coated @ 5.4Krpm to 

a thickness (typically 1.2tm of phototresist for <lj.tm spacers) exceeding that of the 

desired ECR-PECVD deposited silicon dioxide spacer layer height. Following the 

soft bake cycle of 110°C for 60 seconds, the photoresist layer was exposed to UV via 

the spacer layer mask. The chlorobenzene soak, described in 2.10.2, effectively 

hardened the top surface of the photoresist leaving the characteristic lift-off profile 

after developing. To prevent particulates, 4.4.1, becoming trapped in the spacer layer, 

the wafers were subjected to a thorough rinse in de-ionized water and then dried in a 

N2 stream. The spacer material was deposited at a low temperature, by ECR-PECVD, 

2.6.3. The last stage was lift-off - this was achieved by ultrasonic scrubbing in 

acetone. The wafers were then rinsed in isopropanol and dryed in a N2 stream. 

______ 

	
k_~ 

Spin coat 	Softbake 
Wafer scrub 	

HMDS vapor 	 _____

prime 	photoresist I 	I photoresist 
Print spacer 

pattern 

Perform 
, 	

ECR-PECVD 1 Rinse and 	Develop 
liftoff 

j 	
[position J 	dry 	 photoresist 

Figure 5.1 	Spacer layer fabrication procedure. 

5.3 	Patterning optimization and characterization 

soak 

In order to provide the best in-house resolution, with the Optimetrix g-line 5X 8600 

series printer, the photolithography process was optimized. Three (bare) 3" diameter 

silicon wafers spin-coated, see figure 5.2, with 1.6, 2.4 and 3.6.tm soft baked (110°C) 

photoresist (HPR206) were patterned with a test mask on an exposure matrix, in 

which the exposure durations varied from 2000ms to 7500ms. The wafers were then 

soaked in chlorobenzene and developed in Microposit 351 at room temperature 

(19°C) in 30 second intervals. The main reason for choosing to develop the 

photoresist manually was that the 4" product wafers could not be handled by the two 
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SVG track systems, available in the EMIF, see appendix D. As a guide to the exposure 

duration required, for a specified photoresist layer, the smallest feature developed on 

each wafer was determined. It was found that the thicker resist layers were, as 

expected, more difficult to pattern with the smallest feature sizes and over exposure 

of the thinner resist layers lead to all the features being lost. The optimum exposure 

time for the HPR206 photoresist was found to be around 4000ms, see figure 5.3. 

Thinner layers of photoresist were obtained from SPR2 photoresist, which could be 

coated automatically on the SVG track using the standard program to a thickness of 

1.2tm. The standard exposure time for this photoresist, over silicon, was 1400ms. 

60000 
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0 

U 

0 1 2 3 4 5 6 7 8 9 10 

Spin Speed (krpm) 

Figure 5.2 	Spin speed curve (HPR206 photoresist). 1 .2tm was obtained by spin coating SPR2 
photoresist at 5.4krpm, where the standard deviation of the resist thickness across a 
75mm diameter wafer is shown by the error bars. 

HPR206 photoresist was used to obtain thicker layers of photoresist. Although it can be spin coated to 
thicknesses as low as I .61.tm, this is not recommended as the high speeds required cause unnecessary wear of 
the coater bearings. Instead SPR2 is used in the fabrication of our 0.8i.tm spacer layers. 
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0 	2500 	5000 	7500 
Exposure duration (mS) 

Figure 5.3 	The smallest feature sizes developed in HPR206 on the exposure 
matrix. All of the features in the thinner resists were over 
developed with excessive exposure. 

5.4 	Patterned feature characterization 

In this section we will describe the characterization of the spacer layer patterning 

process. 

5.4.1 Deposition rate versus geometry 

The deposition rate of the ECR-PECVD silicon dioxide was found to be dependent on 

the aspect ratio of the patterned photoresist layer due to a depletion of the reactant 

gasses in the deep trenches. It was important that the factors which may affect the 

deposition rate of the ECR-PECVD silicon dioxide were known. A mask was 

designed, figure 5.4, which took into account the following factors: 

Spacer width (constant length 200l.tm and spacing 50pm). 

Spacer length (constant width, from 1tm to 20tm and spacing 50j.im). 

Spacer seperation (constant length 200 gm and width, from 1pm to 25tm). 

Spacer orientation (right angles) 
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(5) 	Corner effects (constant spacing 5O.tm and widths varying from 1.tm to 

25p.m). 

I I I I 111111 U 
 

 

1 1111111 
 

F~ . ............. 'Jr 
(5) 

Figure 5.4 	Spacer layer patterning characterization test patterns. (1) 
width, (2) length, (3) separation, (4) orientation and (5) 
corner effects are examined. 

In this experiment three wafers were coated with photoresist to thicknesses of 1.2pm, 

1.9jtm and 2.6tm, respectively. The wafers were then patterned with the test mask 

design, see appendix B, as described in section 5.2. The spacer/feature height and 

geometries were measured with a surface profileometer (Sloan Dektak 8000)2, with a 

2.5tm radius diamond tip, figure 5.5. It was found that the main factor which affected 

the feature height was the width, see figure 5.6. The length of the spacer only effected 

its height when it was of a similar magnitude to the width <10 gm. 

It should be mentioned at this point that consideration must be given to the possibility of errors in 
measurement due to the stylus tip profile. Tall features tend to follow the profile of the stylus much more 
than the smaller features. As the spacer features, under investigation, were !~ 0.75 pm in height we were able 
to measure the feature widths with a high degree of certainty that the traces we saw were accurate 
representations of the spacer cross sections (evident from the near vertical walls in the traces). The surface 
profiler was calibrated against a standard which is traceable to the National Institute of Standards and 
Technology. 
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Figure 5.5 	 Dektak trace of a section of the test pattern showing how the 
spacer height (kA) varies with its width (gm). The outer features 
are for reference and leveling of the trace. 
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Figure 5.6 	 Spacer height vs. width with various photoresist thicknesses. 
Note: The widths of the features were measured from approx-
imately 2/3 of the height from the base. 
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5.4.2 Deposition rate versus time 

From the spacer layer characterization experiments, section 5.4, it could be seen that 

the deposition rate of the patterned spacers depended on the aspect ratio of the 

patterned photoresist stencil. We then needed to know whether the deposition rate 

was time dependent. As the deposition progresses we could see, from figure 5.7, that 

the material being deposited may alter the "aspect ratio" of the hole, in the 

photoresist, in which the spacer layer material was being deposited. In order to 

determine whether this effect would introduce any non-linearities into the spacer 

deposition/patterning process three identical silicon wafers (1,2 and 3) were coated 

with 1.2.tm of Shipley SPR2. The spacer characterization pattern, appendix E, was 

printed on the wafers and the photoresist developed in Microposit 351 as described in 

5.2. ECR-PEC\TD silicon oxynitride (table 5.3, recipe 16) was then deposited onto 

wafers 1, 2 and 3 for 20, 40 and 60 minutes, respectively. 

Figure 5.7 	Lift-off profile. Aspect ratio is given by hlw. 

129 



Chapter 5. 	Microfabricated Layer Characterization. 

16000 

14000 
D 12000 

, 10000 

8000 

6000 

4000 

2000 
Un 	0 

0.1 	0.15 	0.2 	0.25 	03 	0.35 
Aspect Ratio 

Figure 5.8 	Deposition thickness after 20, 40 and 60 minutes. 

The height and width of the features were measured with the surfaceprofileometer, as 

in 5.4. It was found that, under the conditions stated, the feature deposition rate could 

be assumed to be constant, over the range shown, see figure 5.8. 
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5.5 	Spacer layer deposition uniformity 

In addition to having a high thickness uniformity and thickness tolerance the spacer 

material used must be robust, inert to the LC and have a strong adherence to the 

substrate on to which it is deposited. The deposition method must also be capable of 

depositing the spacer material at close to room temperature for it to be compatible 

with the lift-off process described in 2.10.2 and 5.2. The only method known to date 

of achieving these results was ECR-PECVD, see 2.6.3. SiN was considered as a 

harder and more robust alternative to SiO,, but unfortunately it was found that the 

uniformity of the standard recipe was much poorer than that of the standard SiO,, 

recipe. The reason for the poor uniformity of our in-house SiN may have been due to 

the absence of NH3  in the process [Sherman, 1987]. Compacted ECR-PECVD silicon 

oxynitride, which again was harder and more robust than the standard SiO,, was also 

discovered to be incompatible with the lift-off process. It was found that the residual 

solvents in the soft baked photoresist outgassed, during the film deposition, causing 

the oxide/resist to blister. The subsequent removal of the unwanted material then 

became much more difficult than when the uncompacted SiO,, was used. Even with a 

prolonged lift-off and cleaning cycle, material was still found at the edges of the 

spacer layer, figures 5.9, 5.10 and 5.11. 

5.6 	ECR uniformity optimization experiment 

The aim of this experiment was to find a recipe which allows us to obtain the best 

possible deposition uniformity with the the Oxford Plasma Technology ECR-PECVD 

reactor. A good thickness uniformity was very important, both within a die area and 

on a wafer scale to enable us to set an accurate FLC cell gap. The characteristics of 

the ECR-PECVD system could be changed significantly by altering the process 

parameters. For example by altering the gas flow rates it was possible to change the 

glow discharge behaviour even if the power and pressure remained unchanged. This 

could have a huge effect on the thickness uniformity of the deposit as well as its 

stoichemistry. Since no theoretical description of such a complex system existed at 
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the time of writing, the reactor had to be characterized to obtain the best deposition 

thickness uniformity [Sherman, 1987]. As there were many factors which may have 

affected the deposition uniformity a designed experiment was performed to gain the 

maximum amount of information with the least number of experimental runs. 

The film refractive indices and thicknesses were measured with an Applied Materials 

Ellipsometer II and Nanospec AFT, respectively, see appendix E. A sample of the 

AFT measurements was also checked with the Dektak, which was found to be in 

close agreement. 

Figure 5.9 	Surface profileometer trace of feature, center, in which lift-off is 
incomplete. The spikes show the presence of unwanted material. 
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Figure 5.10 	SEM micrograph of an uncompacted SiO, spacer in which lift-off is 
incomplete. The unwanted material can be seen around the perimeter of 
the feature. This is illustrated further in the figure below. 

Figure 5.11 	Burr formed after removal of photoresist and oxide layers. 

If the photoresist layer was too thin and/or too much oxide was deposited or there was 

an improper trench edge definition (over hang in the photoresist) burrs could be 

formed at the edges of the patterned features as shown above. To overcome this 

problem the wafers were coated with a thicker layer of photoresist, see figure 5.1 

(spin speed curve), to prevent burrs forming. Ultrasonic scrubbing also helped by 

removing any existing burrs. 
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5.6.1 Screening 

In a conventional PECVD process, there are three main variables to control: plasma, 

pressure and gas composition, compared to an ECR-PECVD process, in which there 

are five major variables: the magnetic field, microwave source, as well as the 

magnetron plasma, pressure and gas [Kearney, 1989]. Obviously even if we did 

perform the designed experiment with just the major variables, there would have been 

far too many runs to perform. It was therefore necessary to run a screening 

experiment to reduce the number of variables with which we would perform the 

experiment allowing only the most significant and/or controllable factors to be 

investigated. Of the possible variables, table 5.1, we needed to select the three which 

had the greatest effect on the film uniformity, see chapter 2. Unfortunately, the 

limitations of the Oxford Plasma Technology ECR system dictated the factors which 

were to be used in the optimization experiments. Major variables affecting the film 

deposition range and uniformity were rf power density and distribution, gas phase 

composition and distribution, and total pressure in the reaction zone. Of greatest 

importance was the distribution of power density, because the lifetimes of the reactive 

species are generally very short lived and must be continually generated and 

regenerated across the deposition zone [Levy, 1989]. 

# Factor 

1 Silane (Sill4) flow rate 

2 Nitrous Oxide (N20) flow rate 

3 Table Height 

4 Table/Wafer temperature 

5 Chamber pressure 

6 Microwave (MW) Power 

7 Argon (Ar) flow rate 

8 RF power 

9 Magnet currents 

Table 5.1 	List of possible variables. 
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We were able to eliminate five of the variables, from our experience of the ECR 

deposition process. The table height was set to 100mm to give the maximum vertical 

distance between the silane shower ring and the wafer, as the plasma profile in this 

part of the chamber was cone shaped. The table was liquid cooled and was only 

heated by the ion bombardment etc., during film deposition, so there was little control 

of the wafer temperature. The chamber pressure was also difficult to control 

accurately. The magnets were used to shape the plasma, see section 2.6.3, and were 

set up for resonance [Ruthven, 1997]. 

RF power OW 

Wafer temperature 38-400C 

Chamber pressure 5 x 10 	torr 

Argon flow rate Osccm 

Magnets 1&2 130 and 55A 

Table 5.2 	Setting which we had little or no control over 
with the OPT reactor. 

This left factor numbers 1,2,6,7 and 8 in table 5.1. The Argon flow rate, 7, and RF 

power, 8, were known to be incompatible with the lift-off process and was also 

eliminated from the list. 

5.6.2 Input parameter level settings 

The factor space to be investigated was determined from known level settings. The 

level settings not only affected the film composition, uniformity etc.; certain 

combinations may have also prevented the plasma from striking. The three remaining 

factor levels were determined, from existing deposition recipes, to be SiH4  (100 sccm 

to 125 sccm)', N20 (20 sccm to 35 sccm) and the microwave power (300W to 

500W). The mid-points were then set as 113 sccm, 28 sccm and 400W, respectively, 

to estimate any curvature in the reponse that might exist in the factor space being 

investigated. 

'Nominally 4.09% SiH4  in He 
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5.6.3 Orthogonal table for deposition optimization. 

The matrix experiment was designed by drawing up a table of the factors to be 

investigated, see table 5.3. 

A matrix can be called orthogonal if and only if the following requirements are met: 

The number of occurences of each level setting must be equal within each 

column. 

All rows having identical level settings in a given column must have an equal 

number of occurances of all other level settings in the other columns. 

The matrix for a given number of columns must be the one with the minimal 

number of rows that satisfy the above conditions. 

The matrix in table 5.3 satisfies all of these requirements. A more detailed description 

of orthogonal matrix design is given in [Yin, 1987] and [Wolf, 1986]. 

Response, %U, is given by 

%U 
= (max— mm) xl00% 
	(14) 

(max+ mm) 

The responses selected were the deposition uniformity, %U, defined by equation 14, 

the deposition rates and refractive indices of the film, table 5.3. Although the latter 

two responses were not used in the optimization experiment, they were referred to in 

later sections. 

The main effects for each individual factor are defined to be the difference between 

two averaged responses. 
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The sequence of experiments were randomized to allow any parameters, such as 

temperature variations, to have an equal opportunity to effect all the experimental 

runs. 

Run 	SiH4 	N20 MW 	%U 	Avge dep. 	Refractive Index 
# 	(sccm) (sccm) (W) 	 rate (A 1mm) - 	(n) 

1 113 28 300 Ui 2.60 106 1.43 
2 113 28 400 U2 2.68 220 1.42 
3 100 20 300 U3 1.45 167 1.38 
4 113 35 400 U4 1.87 222 1.45 
5 125 28 400 US 2.26 287 1.40 
6 113 28 400 U6 2.60. 297 1.42 
7 113 28 400 U7 1.86 258 1.42 
8 113 28 500 U8 4.28 314 1.40 
9 113 28 400 U9.. 2.84 279 1.42 

10 100 35 300 UlO 0.75 166 1.40 
11 100 35 500 U 1 3.41 279 1.41 
12 113 28 400 U12 2.9() 	: 283 1.42 
13 100 28 400 U13 2.71 258 1.40 

348 136 
15 100 20 500 U15 3.93 266 1.40 
it) I2 Th Jlo 0'TT) 206 142 
17 113 20 400 U17 3.21 281 1.42 
18 125 20 300 U18 1.24 207 1.42 
19 125 35 500 .. 1519 2.00 290 1.40 
20 113 28 400 U20 1.44 1  254 1.42 

Table 5.3 	Experiment run sheet. Highlighted are the runs which gave the best and worst 
deposition uniformites. The latter happened to be the recipe used as standard in 
all non-planar depositions carried out by the EMF. 

Usiianei 2.450 Unitrousi 3.156 	Umw i 1.288 
Usiiane2 2.928 Unjtrous2 2.906 	Umw2 2.546 
Usiiane3  2.370 Unjtrous3  1.686 	Umw3  3.914 

AU 0.558 1.470 2.626 

An initial visual inspection of the wafers indicated that films on wafers 10 and 16 

were extremely uniform, whereas the other wafers exhibited varying degrees of non-

uniformity ("bulls eye" effect). A first order data analysis, which is sufficient in the 

vast majority of process optimization and characterization experiments, was 

performed as follows [Yin, 1987]: 
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The arithmetic mean for each level setting for each input parameter is determined, 

table 5.4. The average of the repetitions was 2.39 with a standard deviation of 0.596. 

U..1= 1/5 (U3+U1O+U11+U13+U15) 

U12= 1/5 (U1+U2+U4+U8+U17) 

1/5 (U5+U14+U16+U18+U19) 

1/5 (U3+U14+U15+U17+U18) 

1/5 (U1+U2+U5+U8+U13) 

U. 0 = 1/5 (U4+U10+U11+U16+U19) 

U-j= 1/5 (U1+U3+U10+U16+U18) 

U.,2= 1/5 (tJ2+U4+U5+U13+U17) 

Umw3= 1/5 (U8+U11+U14+U15+U19) 

AU = U( X) - U()  

Table 5.4 	 Formulae for calculating the output function averages and differences. 

Comparing the standard deviation of the repetitions value (0.596) with the output 

function differences, AU, we can see that the effect of the silane flow rate on the 

deposition uniformity is of a similar value, and is therefore not significant over the 

range studied. This was not really surprising as the silane was introduced, into the 

plenum chamber, away from the area where the plasma was generated 2.6.3. AU for 

the nitrous oxide and microwave power were, however, much larger than the standard 

deviation of the repetitions, which meant that they were significant, see figure 5.12. 

Figure 5.12 	First order effects. MW power had the greatest effect, followed by 
the nitrous oxide flow rate, on the deposition thickness uniformity. 
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Figure 5.13 	Deposition rate across the two test 75mm wafers from the center, 0mm, 
to the edge, 35mm. 

Run 14, table 5.3, was the standard recipe, deposited by the EMF. It could be seen 

that this was the worst recipe in terms of deposition uniformity (5.95%) for the spacer 

layer deposition. The uniformity of the optimized recipe, run 16, was found to be as 

low as 0.4%, see figure 5.13. 

5.6.4 Properties of the spacer material 

A measure of the film composition/quality, which is commonly used in industry, can 

be obtained from the refractive index and buffered oxide etch (BOE) rate data. It was 

found that the film BOE rates, of these ECR-PEC\TD films, were too high to be 

measured, which indicated that the films were porous. A dry etch approach was 

therefore used to determine the film etch rate of the films. A Plasmatherm radial flow 

reactor (PK 2440 RIE), with a fluorine based chemistry, was used to determine the 

film dry etch rate, with the reactor parameters listed in table 5.5. 

CHF3  Flow Rate 75sccm 
He Flow Rate 15sccm 
RF Power 750W 
Base Pressure lmT 
Temperature 44°C 

Table 5.5 	Silicon oxide RIE parameters. 
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The refractive indices of the films, table 5.3, were low compared to that of thermally 

grown SiO2, (1.46 @ 633nm), which also indicated that the films were indeed porous. 

The plasma etch rate of the optimized spacer layer recipe (run 16, table 5.3) was 

measured to be 400A/min compared to that of the standard recipe (run 14) of 

270A/min. Although the un-compacted ECR-PECVD SiO films were very porous, 

their strength was not a real concern as the ECR-PECVD silicon oxide pillars would 

be patterned into fairly rigid structures, compared to the conventional (spherical / 

cylindrical) silica spacer particles, figure 5.14. The first generation of devices were to 

have spacers patterned on top of the mirrors which would be 8tm wide and between 

0.8 and 2.4pm high. 

Figure 5.14 	SEM of a silica spacer rod fractured along its long axis. 
Courtesy of M. Begbie. 

5.7 	Spacer layer growth rate 

As the first generation of spacer layers were to be deposited on the aluminum pixel 

minors, we needed to know how its deposition rate differed from that on 

silicon/silicon dioxide. Increasing the deposition temperature increases the film 

deposition rate [Sherman, 1987]. Because the emissivity of SiO2  is much higher than 

that of aluminum the surface of the Si02  will radiate heat more efficiently and reach a 

lower steady state temperature than the aluminum [Sherman, 1997]. To measure the 

deposition rates on the two substrates a patterned aluminized silicon wafer was 
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blanket deposited with ECR-PECVD SiO,, and the SiO,, film thickness measured, with 

a Nanospec AFT, both on the silicon and aluminum. The ECR-PECVD SiO,, 

deposition rate below, was found to be —14% higher on aluminum than on silicon. 

Substrate material Deposition rate 
Aluminum 

Silicon 
241A /min (c=4.5) 
212A /min (c=0.9) 

Table 5.6 	ECR-PECVD deposition rates on aluminum and silicon. 

5.7.1 Repeatability of deposition and patterning process 

To set accurately the LC spacing, the spacer layer thickness must be known to within 

a high tolerance. Unlike other types of plasma deposition/etch reactors, the geometry 

of the Oxford Plasma Technology ECR reaction chamber did not facilitate the use of 

an optical thin film thickness monitor, which would have been needed to be 

positioned above the wafer. Therefore, the film deposition rate on specific substrates 

under specified conditions, must be known and highly repeatable. From the 

repetitions, performed in the optimization experiment, 5.6.3, table 5.3, we saw that 

the standard deviation of the deposition rates, cy, was 27A/min. Clearly, this 

inconsistency in the deposition rate was unacceptable, for our application, and needed 

to be improved upon. 

An explanation for this poor repeatability was that the table/wafer heating during 

reactor operation was the cause of the change in deposition rates [Ruthven, 1997]. To 

test this hypothesis an investigation was carried out in which five depositions were 

performed, one directly after the other, with a minimal time delay between them, see 

table 5.7. 

Wafer# 1 2 3 4 5 
Average film 
thickness (A) 

8099 8071 8028 8153 8039 

Table 5.7 	Process time 30 minutes (target thickness 8000A). The mean thickness, 
measured by the Nanospec AFT, is 8087A with a standard deviation 
ofc=50A. 
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The standard deviation of the deposition rates in this case was found to be much 

lower, only 1.68A/min. From these results we concluded that the best deposition rate 

consistency, within a batch of wafers, occured when the batch of wafers were coated 

with the shortest possible time delay between depositions. Prior to each "batch" of 

runs the deposition rate should be re-calculated. Of equal importance, to the above, 

was the repeatability of the photoresist patterning process. At the feature sizes we 

were interested in, any variation in the feature width would ultimately affect the 

spacer height, 5.3. 

Three wafers coated with photoresist were printed and developed, as described in 5.2, 

over a period of days. Upon measuring the width of the patterned photoresist features, 

we found that there were no significant variations between them, and the measured 

height of the patterned ECR spacers on each wafer was very close to our predicted 

value. 

5.8 Summary 

The spacer layer patterning process has been characterized to enable us to pattern 

spacers to a known thickness. At the start of these investigations the ECR-PECVD 

SiO2  film deposition process was not set up for depositing LCoS spacer layers. In fact 

the standard recipe used by the EMF was of a very poor deposition thickness 

uniformity. The deposition thickness uniformity has been optimized and the 

deposition thickness repeatability has been drastically improved, see table 5.8. These 

fully characterized and optimized spacer layers now present the opportunity to 

fabricate <19m thick PLC cells to fully utilize the potential of PLC. 
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Before investigations After investigations 

Masks designed which did not account for Spacer layer patterning was characterized. 

effects of spacer layer geometry. 

ECR-PECVD deposition uniformities of 5- Optimized uniformity of <1% 

6% over a 75mm diameter wafer was 

available. 

ECR-PECVD Si02  growth rate on silicon and 

aluminum determined (14% difference in deposition 

rates) 

Repeatability of the ECR-PECVD Si02  Process was optimized to produce deposition rate 

deposition process was unacceptably low with a standard deviation of 1 .68A/min between 

(standard deviation of 27A/min) wafers. 

Table 5.8 	Improvements to the spacer deposition and patterning 
process following these investigations. 
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Chapter 6 

Transparent Conductive (ITO) Layer Enhancements. 

6.1 Introduction 

The transparent conductive Indium Tin Oxide (ITO) layer on the inner-surface(s) of 

LC devices is important as it allows voltages to be applied across the LC cell thus 

switching the LC layer as well as allowing the device to be optically interogated. ITO 

is a transparent (in the visible), highly degenerati wide bandgap semiconductor used 

extensively in the liquid crystal display industry in which the conduction carriers in 

the ITO come from the tin dopants and oxygen vacancies. It can be deposited by 

various methods including sputter deposition and evaporation [Song, 1998], 

[Uthanna, 1998]. Typically thin films of sputter deposited ITO consist of domains of 

grains having the same orientation. This grain-subgrain structure is characteristic of 

sputter deposited polycrystalline ITO. The conductivity of the layer is limited by 

these domain boundaries, which cause electron scattering [Higuchi, 1993]. The origin 

of the granular structure has been described by crystalline plane dependent re-

sputtering during sputter deposition. The re-sputtering rate is considered to be 

dependent on the orientation of the crystalline plane of the ITO [Kamei, 1995]. 

We have identified two problem areas in which this layer can be further processed to 

improve the optical performance of current LC devices. 

(1) The ITO layer can have an extremely rough topology, depending on its deposition 

conditions, which may adversely affect the alignment of the adjacent LC layer. 
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(2) The ITO layer, in a typical LC cell, has a refractive index which is significantly 

higher than that of any of the adjacent layers and therefore it introduces unwanted 

reflections of the incident light. 

In this chapter we will describe the use of a standard polishing process to reduce the 

surface roughness of the ITO and the optimization of the layer thickness to improve 

the light throughput efficiency of the device. 

6.2 	Chemically Mechanically Polished ITO 

The alignment of the liquid crystal molecules at a surface is determined by the angle 

of evaporation of the SiO (see section 1). Small or grazing angles of incidence of the 

evaporant flux generally leads to columnar growth whereas medium angle 

evaporation gives a corrugated or "ploughed field" morphology. It has been reported 

that the morphology of the boundary substrates may have an effect on the subsequent 

SiO, aligning layer and hence the LC orientation [Gazdag, 1979], [Clark, 1984], 

[Bodammer, 1996]. ITO coated substrates have two scales of roughness Long range, 

from the undulations in the glass, and short range from the rough ITO layer, figure 

6.1. The purpose of this investigation was to reduce the roughness of the surface on a 

small or microscopic scale, which should be conducive to good LC alignment. 
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Angstroms 

Figure 6.1 	 Scanning tunneling micrograph of ITO on 1ass (supplied by Merck). The 
grain-subgrain structure can clearly be seen'. 

Other methods of "smoothing" ITO have been reported in the past [Fujita, 1997], 

[Puiham, 1996]. AFM investigations by Fujita et al. on ITO surfaces treated by 

mechanical rubbing, HCIIH20 dipping and 02 plasma irradiation have all shown a 

decrease in the surface roughness. The most marked reduction in surface roughness, 

however, was reported to have resulted from mechanical rubbing [Fujita, 1997]. 

Another group which is currently working on this problem is based in the Department 

of Chemistry, University of Edinburgh. They are developing an electro-chemical 

polishing process [Pulham, 1996], which removes the ITO material on the "high" 

points of the film and then re-deposits it on the low points. 

6.2.1 Slurry chemistry selection 

As ITO CMIP was a novel process, no custom polishing slurry chemistry was 

available. It was decided, following a consultation with the Department of Chemistry 

[O'Hara, 1996], that we should use the standard SiO2  slurry, as a starting point. 

Liquid crystal molecules are typically 15-20A in length [Efron, 1995]. 
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6.2.2 ITO polishing and cleaning process 

ITO was sputtered in-house as described -in section 6.3.1, onto 3" diameter 

borosilicate glass wafers. The ITO coated wafers were then annealed at 430°C (in air) 

for approximately 20 minutes. 

The samples were polished with a Logitech PS2000 polisher, with the parameters set 

as given in table 6.1. Prior to polishing, the polish pad on the Logitech system, was 

conditioned, by replacing the slurry feed with DI water and allowing the system to 

run with a stainless steel conditioning ring (instead of the wafer), to increase the pads 

porosity and surface roughness. 

The slurry residue was not permitted to dry out at any stage as the zeta2  potentials 

present would have caused the slurry particles to bond irreversibly to the substrate, 

see figure 6.2. As no wafer scrubber was available in the department at the time these 

experiments were performed, we removed any residual silica slurry contamination by 

briefly immersing the polished samples in BF/D13  water (1:9) for approximately 1-2 

seconds followed immediately by a DI water rinse. As the effect of the BF on the ITO 

was unknown, samples of ITO coated glass, which had not been polished, were 

examined by STM following this treatment and no obvious change in the film 

morphology was found. 

Logitech PS2000 

Slurry Colloidal silica slurry type SF1 
Pad Rodel SUBA IV 
Platten speed —35rpm 
Wafer/pad pressure —0.5PSI 

Table 6.1 	ITO polishing parameters. Note that the other variables, such as slurry feed 
rate, platten temperature etc., could not be easily measured using this 
polisher. 

2 
 Particles suspended and surfaces immersed in the slurry are usually charged by the adsorption of ions from 

the solution. 

A diluted HF buff has been proposed by Hymes et al. [Hymes] to remove post oxide and W CMP by etching 
of the surface during PVA brush scrubbing. 
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6.2.3 Polished ITO examination 

The polished ITO films were examined primarily by scanning electron microscopy 

and scanning tunneling microscopy. The surface roughness and step height 

distribution curves were obtained from scans over, an area of 0.760.76pm using a 

Burleigh Instructional STM. 

500nm size bar 

500nm size bar 

Figure 6.2 	(caption below) 
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5 : 

: . 

(c) 	4im size bar 

Figure 6.2 	 SEM micrographs of a sputtered ITO (700A) layer. (a) unpolished (b) 
polished and (c) polished iTO but with slurry residue. Note the scale on 
each micrograph. 

Images from both forms of microscopy revealed that the ITO surfaces were highly 

textured and exhibited the charactritic polycrystalline grain-subgrain structure of 

sputter deposited films. Further to this the step height data from the STM scans were 

used to calculate the surface roughness of the samples. 	
S 

The roughness (rms) values were calculated by, 

Here h, is the individual "pixel" height of the N samples and h is the mean height. 

All images were obtained in the constant current mode using a cut Pt/Jr (80/20) 

0.25mm wire tip, with a 2mV bias and tunneling current of 8nA. The scan delay4  was 

1 millisecond. All images were corrected for global tilt, but not further enhanced. 

Time the probe takes to aquire the data at each individual measurement point. 
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Unpolished ITO typical roughness 	 polished ITO typical roughness 
of 134Arms, 	 of79Arms. 
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Figure 6.3 	(a) Images obtained from Burleigh STM of unpolished(left) and polished 
(right) "in-house" deposited ITO (b) Step height distribution. Note the 
secondary peaks in the unpolished ITO (solid) curves, which correspond 
to the large ITO grains. 

In addition to measuring the global surface roughness of the STM images a step 

height distribution (SHD) analysis was carried out. The SHD is useful because it 

takes only local correlations into account (the surface roughness over the scan width 

reflects the global picture, equation 14). It facilitates estimations of the height of 
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plateaux through peaks in the distribution, which decays exponentially with 

increasing 6h, evident from the curves in figure 6.3. [Bodammer, 1998]. 

The SHD, n(Sh), where n is the number of height differences, was calculated from a 

256 x 256 portable grey map (pgm) image obtained from the STM data file. Each 

pixel in the 256 x 256 image is stored as an 8-bit value which corresponds to a height 

value in the image. The SHD was then obtained by calculating the height difference, 

h, between each pixel and its three nearest neighbors Ih 3  - (h1 + 1,j)I, Ih1, - (hi  j+01, jhjj - 

(h1+ i,+i)I,  where hij  is the height of a pixel at a position in an array of pixels i,j. 

The sheet resistances of the in-house sputtered ITO following dc sputtering, after 

annealing at 430°C and polishing are shown in figure 6.4. As the deposition from the 

Edwards sputterer had a poor uniformity over large (3" diameter wafers) substrates 

("Bulls eye" effect) measurements were taken at regular intervals, from the center to 

the edge of the wafer. 
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Figure 6.4 (Caption below) 
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Figure 6.4 	Sheet resistance measurements, across the wafer, of the sputtered ITO film. Note 
that the sheet resistance of our in-house deposited ITO is generally higher than that 
of the commercially available ITO. 

From the curves in figure 6.4, it can be seen that annealing the ITO in air at 430°C 

drastically reduces its sheet resistance. Polishing of the ITO has only a small effect on 

its sheet resistance at the wafer center. We only measured an increase in optical 

transmittance of around 1% (at 633nm) after polishing. Due to over polishing (poor 

uniformity •of polishing) at the edge of the wafer the resistivity increased more 

significantly in this region 5. There is virtually no change in the transmission of the 

samples (at the center of the wafer). Following polishing the samples were all 

examined with the STM and no improvement of the film morphology found with 

subsequent polishing, i.e., the ITO was a porous material, which after removal of the 

larger grains, could not be polished any smoother using this technique. 

6.2.4 Oblique SiO LC alignment layer evaporation 

The formation of structures during oblique evaporation is attributed to the self-

shadowing mechanism. Previously deposited nuclei or molecules at random positions 

on the substrate prevent particles in the vapor stream from reaching the substrate in 

the geometric shadow of each nucleus. Consequently, as the evaporation proceeds and 

the growth of the deposits increase in size, vacant regions are left in the film, and 

The Presi polisher will allow us to produce a much more uniform removal rate over the wafer 
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individual islands of material eventually coalesce into a two dimensional array of 

rows whose long axis is approximately perpendicular to the plane of incidence 

[Goodman, 1976]. 

6.2.5 Factors affecting LC surface alignment 

Relatively few studies of LC alignment have been carried out on ITO coated 

substrates. As was mentioned in chapter 1, a widely accepted explanation for the 

surface alignment of LC on an obliquely evaporated film is that the arrangement of 

the LC molecules minimizes the deformation energy [Faetti, 1991]. Berreman has 

shown that the elastic energy can be sufficiently large for the topographic mechanism 

to dominant for NLCs. The basic assumption underlying the theory is that the 

physiochemical interaction between the LC molecules and the substrate acts only to 

restrict the director parallel to the local plane of the substrate, while allowing the 

director to rotate freely in it [Yokoyama, 1984]. Mao [1997] has shown that the 

alignment of FLC molecules on ultra thin SiO, layers evaporated at 80 degrees to the 

substrate normal are almost planar. His explanation for this is based on Goodmans 

studies. Although no anisotropic structures were observed by SEM analysis of his 

SiO, samples he concluded that the ultra thin SiO, film at 80 degrees consists of 

channels which have an average direction perpendicular to the plane of the incident 

flux, and that the columnar structure, which exists in thicker films deposited at 80 

degrees, had not appeared because the film is too thin. Consequently, the channel 

structure is thought to be the dominant factor in the alignment of the LC and the 

molecular arrangement is similar to that of the LC on the SiO, film deposited at 60 

degrees. We know that the angle of the incident SiO, flux leads to two completely 

different modes of alignment, namely planar (homogenous) and perpendicular 

(homeotropic)/tilted. If therefore, the substrate presents both a grazing angle and 

medium angle of incidence to the incoming SiO, flux, how will the growing film 

morphology be affected? It can be seen from figure 6.5(a) that a 60nm SiO, film 

deposited obliquely at an angle of 60° to the substrate, forms no obvious striations or 

columnar structures. It is difficult to see how Berreman's model can be applied to 
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such a surface which appears to be equally rough in all directions. Barberi [1994] has 

recently carried out a fractal examination of AFM images from obliquely evaporated 

SiO, on glass plates. Such a sophisticated analysis of the substrates showed that the 

usual elastic models for LC planar anchoring could also be applied to this kind of 

complex surface. Yokoyama [1984], on the other hand, reported that a layer of liquid 

crystal molecules adsorbed on the SiO film plays an important role in aligning the 

bulk LC. There is evidence that the LC molecules form, by themselves, an 

anisotropically adsorbed layer in which molecules can no longer rotate freely. 

Nematic phase hydrodynamic motion is also known to couple strongly with the 

director exerting a torque which tends to align the director approximately along the 

flow direction. Although many authors support the Berreman model, there are others 

who have argued that other effects maybe more dominant in the surface orientation of 

LC's. 

PM 

coH.002 

Figure 6.5 	 Nanoscope lila (Digital Instruments) Atomic Force Micrograph6  of 
(a) Balzers ITO coated glass, coated with 60nm obliquely evaporated SiO,. 

6 
AFM of samples performed by the Dept. APEME, University of Dundee, Scotland. 
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PM 

P01.002 

(b) Polished in-house sputtered ITO with 60nm obliquely evaporated SiO. 
The surface structure of these micrographs are very different indeed. 
Although there appears to be a periodic anisotropy on the sub-micrometer 
scale, they are probaly artifacts caused by ringing of the AFM tip 
[Bodammer, 1999]. 

The polished ITO sample, on the other hand, which had undergone the same 

treatment exhibits a very different surface morphology, compare the micrographs in 

figure 6.5. Further more detailed examination of these surfaces is required to acertain 

the topological anisotropy of the SiOx  layer. 

6.2.6 Contrast ratio measurements and discussion 

The in-house ITO coated borosilicate glass wafers were diced into 10mm x 10mm 

samples and the SiO alignment layer deposited (section 4.5.2). Transmissive test cells 

were then constructed from these samples and filled with CS-1031 as in appendix C. 

The polished and unpolished ITO cells were assembled in a random order to eliminate 

any bias in the results due to increasing operator experience. 

The main measure of the quality of LC alignment is the contrast ratio (CR) of a LC 

cell. The CR is defined as the ratio of the cells "on" state to the transmission in its 
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"off' state. Obviously light leaking through the LC device in its off state degrades the 

No 

CR= -TON— 	(15) 
TOFF  

To measure the device CR a 100Hz +/-10V squarewave was used to drive the LC test 

cell, between two crossed dichroic sheet polarizers (with an extinction ratio of 10 4  in 

white light). A collimated -5mm diameter 10mW HeNe laser beam illuminated the 

cell in transmission mode. The cells were rotated to find their best "off' state prior to 

measurement. A photodetector, with a built in amplifier (type OSI5K, Centronic) 

5kHz, 1.3nW to 4.1pW dynamic range, was used to detect the transmitted light and 

voltage measurements taken from a HP digitizing oscilloscope. 

Contrast ratio measurements of -20-30 units each of polished and unpolished ITO 

samples were made, but although the best polished ITO cells generally had slightly 

higher CR's than the best unpolished ITO samples the spread in values, of all the 

samples, was far too large to enable us to draw any helpful conclusions. The causes of 

this large spread in CR values was thought to be due to inconsistencies in the cell 

manufacturing and filling process. If there were any differences in the performance 

characteristics, i.e., CR, of the cells, they were very subtle and were masked by the 

variables of the cell manufacture /filling processes. 

There were many factors which could have lead to the irreproducibility of the results. 

These included; 

SiO alignment layer deposition (i.e., rate, angle, depth etc.). In our case 

reasonably repeatable. 

Cell construction (i.e., non-flat cells). Operator dependent, but generally improves 

with experience. 

Cell filling (i.e., temperature uniformity, cooling rate, vacuum pressure and filling 

rate). Variations in these parameters are the most likely cause of the large spread 

in results. 
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Observations of cells fabricated 

As just stated, there was a huge variation in the CR of the FLC cells, from <10:1 upto 

180:1, for both the polished and unpolished ITO cells7. Common characteristics of 

both types of cell were; 

The thickness uniformity of the cell gap was good and appeared to remain 

uniform when filled with FLC (one white light interference fringe). 

The same type of FLC alignment defect (chevron 8)was present, to a greater or 

lesser extent, in both polished and unpolished ITO cells. 

r 

(a) 

Figure 6.6 	The most common observation, in both cells types, were (a) domains and 
(b) zig-zags, which result from chevron defects. 

6.2.7 CMP ITO summary 

To summarize, we have demonstrated the possibility of using a standard planarization 

process (CMP) to reduce the small or microscopic scale surface roughness of ITO 

coated glass plates by about 40%, by removing the larger 20nm ITO grains. It is 

apparent that ITO is fairly porous, so it is not likely that we can improve any further 

Further experience of assembling and filling cells resulted in cells with CR's of —300:1. 
8 
 Chevron defects are the most common defects found in SSFLC devices. They are caused by a shrinking of 

the smectic layers on cooling from the SmA to the SmC*  phase [MacLennan, 1990]. 
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can improve any further on the surface topology with this technique. As with other 

types of material, ITO CMP using Si02  slurry, not surprisingly, still suffers from 

slurry contamination. 

It remains to be seen whether the "improved" surface topology of the polished ITO 

samples will promote a more homogenous FLC texture. The limited AFM 

investigations performed, on the Medium Angle Deposited (MAD) evaporated SiO, 

layers, on polished and unpolished ITO show very different surface topologies onto 

which the LC must align. 

Future investigations should include a more detailed examination of the surfaces with 

the AFM, which is to come into commission shortly, to determine roughness on 

various scales. When a more controllable and repeatable LC cell filling process 

becomes available it will be informative to repeat the CR measuring experiments on a 

larger number of both polished and unpolished ITO LC cells to obtain more useful 

statistical results. 

As I mentioned earlier, there are authors who argue that the role of the topology of 

the SiO, aligning layer may not be as great as previously thought [Bodammer, 1997] 

and that the role of the past history of the bounding surfaces is far more significant. It 

is the authors opinion that any effect that the "smooth" pre-SiO alignment layer 

deposition substrate may have on the FLC alignment is very subtle, and that other 

factors have a much greater effect. LC alignment and in particular FLC alignment 

remains an intriging problem which still is not completely understood at the 

molecular level. 
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6.3 	ITO/SiO antireflectance coatings 

Anti-reflectance (AR) coatings are deposited on the outer surface of the coverglass to 

improve the light throughput efficiency' of the SLM's. At present, a X/4 thickness of 

MgF2  is deposited on the top surface of the coverglass to reduce the reflected light 

intensity, from 4±0.25% to -1±0.25% (at a wavelength, X). Another reason for using 

these AR coatings is to reduce the interference of long-coherence-length light2  

reflected from the SLM coverglass and the bottom surface of the polarizing 

beamsplitter [Sanford, 1998] in a reflective mode device. Dielectric quarter-wave 

stacks on the front surface have also been used to reduce the reflectance to close to 

0% over a broad-band of wavelengths, but they are difficult to fabricate and require 

lengthy in-house evaporation cycles. 

Unfortunately, none of the AR coatings mentioned above addressed the problem of 

reflections from the bottom surface of the coverglass [Vass, 19981. We know, 

empirically, that the refractive index of ITO section 6.3.1 (-2.00) is very different to 

that of glass (1.50) and this difference will produce a significant (-2%) reflection of 

the incident light intensity at that interface, equation 16. It was therefore desirable to 

determine the ITO, and possibly subsequent film, thicknesses which would minimize 

these reflections. The coverglass, currently used by the A. 0. Group and supplied by 

Merck Display Technologies, was only available with certain specific ITO 

thicknesses, see appendix B. 

The reflectivity, R, at an interface is given by, 

In the absence of absorption or scattering, the physical principle of conservation of energy indicates that all 
"lost" reflected intensity will appear as enhanced intensity in the transmitted beam [Melles. 1995]. 

2 
 An ideal single wavelength laser source has the property that its light is temporally coherent, which means 

that there is a definite phase relationship between the fields at any one point after a time delay. In practice, 
however, real lasers maintain this phase relationship for only a finite time, called the coherence time, or 
when multiplied by the speed of light for a finite distance called the coherence length of the laser [Corte, 
1996]. 
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2 

R=p2= 0-n11 
[no+nij 	

(16) 

Where p is the reflectance, n0  is the refractive index of the first medium and n 1  is the 

refractive index of the second medium in the interface. The optical path through the 

second medium must be as below for destructive interference, equation 17. 

Air n0 = 1.00 

180 degree phase shift on 
reflection from this inter- 

Coveiglass n = 1.50 
	

face. 

Indium Tin Oxide n = 

Silicon Monoxide n = 

Air n= 1.00 

Figure 6.7 	Reflections from the interfaces may combine to 
produce constructive or destructive interference. 

x 
nd=— 	if 	n0>n1 	 (17) 

AN 

nd= 	if 	n0<n1  
2 

6.3.1 ITO deposition characterization 

The first stage of our investigations was to determine the ITO deposition rate. The 

ITO was deposited by DC sputter deposition in an Edwards sputterer as detailed in 

table 6.2. To allow a range of measurements to be taken on the ITO films, the 

depositions were carried out on cleaned glass microscope slides. A small section of 

the slides was masked prior to deposition to facilitate measurement of the film 

thickness with a SLOAN Dektak 8000 surfaceprofileometer, figure 6.8(a). The 

resulting deposition rate, under the stated conditions, was calculated to be 

approximately 71.6 A/mm. The ITO was then annealed to improve its transmittance 

and reduce its resistivity, figures 6.2(b) & 6.8. The refractive indices of the ITO and 
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SiO layers to be used were measured with an Applied Materials Ellipsometer II. 

Where the refractive indices of the in-house deposited ITO and SiO,, no and n510  

were measured to be 2.00±0.05 and 1.46±0.05, respectively. The SiO, was deposited 

as described in appendix B. 

Edwards sputterer 

Target material 1n203:Sn 
(ITO) 

Target-substrate separation 105mm 
DC bias 380 Vdc 
Plamsa current lOOmA 
Ar partial pressure 10 	torr 

Table 6.2 	Edwards sputterer setttings. 
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Figure 6.8 (a) 	Deposition rate of the dc sputtered ITO @105mm was - 7.16nm/min. 
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(b) 	The in-house sputtered ITO layer transmittance is improved by annealing 
at 250°C (in air) for 20 minutes. 

Although the deposition rate of the in-house sputtered ITO was found to be very 

consistent, given the same operating conditions, there appeared to be a large and 

random variation in the films optical absorption from run to run. Following 

annealing, however, the absorption of each sample was reduced to a level which was 

essentially independent of film thickness, over the range examined. 

6.3.2 Reflectance measurements 

Using equations 16 and 17 and the refractive indices measured, we calculated the 

optimum ITO thickness which produced a minimum reflection at a wavelength X. The 

SiO,, thickness was kept constant at a value commonly used in the fabrication of LC 

cells. The glass slides, one with no coatings, one with 70nm of ITO and 30nm of SiO, 

and the third with the ITO thickness set for minimum reflection at X=633nm and 

30nm of SiO, were all examined for transmission and reflection with a Lambda 9 

spectrophotometer, figures 6.8(b) and 6.9(a)-(c). 
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- LEEM IE7---0 
300 	 400 	 500 	 600 - 

Figure 6.9 	(a) 	Reflectance of a glass substrate with no additional coatings. 

Previously used ITO and SiO, thicknesses of 700A 300A 
respectively had a broad, high reflectivity region in the green 
and red. 

"Optimized" 1580A ITO and 300A SiO exhibited a 
minimum in the green. 
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From these traces we saw that by ensuring that the ITO thickness was approximately 

equal to a quarter of the incident light wavelength, the reflection from the inner 

surface could be reduced from 17±0.25%, of the previous coverglass, to <5%, figures 

6.9 and 6.10. 

. 	- - ---.- -a-.-. 	- -,,.-c. •. - -.- -.--.• •. 	.: .—-. ...-. 
- S . 

•. 	 .•t. 	•, V 
-' 	•\ 	F 1 

Figure 6.10 	150nm (top) and 75nm (bottom) of ITO sandwiched between 
a glass microscope slide and 30nm SiO,. 

Two sets of test cell were then constructed. The first set consisted of two glass 

coverplates, one of which was coated with 75nm of ITO. The second set of test cells 

was the same as the first except that the ITO film thickness was 150nm. The test cells 

were then visually inspected. The reflected light from the first set of cells (unfilled 

and filled with NLC, E7) appeared white, while the second set of cells exhibited a 

yellow-orange tint. These colours were in agreement with the earlier 

spectrophotometer measurements. 

The next stage in our investigations was to examine the SiOX/LC interface to observe 

the effect of the SiOx  layer thickness on the reflectivity of the surfaces. Further 

calculations and experiments revealed that a reduction in reflectance could be made 

through careful selection of the SiO, film thickness, figure 6.11. 

Using the values of refractive index for two common NLC mixtures, E7 and 5CB, 

Al, we were able to calculate the SiOX-LC interface reflectance, table 6.3. Assuming 
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that the plane of polarization of the incident light was parallel to the extraordinary 

and ordinary axes of the LC respectively. 

E7 5CB 

flLCe 1.6339 1.62 

nLc0 1.4093 1.44 

Re 0.32% 0.27% 

R0  0.03% 0.005% 

Table 6.3 	Calculated reflectivity at the SiO-LC interface, 
using the refractive index values given in A.3. 

As a proof of principle, a cell was constructed with a coverglass coated with two 

different thicknesses of SiO,, figure 6.11. 

Figure 6.11 	Although this 6tm E7 filled cell was not optimized for X=632nm 
(the wavelength of the illuminating light), the interferogram 
clearly shows that the reflectivity of the top half is lower than that 
of the bottom half. 

The components making up the cell were prepared by masking one half of the glass 

and coating them lSnm of SiO. The mask was then removed and the deposition 

repeated, leaving a film which was lSnm thick on one half and the standard 30nm 

thickness on the other half of the substrate. The cells were then filled with NLC and 
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were inspected using a Fizeau interferometer (X=633nm), to observe the effect of the 

LC on the device reflectivity. It could be seen, from the Fizeau interferogram, figure 

6.11, that the overall reflectivity of the sample could be altered quite noticeably by 

doubling the SiO, layer thickness. 

6.3.3 ITO AR coating summary 

We have demonstrated the possibility of increasing the light throughput efficiency of 

a LC device by reducing the reflected light intensity through the selection of suitable 

ITO/SiO thicknesses. Calculating the reflectance of the light incident onto each 

interface we see that the reflectivity at the SiOfLC interface, although noticeable, is 

relatively small compared to that of the glass-ITO interface (due to the refractive 

indices of the SiO and LC being similar). In these studies we have only investigated 

the reflected light intensities fom the various interfaces. A more detailed examination, 

which was beyond the scope of this study, should be performed to take into account 

the relative phases of the reflected light. This may possibly be performed using a 

Computer Aided Design (CAD) package. ITO coated glass, which is available 

commercially is currently only available to specific ITO layer thicknesses. It is 

apparent, from the experimental results, and from the poor quality observed of the in-

house sputtered ITO, that a company who can coat individual optical flats/coverglass 

must be found to enable us to obtain the best possible optical performance from our 

LCoS SLM's. Since performing these investigations, described above, IBM have 

reported their use of 1/2X thick ITO films to reduce the unwanted reflections from the 

inner-surface of the coverglass [Stanford, 1998]. 

166 



Chapter 7. 

Conclusions and Future Work. 

We have investigated various methods of improving the optical performance of LCoS 

SLM' s, each of which are discussed individualy below. At the end of each section, I 

will discuss the implications of my work on future research and make 

recommendations for future work. 

7.1 	Mirror improvements 

Mirror quality and FLC alignment are major factors in determining the overall 

efficiency of FLC modulators. The idea of forming inlaid aluminum mirrors by CUT 

had been around for some time. Early in-house metal polishing attempts were 

performed with a Logitech PS2000 system but with poor results, such as dishing of 

the mirrors -100nm and errosion (0.12p,m) of the silicon dioxide between the mirrors 

in the array. In my studies the initial motivation for developing a thin mirror process 

was due to the limitations of patterning spacers between the mirrors in the high aspect 

ratio (1:1) gaps. Since our first experiments we have discovered that via polishing and 

thin mirrors produced by evaporation of aluminum may have more far reaching 

benefits than just facilitating the fabrication of oxide spacer pillars by the lift-off 

technique. Toward the end of my studies a Presi 460 system was purchased by the 

EMF and was used to produce our first thin mirror over polished via plug samples. 

These samples looked very encouraging with the via dishing of around lOnm 

(unoptimized). Conventional mirrors had large via "dimples" of --16-25j.tm2. Upon 

examination of the mirrors on the polished via samples with a phase contrast 

microscope we found that the via "dimples" were almost undetectable. By eliminating 

the effects of the via on the top mirror we can effectively increase the pixel fill factor 
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of a 512x512 pixel SLM by 4-6%. The fill factor becomes even more significant for 

devices with smaller pixel mirrors such as the future 1280x 1024 DRAM device which 

consists of mirrors of 10j.tmx10tm. Removing the detrimental effects of the vias in 

this case would increase the pixel fill factor by 16-25%. 

In order to reduce further the dishing of the polished via plugs, we have proposed the 

use of an aluminum etch back to remove the "field" aluminum leaving the recessed 

via plugs and a small amount of undersired aluminum around the via area. The small 

area of aluminum can be polished for a shorter period of time, thus giving reduced via 

dishing. These ideas are discussed in detail in appendix A. 

Evaporated aluminum offers superior optical quality over sputtered or CVD 

aluminum. Adhesion was an issue which was addressed by ion bombardment of 

substrate for about 20 minutes before coating. A set of via chain masks with >8000 

vias have been designed in order to perform electrical evaluations on the polished 

aluminum via plug/evaporated mirror structures. Unfortunately, these experiments 

were obstructed by the lack of an in-house mask making facility during these studies. 

To maintain the linear LC flow front over the pixellated backplane I proposed a novel 

method of filling the inter-pixel gaps of the thin mirrors, to produce the most planar 

pixellated substrates to date. Examination of the backplanes with a surface profiler 

showed only noise from the measuring system. The filled trenches were flat to 2.5nm. 

This was a vast improvement over the conventionally patterned (1-2pm deep 

trenches) and even experimentally damascened (dishing of —lOOnm and errosion of 

0.1 2pm) mirrors. Upon filling devices constructed from the backplanes processed in 

this novel way, with NLC, I have shown that the LC flow front was undisturbed by 

the pixel array and the shape of the flow front was only affected by the uniformity of 

the cell gap. From these results we expect a more uniform LC alignment and a more 

uniform optical response across the modulator. 

Since these via polishing experiments were started, via polishing has become a major 

research project which shows great promise. Work which is currently underway 

includes characterizing the metal polishing process on different size features selecting 
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slurries, many of which are not sold commercially and are only available to the 

University on signature of a non-disclosure agreement, and pads. An optical 

characterization of the polished samples is to be performed to assess any possible 

gains in this technique. 

7.2 	Backplane flattening and device assembly 

Three methods of backplane flattening were investigated, which utilzed robust 

microfabricated oxide spacers. The first method improved the backplane flatness from 

about 3X down to about 3/2X. I found that the second method, which used no 

backface support, yielded the flattest backplanes, of X/3, in my experiments. The third 

method, which was a combination of the first two methods, produced backplanes with 

a flatness of >X/3, but the best flatnesses reported was 218 and was achieved by M. 

Begbie [1997] using this method. The reasons for the poor results of the first and 

third methods in my experiments was found to be due to particulate contamination. 

The first and third methods relied on an adhesive layer to bond the silicon die to a 

supporting substrate. The adhesive was found to "squeeze" out from the sides of the 

sandwich structure when pressure was applied. It is clear that much work needs to be 

carried out to test various adhesives and find the best combinations of adhesive and 

curing cycles to reduce this problem and to provide a bond which is stable over a 

wide range of temperatures and operating conditions. 

Microfabricated spacer layer aligning marks were found to destroy the uniformity of 

the cell gap of the assembled devices. This issue was resolved by aligning an etch 

mask pattern globally to facilitate the removal of the spacer layer aligning marks 

following patterning. It also became apparent that the geometry of the 

microfabricated spacer layer was important and metal modifications were required to 

optimize the cell gap uniformity of the device. In future the optimum spacer 

distribution density must be determined to achieve these aims. 
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During my experiments the problem of adhesive spreading in the cell gap whilst 

bonding the covergiass to the silicon die, was addressed and a possible solution 

found, which appears very promising. 

Pyrex 7740 optical flats, which have a coefficient of thermal expansion (3.24x10 6  

pm/'K) similar to that of silicon(2.60x10 6pmI°K) , were obtained as a replacement 

for the relatively high thermal expansion borosilicate (4.60x10 6jtmI°K) covergiass. 

This should enable the cell to be heated to the isotropic phase of the PLC with much 

less stress at the adhesive layer. 

Although good flatnesses were acheived with the third technique, it is the authors 

opinion that this method of placing an elastic material, such as epoxy adhesive or a 

Rodel wafer insert, between the silicon die and a supporting substrate will never be 

suitable for use with PLC's, in which the PLC requires heating to become isotropic 

during cell filling. Due to the large coefficient of thermal expansion of adhesives 

which are typically one-two orders of magnitude greater than silicon. 

Early experiments into using robust spacers to protect the delicate pixels mirrors and 

provide an excellent cell gap spacing did not use any kind of backface support. It was 

found that, although the warpage of the die was greatly reduced (1-2 white light 

fringes) a slight pressure on the back of the structure with a finger was enough to 

further reduce the white light fringing. Upon filling conventional LCoS cells, that is, 

cells with no backface support, a deformation of the relatively thin silicon backplane 

was observed. I then proposed that experiments be performed to determine the 

viability of using the surface tension forces present at the LC-air-bounding plate 

interfaces in some way as to apply a light pressure to keep the die flat. Subsequently, 

problems with the existing spacer geometry, designed by M. Begbie, were found and 

needed to be resolved before any serious investigations could take place. These 

problems included, 

Spacer layer covered an area of only l0mmxl0mm (pixel array) whereas the 

coverglass was 12nimxl2mm in size. 
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The spacer pillar distribution density may have been too low. 

A research project (PACMAN) which has received a £350K EPSRC grant, has 

begun to look at the packaging and manufacturing of microdisplays in collaboration 

with Micropix Ltd., CRL and Admit Design Systems. These investigations came 

about, in part, due to the work that has been described in this thesis. 

C. Miremont [1998] is developing a novel technique to flatten die using surface 

tension forces of re-flowed BCB between die and supporting substrate. This technique 

is loosely based on the technique reported by Lee at the University of Colorado, who 

used re-flowed solder. G. Bodammer [1998] is testing and evaluating a die flattening 

jig, which is based on the techniques described in chapter 4, and was designed by 

A.W.S. Ross. Initial results have proved disappointing again due to the problems 

associated with particulate contamination. 

My recommendations for future work are primarily that a cleaner "clean-room" is 

found for SLM assembly work and that it is, preferably, adjoining the EMT clean 

rooms. Ideally LCoS fabrication/assembly would be performed with as little human 

interaction as possible. Experience gained of assembling LCoS cells, with LC layer 

gaps of <1.tm, had emphasised the importance of particulate contamination control in 

the LC cell fabrication area. The use of clean, air tight containers for transporting 

wafers and die/cover-glass around/between clean areas should be implemented. 

Device fabrication, inspection, assembly and LC cell filling should be performed in 

the clean area. More stringent cleanroom procedures must be enforced to ensure the 

successful move to <lj.tm SSFLC cell gaps. 

The Centre for Display Research, Hong Kong UST, have a current research program 

looking at the chip on glass technology. They are testing bonding materials for 

bonding glass to silicon chips2. It may also be advantageous to the Group to make full 

use of the solder bump technology now on offer by Heriot Watt University. 

'Packaging and Manufacturability of Miniature Liquid Crystal Displays. 
2 

Obtained from web site http:llwww.microdisplayweb.com/developer/index.html 
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7.3 	ECR oxide spacer characterization 

Oxide spacers can now be deposited to a known thickness with excellent thickness 

uniformity (down from 5-6% to <1% over a 3" diameter wafer) and repeatability 

(down from c=27AJmin to 1.68A/min), using data obtained in my experiments. My 

results showed, empirically, that the nitrous oxide flow rate followed by the 

microwave power of the ECR-PECVD reactor during film deposition both had 

significant effects of the film thickness uniformity. The optimum settings were as 

follows, 

Nitrous oxide flow rate = 35sccm 

Microwave power = 300W 

No such dependence was found with the silane flow rate. I had also found that, 

contrary to earlier belief, the most consistent run to run deposition rates occured when 

wafers were processed with minimal time delay between them. It is important to 

remember that at least one test run should be performed before each batch of wafers 

are processed. A suggestion for future work might be to find a way of accurately 

measuring the deposited film thickness in situ. We expect that this technique will be 

the technique of choice both within the A.O Group and beyond. 

7.4 	Polished ITO 

The surface roughness of ITO has been reduced by about 40% over a sub-micron 

scale using a conventional oxide CMP. The post-CMP slurry residue, which remained 

on the ITO surface, was found to be removed effectively, with no obvious 

degradation of the ITO film, by a short immersion (1-2 seconds) in dillute BF (HFIDI 

water 1:9). 

Preliminary results indicated that the subsequent oblique SiOx  LC aligning layer 

deposition morphology was very different on the polished ITO surface. 
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Unfortunately, due to the irreproducibility of the FLC cell filling process I was unable 

to observe any possible effects of the polished ITO on the FLC alignment 

One of the biggest problems in FLC cell filling is that of maintaining a uniform 

temperature, not only across the bounding plates of the cell, but through the FLC 

layer itself. In addition to this the FLC cell filling rate must be optimized and a 

constant (0.1 degree Centigrade per minute [Zheng, 1998]) cooling rate over the 

plates is required after filling. It is important, therefore that a suitable method of 

cell/FLC heating is found. Also a more detailed AFM examination of the SiO on 

ITO is required. 

	

7.5 	Anti-reflectance coatings 

The effect of the ITO/SiO film on the reflectivity of the glass-ITO-SiO-LC 

interfaces has been investigated. It was found that the commercial. ITO coated glass 

used by the A.O. Group gave rise to a relatively large percentage of reflected, -47%. 

This figure was reduced to about 6% by optimizing the ITO thickness (150nm). The 

effect of the SiO, layer, on the interface reflectivity, was found to be much less 

significant, but still noticeable. In order to minimize the reflections from the inner 

interfaces, the ITO layer must be set to a value of —1500-1600 Angstroms (green). 

This thickness of ITO was not available from our current supplier, so a supplier must 

be found who can coat individual 3mm thick polished glass flats with an acceptable 

quality ITO to the specified thickness. The important ITO film parameters to be 

considered are light absorption, sheet resistance and film surface roughness. The 

optimum thickness of the SiO, layer, for a particular wavelength, can then be found 

experimentally. 

	

7.6 	Final summary 

At the start of my studies, FLCoS SLM's were being fabricated and constructed using 

standard microfabrication and LCD/FPD techniques. As such, these early SLM's 

were characterized by a poor optical performance. 
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It was clear that custom microfabrication and construction processes had to be 

developed in order that LCoS devices maintained their standing in the SLM and 

microdisplay community and that these devices make the transition from a laboratory 

environment to the consumer market. 

This study has sucessfully demonstrated such techniques which significantly 

enhanced the optical performance and quality of our LCoS devices. These processes 

will now enable the fabrication and manufacture of high quality SLM's for themuch 

needed coherent and incoherent light systems based research within the A.O. Group. 

Feature Principal parameter Effect Importance 

Via polishing Fill factor Reduced dimple depth Very important in 

from 1-2tm down to reducing LC defects 

and increasing the 

pixel fill factor 

Thin 	mirror 	and LC flow front shape Drastic improvement Very important in 

SIFT and direction in LC flow front shape ensuring a 

homogenous LC 

alignment texture 

Backplane flatness Bow and cell gap Best flatnesses Very important esp. for 

uniformity achieved is A/8 coherent applications 

Spacer layer Deposition rate and Fully characterized. Extremely important to 

thickness uniformity Uniformities of <1% obtain the correct cell 

over 3" wafer and gap thickness, esp. for 

repeatability improved SSFLC cells 

to an acceptable level 

CMP ITO rms roughness and step reduced by upto 40% Smooth substrate 

height distribution removed large 20nm should improve the LC 

SSFLC cell contrast ITO grains alignment. 

ratio Effect on CR swamped Also removal of large 

by other effects grains may reduce 

light scattering 

AR coating Intensity Reduction in reflected Very important for 

light intensity from most applications 

inner-surface of LC 

cell by about 11% 

Table 7.1 	Final summary of the improvements achieved through this study. 
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A.1 	CMP optimization 

CMP optimization is currently being carried out and electrical tests performed to 

ensure a continuity of the contacts between the vias and their respective pixel mirror 

electrodes will be investigated shortly using a set of via chain masks, which I have 

designed, see A.6. AFM scans of polished vias, have revealed that the dishing is 

actually on the order of 40nm. Various authors have suggested the use of "dishing 

support structures" to minimize the dishing of bond pads [Tseng, 19971, [SCI, 1997]. 

D.W. Calton proposes to investigate further the use of "support structures" which 

have been included into the via mask design in A.6. The effect of dishing and erosion 

of the bond pads will be examined, and from the results a dedicated mask will be 

designed which will consider various structure geometries, and allow the technique to 

be characterized. 

A.2 	Post aluminum CMP scrubbing 

Following CMP on the Presi 460 system wafers were rinsed in DI water and stored in 

a petn dish filled with DI water to prevent the wafer from drying. Ultrasonic 

scrubbing of wafers, held vertically or near to vertical, in heated DI water (60°C) and 

Neutracon1  for about 30-60 minutes removed much of the slurry contamination. This 

can then be followed by scrubbing in a high pressure (3000PSI) mask scubber. A 

PVA brush wafer scrubber, is to come into commission shortly will also improve the 

cleaning process. 

A.3 	Future work on metal polishing and via formation. 

From our aluminum CMP experiments we had discovered that it is important that the 

excess field aluminum is removed prior to polishing. The reason for this is due to the 

Neutracon is a derivative of Decon, but unlike Decon it has a near neutral pH and is therefore safe to use with 
aluminum. 
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fact that the soft and bi-layer stack polish pads tend to deform to match the contours 

of the wafer, during polishing, which leads to dishing of the soft aluminum features. 

The maximum potential fill factor of the 20tm 512x512 SRAM mirrors, assuming a 

1.6jim gap (as specified in the "Design rules for post-processing at the EMF") 

between them, is calculated to be about 85%. As can be seen in figure 3.1, there is 

still a large dead area of the mirror as a result of the via "dimple". This results in a 

significant reduction in the mirror fill factor to -78%. Although polishing 

significantly reduces the depths of the via dimple, they still remain visible. To reduce 

this via and bond pad dishing further we (DW. Calton and the author) have jointly 

proposed the use of an etch back technique to remove the excess field aluminum 

thereby reducing the polishing (CMP) time required. 

(d) 

 

______________ I 

(e) 

Figure A. 1 	 (a) Aluminum is blanket deposited over pattered oxide as usual. (b) A 
layer of photoresist is spun onto the wafer surface and allowed to level for 
about 10 minutes, before soft and hard baking. (c) A oxygen RIE is used to 
anisotropically etch the photoresist back to the aluminum. (d) A Cl based 
RIE is then used to anisotropically etch the aluminum back to the oxide 
substrate, leaving (e) a recessed contact. 

A blanket deposition of ECR-PECVD silicon dioxide will be carried out as described 

in section 3.5, on to dummy four inch wafers. The silicon dioxide layer will then be 

patterned with the mask used in chapter 5 for the spacer layer characterization 

experiments, in a plasma etch. These wafers will then be used to determine the 

conditions which yield the highest level of planarity of the photoresist coating. 

Stillwagon reported that PR applied using a short spin time (—P5 seconds) and 
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subsequently baked on a hot plate at 100 degrees Centigrade, planarizes the 

topography better than normally applied HPR206 films [Stiliwagon, 1989]. He 

reports that a leveling period is required to obtain the best results. The next stage will 

be to determine the PR etch rate in the oxygen plasma asher using the laser end point 

detector. Following etch back (PR and aluminum), the recessed aluminum vias will 

be inspected by AFM and SEM, and possibly followed by a short CMP cycle to 

remove any remaining protruding features. 

Another process which is currently being considered, by researchers in the EMT, is 

the force fill technique [Mizobuchi, 1995], [Stevenson, 1998], which has been 

demonstrated to fill submicron high aspect ratio vias. Aluminum is sputter deposited 

at a high rate to seal the via holes, leaving a void. A dedicated high pressure chamber 

then applies -60Mpa pressure to the wafers at temperatures -P400 degrees Centigrade 

to fill the sealed holes. This technique may be applied to our silicon backplanes. 

Rather than etching extremely large low aspect ratio mirror via contacts, which 

drastically reduce the pixel fill factor, much smaller vias, which up until now have 

been difficult, if not impossible, to fill, may be etched and filled using force-filled 

aluminum. The wafers may then be polished as described earlier and thin mirrors 

patterned, which again increase the pixel fill factor because they will exhibit minimal 

undercutting during etching. In addition to the increase in the fill factor from the 

processes mentioned above, reduced via dishing will be possible, which will in effect 

add to the pixel fill factor. 

A.4 	Via plug/thin mirror inspection and testing 

A measure of the effectiveness of the thin mirror process is the electrical yield of the 

polished vias. A good yield, in which all the vias are electrically connected to their 

respective mirror electrodes, is essential. 
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A set of via chain masks had been designed 2, A.6, which were to be used to pattern 

the three levels required, figure A.2, to investigate the via-mirror contact yield and 

optimize the post-CMP cleaning process. The pads on the test structures were 

arranged in a geometry to permit probing and resistance data to be automatically 

aquired. The mask set consisted of two light field masks (Ml and M2) and one dark 

field mask (via). The probe pads were 120tmx120.tm in size and seperated by 

120j.tm in the x and y directions and the total number of vias in each chain is 8192, 

where taps were taken from vias 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 

and 8192. Two of the pads were directly connected in order that the contact resistance 

of the probes can be measured. This value of probe contact resistance would then be 

subtracted from the via resistance measurements obtained. 

Again AFM investigations would take place to observe the effect of the cleaning 

cycles on the via plug topography. 

A.5 	Post A1-CMP cleaning processes to be investigated 

Amozawa [1998] had recently reported that slurry residue remained on the aluminum 

following via CMP, which reduced the yield and increased the resistance of the 

contact between the vias and the subsequent level of metalization. A post-polish clean 

using C12/Ar RIE had been used to remove this residue, thus increasing the yield. 

Various cleaning regimes had been proposed, below. A thorough investigation of 

these cleaning procedures (and combinations of procedures), is to be performed to 

find the optimum results. 

Standard PVA brush wafer scrub in deionized water (set up for 6" wafers). 

RIE (C12  based) 

Wet etch ( ISOFORM aluminum etch containing phosphoric acid) 

Photoresist developer (Microposit 351 etc. which contains NaOH) 

Ultrasonic scrubbing 

High pressure DI water jet mask scrubber (3000PSI) 

2 
 This work was delayed due to the necessary pattern generating equipment being unavailable. 
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Argon ion bombardment prior to aluminum evaporation, in situ. 

Metal 	 Oxide 

Figure A.2 	Via chain to determine electrical yield. 

A secondary ion mass spectrometry (SIMS) examination of the recessed plugs will be 

necessary before cleaning to provide useful information on the type and relative 

thickness of the post-CIVIP contamination layer on top of the vias. 

179 



-I- 

.. .. RU 	RU 
I. IR U. 	1* so no 



Appendix B. 	LC cell materials and construction details. 

B.1 	Glass properties. 

The high quality, commercially available ITO coated glass, which is currently used 

by the AO Group is supplied by 

Merck Display Technology (MDT) 
Frankfurter Str.250 
64271 Darmstadt, Germany. 

The glass types, thicknesses and ITO thicknesses supplied by MDT are listed below. 

ITO thickness 
(nm)  

Q /sq. 

20 120 
30 80 
45 60 
80 30 

100 20 
200 12 
240 8 

Table B.1 	ITO coated glass options 

Glass material available is either borosilicate sheet or soda lime float at thicknesses of 

0.55, 0.7 or 1.1mm. The type we use is lOOnm ITO on 1.1mm thick soda lime glass, 

order number 255 645 XO. 

For the die flattening experiments I have been using pre-cut 3mm thick Pyrex 7740 

glass, polished flat to 2110. Supplied by 

Spanoptic Ltd. 
Telford Rd. Eastfield Ind Est., 
Glenrothes, Fife. KY7 4NX. 
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Appendix B. 	LC cell materials and construction details. 

The coefficients of thermal expansion of various materials used in the manufacture of 

SLMs/test cells is shown in table B.2, below. 

Material LCTE, AL/LT (°C') 

Silicon 2.60x10 6  

Soda Lime glass (Merck) 7.75x10 6  

Borosilicate glass (Merck) 4.60x 106 

Corning 7740 borosilicate 3.25x 10 6  

Pilkington CMZ 3.90x 106 

Loctite Adhesive 3608 100x10 6  

Loctite Adhesive 3542 

(Low thermal expansion) 29.0x10 6  

Table B.2 	Linear Coefficients of Thermal Expansion, LCTE, @ 300K. 

B.2 Adhesives. 

Norland Optical Adhesives 

Product NOA61 N0A68 NOA81 N0A88 
Viscosity (cps) 300 5000 300 200 
Modulus (psi) 150,000 20,000 200,000 131,000 
Tensile strength (psi) 3000 2500 4000 200 
Elongation at failure 
(%)  

38 80 25 41 

Shore D hardness 85 65 90 90 
Refractive index 1.56 1.54 1.56 1.56 
Cure(nm) 354-378 1 	350-380 320-380 315-400 
Temperature range (°C) -80 to 90 1 	-80 to 90 -150 to 125 - 

Table B.3 	Optical adhesives used for bonding coverplates of LC cells 
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Appendix B. 	LC cell materials and construction details. 

B.3 	Liquid crystal material properties. 

Ferroelectric Liquid Crystal 

Chisso-103 1 

Birefringence, An 1,2 0.17 
Spontaneous polarization, P' -28.1nC/cm2  
Tilt angle,O' 190 

Helical pitch' 3jim 
Rotational viscosity' 265mPa.s 
Response time, t1' 3  26jtS 

Nematic Liquid Crystal 

E7 

Nematic - Isotropic 61°C 
Crystaline (K) - Nematic -10°C 
Birefringence, An 4,5 0.2246 

+13.8 
E lI 4  19.0 
Viscosity4  39cSt 

Table B.4 	Two of the most commonly used liquid crystal mixtures during my studies. 

@25°C 
2 @546nm 

"@20°C 
@589nm 

6 @lkHz 
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Appendix B. 	LC cell materials and construction details. 

B.4 	Substrate cleaning procedure. 

The process we use at present, which has been developed by is described below. 

Cleaning of the backplanes and covergiass are performed in a cleanroom 

environment. Following each stage in the cleaning cycle the substrates are kept "wet", 

i.e. stored in a solvent or DI water, until they are required. Any substrate left in 

atmosphere, even in the cleanroom, must be assumed to be contaminated and put 

through the cleaning process once again. 

All containers/beakers tweezers etc. must be cleaned before use. 

Cleaning process. 

The samples are degreased in neutracon(2-5%) /DI water at 600,  for about half an 

hour. 

The substrates are then rinsed in DI water before being transferred to a beaker of 

electronic grade acetone. 

All subsequent cleaning, where solvents and dangerous chemicals are used, is 

performed in a fume cabinet. 

The substrates are then ultrasonically scrubbed for 5 minutes. For obvious 

reasons, the substrates, and especially the aluminized silicon backplanes, must not 

be allowed to overlap during the scrubbing process. 

Following scrubbing in acetone the substrates are individually rinsed in IPA 

before being placed in another beaker of IPA. The IPA dissolves any acetone 

residue and also makes drying the samples much easier. 

The substrates are again scrubbed for 5 minutes before finally being rinsed in IPA 

and transferred to a container containing IPA for wet storage. 

Upon use of the substrates they are dried with a filtered ionized nitrogen stream. 

Care should be taken to prevent the solvent splashing back on to the surface or 

evaporating. 
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Appendix B. 	LC cell materials and construction details. 

10. Following cleaning, and drying, the substrates are individually inspected under an 

ambient light, for any large particles or films of dirt. If such contamination is 

present the substrates are put back through the cleaning cycle. 

B.5 	Film evaporation details 

Edwards 306 Al evaporation 

The aluminum mirrors were deposited in an Edwards E306 evaporation system as 

detailed below. 

1-2ëm of aluminum wire is cut and placed inside the W filament. 

Samples placed, face down, directly above the source (110mm) , ensuring that 

the Xtal monitor is not obscured. 

Chamber evacuated to 2x10' ton, by the roughing pump. 

HT power supply is switched on and the power set to a level to allow the 

plasma to form. 

To prevent the residual gas pressure becoming too low and extinguishing the 

plasma, the gas admittance needle valve is opened to a position of about 6. 

The plasma is maintained for >20mins (see later). 

Power turned down to 0% and HT switched off. 

Close needle valve. 

Allow roughing to evacuate chamber to a pressure lower than 10' ton. 

Carefully open the high vacuum valve to allow the diffusion pump to evacuate 

chamber to at least 10 4  ton. 

Leave samples for 10-20 minutes (not yet determined experimentally) to allow 

water etc. to desorb from wafer surface. 

Zero the FM3 film thickness monitor (FTM). 

Switch on LT power supply. 

Note we have used air in our experiments, but argon will be considered in future 
experiments. 
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Appendix B. 	LC cell materials and construction details. 

Gradually increase power to -20%, or until aluminum begins to wet the W. 

filament. 

Increase the power to —35-40% watching the FTM. 

Turn power back to 0% and switch off the LT when FTM displays desired 

thickness. 

Close valves. 

Admit air. 

Remove samples. 

Edwards Auto-306 SiO evaporation 

The samples were placed into the evaporator using the correct jig for the size of glass 

and angle of SiO, flux incidence required (30°). A typical distance between the center 

of the jig and the top of the source being 190mm. The controller was programmed to 

automatically pump the chamber down to a high vacuum, by a closed loop 

refrigerated helium cryopump, when the start button was pressed. When the desired 

pressure was reached, usually <iø mbar, run was pressed, ensuring the shutter 

control was depressed ensuring the automatic mode was selected. 

WT 5 seconds 

PR 20%: 1 minute 

WT 30 seconds 

PR 30%: 1 minute 

WT 30 seconds 

SH open 

WT 5 seconds 

TZ zero 

CE 0.15nm/S 

TL 3Onm 

SH close 

PR 0% : 30 seconds 

Table B.5 	 Auto306 SiO deposition sequence. 
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Appendix B. 	LC cell materials and construction details. 

Key: 
WT-wait 
PR-Power ramp 
SH-Shutter 
TZ-Thickness zero 
CE-Constant evaporation 
TL-Thickness look 

B.6 	Cell filling. 

Nematic LCs have very low viscosities at room temperature, and as such fill cells 

without heating. However, it is desirable to outgas the LC in the vaccum chamber to 

eliminate bubbles in cell. 

As was mentioned in the text, smectic phases such as PLC have to be heated to above 

their clearing temperature, before cell filling. The method of cell filling currently 

employed by the Applied Optics group is as follows [Bodammer, 1996]: 

PLC is evenly applied along an open edge of the cell (where the opening is 

perpendicular to the direction of evaporation). 

The cells are then placed on the hot-plate inside the Edwards vacuum chamber. 

The chamber is then pumped down to a high vacuum, via a rotary pump and 

diffusion pump, to a pressure of <1O mbar. 

The devices/PLC are left to outgass for approximately 5-6 hours. The chamber is 

then switched back to the rotary pump (as the liquid nitrogen in the cold trap will 

completely evaporate over night). 

The following morning, the chamber is pumped down again to a high vacuum and 

the hot-plate power supply switched on. 

When the temperature of the hot plate, measured by a resistive sensor, has reached 

120°C, the power supply to the hot plate is switched off and air is admitted into 

the chamber, at a controlled rate, to allow the cell to fill with LC. 
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Appendix B. 	LC cell materials and construction details. 

After the cells have cooled to room temperature (3 hours), they are heated again, 

under high vacuum, to 100°C. 

They are again bought back upto atmospheric pressure and allowed to cool. 

The disadvantage of this simple technique is that there is little or no thermal contact 

to the top half of the FLC cell, which means that there is non-uniform heating of the 

LC. 

A slightly different method of filling LC cells, widely used by others [Calton, 1998], 

is described as follows: 

The devices are suspended above a bath of the LC material, with the open edge of 

the cell facing down, in a vacuum chamber. 

The chamber is pumped down to high vacuum to allow the devices/LC to outgass. 

The LC in the bath is heated and the cells lowered into it. 

The chamber is now opened up to atmosphere, forcing the FLC to fill the cell. 

Disadvantage-requires large volumes of liquid crystal to fill the bath. 

Various temperature cycling magnetic/electric field procedures may be carried out 

during or after cell filling to improve the FLC alignment [Zheng, 1998]. 

8 In the case of smectic phases such as FLC. 
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Appendix C. 	Capillary filling of a cell with LC. 

C.1 	Liquid crystal flow front velocity 

The velocity of the LC in the y-direction depends on z, which is perpendicular to the 
plates. 

 

 

Figure C. 1 	(a) LC flow velocity is a function of z, (b) 1 is the length of LC inside the cell. 

a 2v 1 
Navier-Stokes equation 	 = - VP 

az2  1 
(18) 

Where VP is the pressure gradient and 1  is the translational viscosity coefficient, 
which is dependent on the orientation of the LC. If the pressure gradient is a constant, 
the solution to (18) is found to be parabolic 

—VP(d2 2 v= 
21 4 

The flow speed at the middle layer (z=O), figure C.1, is 

V 
= —VPd 2  

8i 

and the average speed is 
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Appendix C. 	Capillary filling of a cell with LC. 

d 

f vdz 

_VPd22 v 
d 	121 	3 

vP= —2(y —i) 
id 

Where d is the cell gap thickness, 1 is the length of LC inside the cell, Ysv  and Ysi  are 
the surface tension of the substrate-air and substrate LC interfaces, respectively. 

...=I1 sv s1 d 
6i1  ) 

[Mi, 1998] 
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Appendix D. 	 Equipment Inventory. 

The equipment listed in this section is taken from the EMF web site, and from 
literature regarding services from other departments within the University. 

Equipment in the EMT. 

Linott Series Ill ion implanter with dose capability of lelO to 1e16 atoms/sq cm 
in energy range 25 to 200 KeV using boron, phosphorus and arsenic impurities. 
The machine has a run capacity of 54 x 3" wafers or 27 x 4" wafers. 

Baizers BAS450 DC magnetron sputter coater with two 5"xlO" targets presently 
used for coating up to 24 x 3" wafers with Al/1%Si or Al. Ion beam pre-cleaning 
is posible using an Ion Tec Inc Kaufmann source. 

Three quad stack Tempress Omega L furnaces, with supervisor computer control. 
System is tooled for 3" wafers to support: 

Dry oxidation (with HCl gettering) 
Wet oxidation (burnt hydrogen with HCl gettering) 
Nitrogen anneals 
Phosphorus deposition (solid source or POC13) 
LPCVD polysilicon 
LPC\TD silicon nitride 

Addax Rapid Thermal Processor with dry oxidation capability, handling single 3" 
wafers. 
Jipelec FAV4 limited reaction processor with oxidation and polysilicon deposition 
potential. 

Pacific Western PWS 2000 hotplate reactor for PSG deposition at 430 degrees 
Centrigrade. 
Oxford Plasma Technology ECR deposition of Si02  and nitride. 

STS PF 508 barrel reactor for plasma ashing of photoresist from up to 150 
wafers/run. 
STS load locked aluminum RIE using SiC12  and C12  chemistry. 

Plasmatherm PK2440 RILE system using Fluorine chemistry to anisotropically etch 
silicon dioxide and nitride from 20 x 3" wafers. 
Plasmatherm PK2440 RIE system using Chlorine chemistry to anisotropically 
etch polysilicon and aluminum/alloys from 20 x 3" wafers. 

38ft of fume extracted class 100 laminar flow chemical wet stations. 

Photoresist coating, developing and baking are acheived on 3" and 6" wafers on 
two SVG 8600 track systems, each comprising of: 
Dehydration bake/ vapor prime, coat, hotplate softbake 
Post-exposure bake, spray/puddle develop, hotplate hardbake. 
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Appendix D. 	 Equipment Inventory. 

Mask aligning and exposure are carried out using contact printing or reduction 
projection printing. 
Contact printer: Cobilt 2020 soft contact (3") 
Projection printer: Optimetrix 8010, g-line, 0.32 NA (3") 
lox reduction stepper with lpm resolution over 1cm square field and die by die 
alignment to +/-0.3jtm. 

Projection printer: Optimetrix 8605, g-line, 0.32 NA, (3, 4 and 6") 
5X reduction stepper with ltm resolution over 1.4cm square field and die by die 
alignment of +/-0.3.tm. 

Wafers are subject to visual inspection using a variety of metallurgical 
microscopes. 

Profiling of wafer topology is available using a Sloan Dektak 8000 surface 
profiler. 

Refractive index and thickness of visually transparent dielectrics such as Si02  and 
Si4N3  are measured using an Applied Materials Ellipsometer model AME500. 
Thick dielectric and polysilicon layers are more readily measured using the 
Nanoscope Model 010-180 reflectometer. 

Sheet resistance of large processed layers is measured using a Veeco 1000 4-point 
probe. 

Dicing saw-Kulicke & Soffa Model 602M with All  wafer chuck. 
Dicing saw-Tempress Model 602M with 4" wafer chuck. 
Eutectic die attach- Dage-Precima Model EDB65 with mechanical scrub wetting 
Wire bond-Kulicke & Soffa Model 472 goold wire ultrasonic ball bonder. 

Parametric testing can be carried out with two HP4062B test systems with 48n 
switchable pins connected to a TAC automatic wafer prober. 

Logitech PS2000 polisher 

Presi 460 polisher 

Mask scrubber (4") 

PVA brush wafer scrubber (6") 
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Appendix D. 	 Equipment Inventory. 

The SEM Facility operates a Philips XL30CP with Oxford Instruments Isis 300 X-ray 
analysis system (installed in 1998). 

The equipment available at the Science Faculty Electron Microscope Facility 
includes; 

Cambridge S25OSEM 
Jeol lOOs TEM and carbon coating facility 

Some of the equipment available from the A.O. Group in the Department of Physics 
LC Cleanroom. 

Edwards Auto306 silicon monoxide/MgF2  evaporator with He Cryopump. 
Edwards E306 aluminum evaporator (diffusion pump). 
Ultrasonic baths 
Laminar flow cabinet 
Glue writer 
Polarizing microscope and frame grabber (for inspecting cells) 
Vacuum chamber (diff pump) with hot plate for FLC cell filling 
Edwards sputterer (ITO, Al etc.) 
Tallystep surface profiler 
Burleigh Instructional STM. 
AFM with optional STM head (Not yet working in AFM mode). 
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Appendix F. 	 Publications. 

Some of the work described in this thesis has been presented at the OSA Spring 
Topical Meeting, SLMs in Lake Tahoe, Nevada, 1997 and the IEEE/LEOS Summer 
Topical Meeting in Monterey, California, 1998, and published as 

A. O'Hara, G. Bodammer, M. Begbie, D.G. Vass, I. Rankin, K. Seunarine, D.C. 
Burns, I. Underwood and J.T.M. Stevenson "Investigation of Novel Structures on 
Silicon Backplane SLMs" In Technical Digest, Optical Society of America, 
Washington DC (1997), pp. 154-6. 

K. Seunarine, I. Underwood "Technique to Improve Flatness of MEM 
Backplanes", Digest of the IEEEILEOS Summer Topical Meeting Optical 
MIEMS, 1998, pp.79-80.,  

respectively. 

This and further work was included in 

K. Seunarine, D.W. Calton, I. Underwood, J.T.M. Stevenson, A.M. Gundlach 
"Techniques to Improve the Flatness of Reflective Micro-Optical Arrays" Sensors 
and Actuators, Physical A. Accepted for publication (1999). 

A patent was filed and a post-deadline paper presented at the OSA meeting, SLM's in 
Snowmass, Colorado on some of the results, described in chapter 3 as 

K. Seunarine, D. W. Calton "Planarization Technique for Systems over 
Semiconductors" Patent application number 9908064.0, filed April 9th, 1999, UK 
Patent Office. 

K. Seunarine, D.W. Calton, I. Underwood, "A Novel Thin-Mirror Trench-Fill 
Technique for the Manufacture of High Optical Quality LCoS Spatial Light 
Modulators", in Spatial Light Modulators and Integrated Optoelectronic Arrays, 
OSA Technical Digest (Optical Society of America, Washington DC, 1999), pp. 
PD3-1-PD3-3. 

A.J. Walton, D.G. Vass, I. Underwood, G. Bodammer, D.W. Calton, K. 
Seunarine, J.T.M. Stevenson, A. M. Gundlach, "A Review of the History and 
Technology of Micromachined Miniature Displays Using Foundry Produced 
Silicon Backplanes ", Invited paper, SPIE meeting in Queensland, Australia 
(1999). 

I. Underwood, D. G. Vass, D. W. Calton, K. Seunarine, G. Bodammer, C. 
Miremont, J. T. M. Stevenson, A. M. Gundlach, "Recent advances in silicon 
backplane micromachining for liquid crystal microdisplays ", Accepted for TEE 
Colloquium on Microengineering in Optics and Optoelectronics, London, UK, 
Nov. 1999. 
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Introduction 

The manufacture of high quality liquid crystal 
over silicon (LCoS) SLM's, has recently begun 
to show commercial viability. The devices 
available at the present are relatively expensive 
and produced in low volumes. Improving the 
device quality to a sufficient extent that they 
may be used in coherent applications, (e.g., 
optical correlation and holographic routing) and 
to allow mass production of high quality micro-
displays is proving a difficult task. Several 
issues need to be resolved, the main problems 
being, backplane flatness, cell gap (liquid 
crystal layer thickness) uniformity and liquid 
crystal (LC) alignment. We have previously 
reported on techniques to flatten the backplanes 
of such devices using Chemical Mechanical 
Polishing and a novel die flattening technique 
M. The LC alignment issue, which is highly 
dependent on the LC cell filling conditions [2] 
will be discussed in this paper. 

Existing manufacturing techniques leave the 
mirrors proud of the surface by as much as 
1.59m, figure I. This mirror step height causes 
the LC to flow with a non-linear flow front 
during cell filling, which leads to a poor LC 
alignment. A method is needed of producing a 
Planar surface with no inter-mirror trenches. 
Damascene polishing [3] of the aluminum 
mirrors has been reported, but problems 
remained including scratching and dishing of 
the mirrors, by as much as 30nm over a 
square mirror. In addition to the dishing, array 
thinning, on the order of 400nm over the 10mm 

array, was introduced. This was caused by 
erosion of the inter-mirror dielectric "walls" due 
to the different pattern densities between the 
array and the surrounding field region. 

While mirrors formed using the damascene 
process greatly reduced the LC flow front 
disturbance [4], dishing and array thinning were 
seen to cause a lensing effect and a variation in 
LC layer thickness (optical path length), 
respectively. This resulted in a loss of contrast 
and spurious phase effects which degraded the 
optical performance of the SLM. 

In order to overcome these detrimental effects a 
novel technique was developed in which the 
trenches between the thin minor' [5] electrodes 
were filled with silicon oxide, yielding by far 
the most planar pixellated backplanes produced 
to date. 

rro 
Uqwd cryseaj 
aIinzng layer 

Liquid ceya1 

VLSI circuitry 	 Mirra, 

Figure 1. Cross sectional illustration of a 
conventionally processed (planarized) LCoS 
backplane. Note the trench between the mirrors. 

We have sucessfully fabricated thin mirrors using 
an intermediate metal CMP process. The results of 
which will be presented at a later date. 
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filling direction before moving to the next 
column of pixels. 

It was seen that the flow front of the liquid 
crystal filling the cells was severely perturbed 
by the capillary pinning [7] effects associated 
with the rough silicon surface. The effect was 
greatly reduced on the samples constructed 
using "thin" SO-lOOnm thick mirrors and was 
completely absent, on both a pixel and 
macroscopic scale, on the samples with SiO 
filled trenches. 

Conclusions 

The intermjrror trenches of LCoS SLMs are 
filled, producing an extremely planar surface on 
which the liquid crystal flows during cell tilling. 
The process is self-aligned, and no additional 
masking steps are required. 

The liquid crystal flow front, over 
conventionally fabricated mirrors, during  cell 
filling, was severely disrupted due to capillary 
pinning at the pixel mirror edges. A thin mirror 
Processes also exhibited this capillary pinning 
but to a lesser extent. Thin mirrors which were 
processed using our novel inter-mirror trench 
filling technique, however, were shown to have 
no adverse effects of the LC flow front. The 
straight flow front, which is extremely 
important in ensuring a uniform LC alignment 
over large Q: 10 x 109m) pixel arrays is 
maintained. 
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Abstract 

Liquid crystal over silicon is an established technology for reflective spatial light modulators and microdisplays. In this paper, we 
describe progress in improving two key performance criteria. The first is backplane flatness; we describe recent developments in the use 
of chemical mechanical polishing to produce optically flat pixel mirrors on top of existing circuit topography; we further describe the use 
of an assembly technique that reduces chip bow caused by the microfabncation induced stresses in the silicon backplane. The second is 
liquid crystal layer thickness; we describe the use of a lithographically patterned spacer layer microfabricated on the surface of the silicon 
backplane to minimize layer thickness variations. Each of the techniques produces improvements in the performance of the final device. 
© 1999 Elsevier Science S.A. All rights reserved. 

Keywords: LCoS; CMP; ECR; Spacer; SLM assembly 

1. Introduction 

1.1. Background 

A Spatial Light Modulator (SLM) is a device which is 
used to apply a spatially controlled modulation to an 
incident wavefront. Over the years many SLM technolo-
gies have been reported and many types of modulation 
applied [1].  Pixellated spatial light modulators based upon 
the hybrid technology of Liquid Crystal on Silicon (LCoS) 
have been around for some time (Fig. 1). In recent years 
the specific combination of fast switching Ferroelectric 
Liquid Crystal (FLC) over densely packed CMOS silicon 
circuitry has heralded a substantially increased perfor-
mance, particularly in terms of space bandwidth product, 
W, given by 

W = mnf 

where in is the number of rows, n is the number of 
columns, and f is the frame rate of the SLM. 

For example, the recently available SLJMDIS device 
has n = 1024, m = 768 and f= 10 kHz giving a space 
bandwidth product of 10 Gbit/s. The primary application 
of LCoS and FLCoS SLMs today is as miniature displays 

Corresponding author. Tel.: + 44-131-650-5604; Fax: + 44-131-650-
6554; E-mail: ks@ee.ed.ac.uk  

[2]. This is by far the largest potential market, many other 
markets exist which, while smaller and more specialized, 
are likely to be of greater added value and thus worth 
pursuing. These include optical crossbar switches, recon-
figurable holograms and optical correlators [3]. 

1.2. Current situation 

Some of the major performance indicators for spatial 
light modulators (depending upon application) are pixel 
count, frame rate, space-bandwidth product, throughput 
efficiency, contrast ratio, modulation depth, phase flatness, 
uniformity across a SLM and from SLM to SLM, size, 
weight and cost. For a reflective SLM technology used in 
non imaging applications, backplane flatness is a key 
factor at all scales from macro to microscopic. It is gener-
ally the case that, if no special care is taken, a silicon 
backplane will show a degree of non-flatness at all scales 
due to the following causes: 

Sub-micron. Metal granularity causes scattering of in-
cident light. We have previously reported the successful 
use of unsintered aluminum to minimize this effect [4]. 

Pixel. Circuit topography also scatters light and causes 
variations in the director alignment of the liquid crystal 
layer which show up as sharp variations in contrast in a 
finished SLM. 

0924-4247/99/$ - see front matter © 1999 Elsevier Science S.A. All rights reserved. 
P11: 50924-4247(99)00199-5 
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Fig. 2. Simplified CMP tool layout. 
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Fig. I. Illustration of reflective SLM operation. 

Backplane. Chip bow causes distortion of a reflected 
wavefront and large scale variations in FLC thickness 
and alignment, again resulting in noticeable contrast 
variations (manifesting as color fringes in a microdis-
play) [5]. 

1.2.1. The issues 
Major issues facing the FLCoS SLMs of today, particu- 

larly with regard to their use in non-imaging applications, 
such as those listed in Section 1.1, are those of improving 

the flatness of the silicon backplane at the pixel and 
array levels 

the thickness uniformity of the FLC layer across a 
device. 
Thickness uniformity is an issue because the FLC acts 

as a switchable halfwave plate in reflection whose optical 
response is as shown in Eq. (1). 

1(A) =Io(A)  sin  2(48)sln2 ithn(A)2d( 	
A 	) 	

(I) 

where 8 is the cone angle and An is the birefringence of 
the liquid crystal. A is the wavelength of the incident light 

'O• 
Clearly for the optimum modulation we require a thick-

ness of iXnd= (2m + l)A/4, where m is a positive inte-
ger. 

1.2.2. The solutions 
The solutions we have identified, and on which we 

report our progress here, involve 
the use of Chemical Mechanical Polishing (CMP) tech-
niques to reduce or remove underlying topography 
(Section 2) 

spacer pillars to set the size of the FLC cell gap 
(Sections 3.1, 3.2 and 3.3), and 

an assembly technique which sets a uniform cell gap 
(Section 3.4). 

2. Backplane planarization 

2.1. Chemical mechanical polishing 

The requirement of producing optically flat micro-mir-
rors necessitates the use of some form of planarization to 
remove the surface topography caused by the underlying 
circuitry. There are several methods in current use, includ-
ing; etch back, bias sputtered dielectric, spin on glass or 
other material and chemical mechanical polishing of di-
electric (CMP). Of these methods only [6] CMP offers 
planarization at both local and global levels [4,7]. 

In CMP the wafer is placed face down, under pressure, 
on a polishing pad, both the wafer and pad rotate, slurry is 
then fed at a controlled rate onto the pad surface. Material 
removal is by a combination of mechanical and chemical 
action of the slurry [8] (see Fig. 2). The rate of material 
removal is related to contact pressure and wafer/pad 
velocity [9]. The greater the velocity the higher the re-
moval rate, also, the higher the applied pressure the higher 
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the removal rate. This causes the higher points, which have 
a greater contact pressure to polish first [101.  Eventually all 
the high spots are removed, leaving a smooth planar 
surface. 

CMP is a complex process and the quality of the result 
is dependent on many factors, each of which needs to be 
optimized. The process variables include pad/wafer veloc-
ity, head/back pressure, pad/slurry temperature, slurry 
flow and pad conditioning. All these parameters have to be 
optimized with a particular set of consumables, pad, slurry, 
wafer holders and machine used. As all of the variables are 
interrelated a 'recipe' which works for one consumable set 
may not be repeatable for another. 

2.2. Issues for CMP of optical arrays 

We are investigating the use of CMP to planarize 
SLMs, which have large arrays of micro-mirrors. The 
surface topography of a processed wafer is not flat as there 
are many irregularities caused by the different layers used 
to build up the underlying circuitry. This has to be re-
moved if high quality, optically flat mirrors, are to be 
fabricated over the underlying circuitry. 

The degree of planarization can be classified into three 
distinct types: local or feature scale planarization <20 
pm (FSP), die scale planarization <12 mm (DSP) and 
global or wafer scale planarization (WSP). In the produc-
tion of micro-mirrors both FSP and DSP are crucial. FSP 
is necessary to produce individually flat mirrors while DSP 
is necessary to give flat die and therefore a uniform cell 
gap which promotes a high quality LC fill. WSP is the 
most difficult to achieve, it requires that all die within the 
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wafer have the same oxide thickness, which is necessary 
for process considerations, such as etching of the vias, and 
overall yield issues. The process tolerance required for 
polishing SLMs, is far tighter than for normal, non-optical, 
electronic device fabrication, where the required planarity 
set by the depth of focus (DOF) of the photolithography,  
printing system. This can be in the order of 240 nm for 
A =  365 nm systems. In standard CMP the maximum 
planarization length is in the order of a few 100 pm while 
SLMs demand that the entire array, which can be larger 
that 10 mm, needs to be planarized. If the finished device 
is to be used in a display system it has to be flat, at both 
pixel and array scale, typically to A/S (120 nm at A = 633 
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4  is  r z NIA1  

Fig. 7. (a) Si02  deposit, (b) mask and etch, (c) after etch showing 
reduced step height, and (d) after CMP showing no step. 

nm). If used for optical computing the requirements are 
even tighter with A/ 10 (63 nm at A = 633 nm) being the 
minimum flatness required [11]. 

Other areas of concern are the final surface finish of the 
oxide and post CMP cleaning. The surface finish must be 
of sufficient quality, low roughness average (Rn),  to allow 
highly specular aluminum to be deposited. Post CMP 
cleaning must ensure that no abrasive particles are left 
behind as they will cause reliability concerns and also 
degrade the quality of the sputtered aluminum, causing a 
deterioration in the optical quality of the mirrors. 

2.3. Experimental details and results of CMP 

The test pattern, see Fig. 3, was patterned Onto 1.6 pm 
of aluminum, sputter coated onto 100 mm wafers. They 
were then polished using a Presi Model E460 single 
spindle machine using a Rodel 1C1400 stacked pad, and 
Klebosol 30H50 slurry. The consumable set was the same 
for all the tests. Two micrometers of Electron Cyclotron 
Resonance (ECR)-PECVD oxide was then deposited using 
an Oxford Plasma Technology reactor. ECR oxide is used 
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Fig. 9. Image of planarized array and surface profile. 

because of it ability to completely fill small gaps between 
features this is essential because the oxide must contain no 
voids otherwise they will be exposed, during polishing, 
leading to defects in the polished surface. 

The oxide thickness over the array was measured using 
a Nanometrics micro-area gauge, the surface profiling was 
carried out on a Sloan Dektak model 8000. The profile of 
the first oxide deposition is shown in Fig. 4. It can be seen 
that this layer follows the underlying circuitry producing a 
non-planar surface. 

Several difficulties arise when polishing large arrays of 
small features. Firstly, CMP is very sensitive to variations 
in feature density in that it polishes single, isolated fea- 

15500 
Si02 Thickness Over Array For Different Step Heights 

14500-- 

13500-- 
c1% 

	

4500

13500 	 0tf 

	

12500 	 JP 

	

CP 	 '17
ra  a 

AAA AA 
a 

	

11500 	

A 

A 

	

10500 	 A 	
A A 

A Cl) 	
AA 

	

9500 	 Al) 	
A 

AAA  

	

8500 	 A 	 3 Step Height =0.8 microns 

0 1 Step Height = 1.6 microns 

A 2 Step Height = 0 microns 

7500 .I...I...I...I ''LII... LII 	LI 
-2000 -1000 	0 	1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 82000 

Distance/microns 

Fig. 8. Si02  thickness over the array, following CMP. 



K. Seunarine et al. / Sensors and Actuators 00 (1999) 000-000 

Table I 

Machine Presi Model E460 
Head Pressure 0.6 bar 
Head Speed 60 rpm 
Platen Speed 60 rpm 
Back Pressure 0.2 bar 
Slurry Flow 75 ml/min  
Temperature 10°C 
Slurry Klebasol 30H50 
Pad Rode! 1C14000 

tures, at a higher rate than groups of features of the same 
size. Consequently when polishing the mirror array the 
oxide polishes into a square domed shape, which is thicker 
in the middle than at the edge. The oxide thickness over 
the array, which has been polished at 1-min intervals, is 
shown in Fig. 5a. It can also be seen that once a profile has 
been established further polishing will only reduce this 
profile in height, and not alter its shape (Fig. 5b). If the 
polish rate at the edge of the array is compared with the 
middle, it can be seen that they are identical (Fig. 6) as is 
the polish rate for the bond pads. It was seen that the 
smaller features within the array were removed, to within 
80% of their initial height, within the first 4 min of 
polishing. After 6 mm, no structure could be seen on the 
array surface, but it still exhibited the rounded profile 
which did not alter even after over 20 min of polishing. 
This can be attributed to the deformation of the polishing 
pad [12]. A harder, stiffer pad may help to overcome this 
problem but would lead to a poor WSP. The pad tempera-
ture was controlled at 10°C to increase the stiffness and 
reduce the amount of pad deflection around the array [131. 

One way to overcome the problem of array rounding is 
to use a pre-CMP etch [14]. This is used to reduce the 
oxide step height of the array compared to the surrounding 
field region. It essentially removes the low frequency 
(large) features, which are the most difficult to remove by 
CMP, while leaving the smaller features intact. The device 

r5v uonn 	suet 

Fig. 10. Conventional silica spacer rods are crushed during cell assem-
bly/die flattening. 

Fig. 11. SEM of an oxide spacer in which lift-off is incomplete. 

is first covered with photoresist and then patterned to leave 
the array exposed. The oxide over the array is then etched 
using Reactive Ion Etching (RIE) to reduce the step height. 
The resist is stripped and the wafer then polished (Fig. 7). 
If the oxide over the array is etched level with the field 
area, prior to CMP, dishing results. This stems from the 
fact that the mirror array has a different feature density 
(- 56%) compared to the field oxide density (100%) 
which causes the array to polish faster, creating dishing of 
the array [15], see trace 2 in Fig. 8. 

If the array is etched, pre-CMP, to such a height that the 
differential polish rate, caused by the different feature 
density, counteracts the doming effect, caused by pad 
deformation a flat array profile will result following CMP. 
On this test pattern, a step height of 	0.8 pm is found to 
produce the best planarity of oxide over the array. The 
result of polishing an array with this height can be seen in 
Fig. 8 trace 3. It can be seen that the amount of dishing is 
minimal. The array oxide has been polished to a uniform- 
ity of 	75 nm over the 12 mm die, see trace 3 (Fig. 8). 
The final surface topography can be seen in Fig. 9. The 
initial step height of 1.7 pm has been reduced to zero with 
no features present within the array and a surface rough- 
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Fig. 12. The spacer height varies quite considerably with photoresist 
stencil aspect ratios of ~: 0.15. 
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ness of R. = 22 A. The process variables and consumable 
set used for the final test can be seen in Table 1. 

3. Backplane flattening and cell spacing 

SLMs are currently assembled using traditional silica 
spacer particles 'borrowed' from the flat panel display 
fraternity. The problem with these particles, when used in 
the manufacture of such devices, is that they are (i) 
randomly distributed across the device, and (ii) easily 
fractured during pressurized assembly (Fig. 10). To date 
there have been many other cell gap spacing methods 
reported including CVD-diamond, dummy structures, posi-
tive photoresist and Benzocyclobutene (BCB) [16-21]. 
The requirements of the spacer material used to set the cell 
gap, are that it must be robust, inert to liquid crystal, have 
a strong adherence to the substrate and be compatible with 
the post-processing procedure. 

20 	25 	 30 	35 
Nitrous oxide (seem) 

 

Fig. 13. (a) Effect of microwave power and (b) nitrous oxide flow rate on 
ECR-PECVD deposition uniformity. 

Table 2 

Silane flow rate 125 seem 
Nitrous oxide flow rate 35 sccm 
Table height 100 mm 
Table wafer temperature 40CC 
Chamber pressure — 5 X 10 	Torr 
Microwave power 300 W 
Magnet currents 130 A and 55 A 

We have developed a process of fabricating robust 
custom spacer layers on a wafer-scale using conventional 
microfabrication techniques, which go hand in hand with, 
and actually benefit from planarization by CMP. The 
pressurized assembly technique, which relies on these 
robust spacers, may facilitate the automated assembly of 
LC/VLSI SLMs, which up to now has been carried out by 
experienced manual operators [22]. 

3.1. Spacer layer fabrication 

To prevent degradation (hillock formation) of the opti-
cal quality of the aluminum pixel mirrors a low deposition 
temperature ECR oxide is used. A lift-off technique is also 
required to maintain metal quality which would be at-
tacked (pitted) during an etch process [23]. 

The wafers are thoroughly cleaned by ultrasonic agita-
tion in de-ionized water/Neutracon @ 60°C and then 
dried. The adhesion promoting HMDS vapor prime, spin 
coating and soft bake are all performed on an SYG track 
system. The photoresist (HPR206 or SPR2) is then soft 
baked at 110°C for 60 s, and the spacer pattern printed 'by 
an Optimetrix 8600 series 5X g-line stepper. The resist 
overhang profile required for lift-off is accomplished by 
soaking the resist coated wafer in chlorobenzene for 60 
mm, at room temperature. Following this the wafer is 
rinsed in DI water and developed in Microposit 351, again, 
at room temperature. The wafers are given a final rinse and 
dry prior to ECR oxide deposition. Due to solvent out-
gassing in the resist layer the more robust planar/com-
pacted oxide used in CMP of the array, achieved by RF 
accelerated Argon ion bombardment, is found to be incom-
patible with the lift-off technique. The RF power and 
Argon flow rate are therefore both set to zero during 
deposition. Finally, lift-off is performed by ultrasonic 
scrubbing in acetone to remove the photoresist and un-
wanted oxide leaving the patterned spacer layer (Fig. 11). 

3.2. Patterning and deposition characterization 

To obtain the high tolerances required in the liquid 
crystal layer thickness and uniformity the spacer layer 
deposition rate must be known and repeatable. The possi-
ble factors which may affect the height of the spacers were 
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investigated. Test features accounting for width, length, 
separation, orientation and corner effects of the spacers 
were designed. Wafers were coated with 1.2 pm, 1.9 pm 
and 2.6 pm of photoresist. They were then patterned with 
the test features used to investigate the effect of the 
variables stated above. 

Following oxide deposition and lift-off of the unwanted 
material, the spacer feature heights and geometries were 
measured with the Dektak. From these measurements, it is 
found that only one variable has a significant effect on the 
spacer feature height; namely the width, and thus the 
aspect ratio of the patterned photoresist stencil (Fig. 12). 
The length of a feature only has an effect on its height 
when it is of a similar magnitude to the width < 10 pm. 

3.3. Deposition optimization 

In addition to characterizing the patterning process, the 
ECR-PECVD deposition process is optimized, using a 
designed experiment method [24], to provide the best 
possible deposition uniformity over the wafer. It is found 
that the microwave power and N20 flow rate have the  

most significant effects on the deposition uniformity (in 
that order) (Fig. 13). Deposition uniformities of :!!~ 1% 
over a 75 mm wafer have been achieved with the opti-
mized ECR deposition uniformity parameters (Table 2) 
compared to commercially available silica spacer particles 
which may have variations of 	10% [25]. 

3.4. Device assembly 

Various methods have been reported of flattening the 
severely bowed wafers and die of optical devices [26,27] 
which all have their merits. Our robust ECR-PECVD 
spacers have opened up new possibilities for flattening 
device backplanes, which offers a means of flattening 
backplanes on a die scale. The cell assembly/die flatten-
ing are performed after wafer dicing—so the wafer han-
dling/dicing problems of other techniques are avoided. 
Also, unlike other methods, no high temperatures or volt-
ages are required during flattening, and the delicate pixel 
mirrors are protected by the spacer pillars, which also 
provide an extremely accurate cell gap spacing. The fully 
fabricated and diced backplanes are assembled under pres- 
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Fig. 14. (a) Cell assembly technique, using a Rodel wafer insert to provide a restoring force on the backface of the die (b) the cell is held under pressure by 
a vacuum packer whilst the adhesive is curing. 
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Fig. 15. Interferograms of (a) severely bowed silicon backplane before 
flattening, and (b) after cell assembly (with no backface support). 

sure, to force the top surface of the die (spacer pillars) to 
conform to a 3 mm thick A/tO cover-glass (Fig. 14a and 
b). The assembly technique relies on the stress in the 
warped backplane and the restoring force of a compressed 
elastic material to firmly clamp the pillars against the rigid 
optical flat. A backplane flatness of A/5 to A/8 over a 14 
mm X 14 mm device have been achieved with this tech-
nique [28] (Fig. 15). The cells, which are then filled with 

Developed by M. Begbie, formerly of the Department of Physics and 
Astronomy. University of Edinburgh. 

nematic liquid crystal are inspected between crossed polar-
izers. A good contact between the spacer pillars and 
cover-glass is observed, which is evident from the lack of 
liquid crystal material in these areas. 

3.5. Spacer layer and cell assembly issues 

There are many important considerations in assembling 
reflective LCoS devices and, unfortunately, spacers pat- 
terned by lift-off, for use in such devices, introduce a new 
issue which must be addressed. Because the final height of 
any feature patterned by lift-off is aspect ratio dependent 
we are now faced with an additional problem in that the 
larger geometry stepper registration marks are higher than 
the spacer pillars in the array. The limited silicon real 
estate results in these local registration marks (used by the 
stepper to automatically align the spacer image over each 
die on the wafer) being in close, proximity to the active 
pixel area. The consequences of this are that the cell gap 
and backplane flatness, which is set from the optically flat 
cover-glass (which needs to extend past the pixel array for 
bonding purposes) may be destroyed by the taller registra-
tion marks. 

Another problem we have in assembling LCoS devices 
is adhesive encroachment. Until a suitable method is found 
to bond the cover-glass to the silicon backplane, conven-
tional optical adhesives will remain the most common 
method. Adhesive encroachment into the pixel array is a 
serious problem which may be minimized by a suitable 
geometry spacer layer. The spacer layer may also be 
supplemented by a trench etched around the array, into the 
planar oxide, which is found to be quite effective in 
controlling the spread of the adhesive into the cell. 

3.6. Possible solutions 

We have combined the trench etching step on a mask 
which is used to remove the troublesome spacer layer local 
alignment marks, Fig. 16. Of course, we still need to align 
the mask to each die on the wafer. Fortunately this can be 
done by aligning the wafer globally with a level of regis-
tration accuracy sufficient for this purpose. 

3.7. Spacer geometry 

The spacer layer geometry and distribution density may 
play an important role in the quality of the liquid crystal 
alignment achieved during cell filling. It has also been 
observed that the spacer layer must extend well beyond the 
pixel array to minimize any adverse effects of fringing in 
this area. 

4. Conclusions 

4.1. Planarization 

The discipline of planarization of micro-mirror arrays to 
optical tolerances is still in its infancy. CMP appears to be 
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Trench etched intO oxide 
Fig. 16. Spacer layer registration mark and adhesive encroachment issues. 

the most promising approach and has, for some time, been 
capable of reducing in-pixel topography to suitable levels 
[29]. The problem of using CMP to planarize a backplane 
with an array of pixels densely packed with circuitry in the 
center surrounded by a sparsely packed periphery has been 
highlighted. The problem has been overcome by the use of 
a novel process which involves the reduction of the array 
step height by the use of RIE etch-back. This is then 
followed by CMP to remove the step and surface topogra-
phy completely. 

4.2. Flattening 

The use of conventional spacer rods and spacer balls for 
cell gap specification has been shown to be unsuitable for 
silicon backplane SLMs because the spacers can sink into 
the soft aluminum mirrors and can be crushed by the 
stresses to which they are subjected. ECR-PECVD pro-
vides a means of depositing spacers of known and highly 
uniform thickness which can be patterned using lithogra-
phy and lift-off. All of the steps are compatible with 
conventional silicon wafer fabrication. The microfabricated 
spacers have been used in conjunction with a novel assem- 

bly technique to produce cells in which the final backplane 
flatness far exceeds the flatness prior to assembly. 

4.3. Summary 

The techniques we have described here and the results 
achieved using them show the potential to significantly 
improve the optical quality and uniformity of future SLMs 
and microdisplays. 
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