
Efficient Genetic Algorithms for Solving Hard

Constrained Optimization Problems
B. Sareni, L. Krähenbühl, and A. Nicolas

Abstract—This paper studies many Genetic Algorithm strate-
gies to solve hard-constrained optimization problems. It investi-
gates the role of various genetic operators to avoid premature con-
vergence. In particular, an analysis of niching methods is carried
out on a simple function to show advantages and drawbacks of each
of them. Comparisons are also performed on an original bench-
mark based on an electrode shape optimization technique coupled
with a charge simulation method.

Index Terms—Constrained optimization methods, genetic algo-
rithms, niching methods, shape optimization methods.

I. INTRODUCTION

O
NE of the key features to find the optimum of hard selec-

tive functions or difficult constrained optimization prob-

lems with a Genetic Algorithm (GA) approach is the preser-

vation of the population diversity during the search. Diversity

prevents GA’s to be trapped by local optima or to converge pre-

maturely. Therefore, various procedures have been developed

to avoid GA’s to rapidly concentrate their population to a single

point of the search space. The first way to preserve diversity

consists in protecting individuals from the loss of genetic mate-

rials by using specific mutation operators with various control

schemes of mutation rates [1], [2]. On the other hand, one can

also associate GA’s with a niching method to avoid premature

convergence [3].

This paper investigates many GA’s strategies using a strong

mutation operator or a nichingmethod to solve hard-constrained

optimization problems. Comparisons are carried out on an orig-

inal benchmark based on an electrode shape optimization tech-

nique coupled with a charge simulation method.

II. REAL PARAMETER ENCODED GA’S WITH STRONG

MUTATION OPERATORS

A Standard binary encoded Genetic Algorithm (SGA) works

with a finite-length character string (chromosome) which repre-

sents the set of parameters of the problem. Typically, the chro-

mosome of individuals is coded into a binary string. In that case,

mutation is usually represented as an operation in which one of

the bits on the string is flipped. For binary encoded GA’s muta-

tion rates often take small values lying between 0.001 and 0.1.

B. Sareni was with the CEGELY, ECL, BP 163, Ecully Cedex, France. He
is now with the LEEI, ENSEEIHT, BP 7122, 31071 Toulouse Cedex, France
(e-mail: Bruno.Sareni@leei.enseeiht.fr).
L. Krähenbühl and A. Nicolas are with the CEGELY, ECL, BP 163, Ecully

Cedex, France (e-mail: Laurent.Krahenbuhl@ec-lyon.fr).

Real parameter encoded Genetic Algorithms (RGA’s) are

radically different from binary encoded GA’s. The main struc-

ture and the selection operator are similar in both cases but

crossover and mutation of RGA’s directly use the parameter

values of individuals to create the offspring. For example, two

descendants and are obtained from two parents and

by recombining each corresponding parameter as follows:

(1)

where denotes a uniform random number in the interval [0,1].

Mutation consists generally in adding a perturbation to a design

variable with a probability of where is the number of pa-

rameters to ensure that at least one design variable is mutated for

each individual. A mutated variable can be written according

to (2):

(2)

where is the magnitude of the perturbation on the parameter

. Typically is a gaussian or a Cauchy noise such as in

Evolutionary Programming or in Evolution Strategies [4], [5].

We employ another interesting mutation scheme similar to that

reported in the Breeder Genetic Algorithm (BGA) [6]:

(3)

where and denote the extreme values of the param-

eter in the search space, is the precision constant (typically

set to 16) and is a uniform random number in the interval [0,1].

III. NICHING GA’S

A. Overview of niching GA’s

Niching methods have been developed to reduce the effect of

genetic drift resulting from the selection operator in the standard

GA. They maintain the population diversity and permit the GA

to investigate many peaks in parallel. On the other hand, they

prevent the GA from being trapped in local optima of the search

space.

Niching GA’s can be classed in two different groups. The

first one involves GA’s which are characterized by an explicit

neighborhood since they need an explicit distance cutoff (also

the similarity threshold or the niche radius) to induce emergence

of niches and species in the search space. This can be an impor-

tant drawback for problems for which distance between optima

cannot be estimated. The second consist of techniques for which

neighborhood is implicit. In that case, the algorithm requires no

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12043905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I
EXAMPLE OF NICHING GA’S

information about the search space and can be easily applied

to various problems without restrictions. Table I presents four

niching methods reviewed in [3] according to the previous clas-

sification.

B. Convergence Analysis of Niching GA’s

In this section, an analysis on the behavior of various niching

schemes is carried out. For that purpose, we consider the one-

dimensional multimodal function defined by (4).

(4)

is defined on [0,1] and consists of five unequally spaced

peaks of nonuniform height. Maximums are located at approx-

imate values of 0.080, 0.247, 0.451, 0.681, and 0.934. Maxi-

mums are of approximate height 1.000, 0.948, 0.770, 0.503 and

0.250 respectively.

To assess the efficiency of niching GA’s on this simple func-

tion, we examine the “chi-square like” performance statistic as

a function of the generation number for each algorithm.

The chi-square-like performance statistics measures the de-

viation between the population distribution and an ideal propor-

tionally populated distribution [9]. This criterion is computed

using the actual distribution of individuals and an ideal dis-

tribution mean in all the niches peak niches plus the non-

peak niche).

chi-square like deviation (5)

where

and (6)

for the peak niches and,

and (7)

for the nonpeak niche. denotes the population size and cor-

responds to the fitness value of the peak . The variable rep-

resents the observed number of individuals in a niche rep-

resents the expected ideal number and represents the standard

deviation of the number of individuals in the ideal distribution.

The chi-square-like performance statistic characterizes the

ability of the niching technique to proportionally populate the

niches of the search space (the smaller the measure, the better

the method). When this criterion is computed as a function of

generations, it also shows how individuals evolve in the niches

of the search space.

Fig. 1. Chi-square-like deviation of the niching GA’s investigated on function
 . The population size is ! = 100.

TABLE II
NUMBER OF PEAKS MAINTAINED AFTER 200 GENERATIONS (AVERAGE

VALUE OVER 100 TESTS)

We examine the chi-square like deviation on the function F(x)

for niching GA’s reported in [3]:

- Fitness Sharing (SH) with stochastic universal selection,

matching sort and a niche radius .

- Clearing (CL) with stochastic universal selection, a

clearing radius and a niche capacity = 10.

- Restricted Tournament Selection (RTS) with a crowding

factor CF = 30.

- Restricted Tournament Selection (RTS) with a crowding

factor CF = 30.

- Deterministic Crowding (DC)

All GA’s are run with a crossover probability , a mu-

tation rate and a population size . The

Euclidean distance is used in each case to evaluate the dissimi-

larity between individuals.

Typical chi-square deviations are displayed in Fig. 1. Table

II shows the corresponding number of peaks maintained at the

end of the search.

Thanks to its proportional selection operator, clearing gives

a very low chi-square like deviation. It rapidly concentrates its

population on the peaks of the search space and succeeds in

maintaining niches. The behavior of fitness sharing is rather

similar but the population is subject to noisy fluctuations that

lead to an unsteady chi-square distribution.

Crowding schemes are unable to maintain low chi-square dis-

tribution during the search. The first reason for this is mentioned

in [9]. Crowding methods use a replacement strategy which

minimizes the changes in the population. The distribution of the

population in the different niches strongly depends on the initial

distribution. This explains the higher chi-square like deviations

and the lower convergence noted for RTS and DC in comparison

(a)

(b)

Fig. 2. Capacitor benchmark. (a) Investigated profile. (b) Equivalent template
with discretized boundaries.

with those corresponding to the sharing and clearing methods.

On the other hand, replacement errors can occur for individ-

uals located at the edge of the niches [3]. For example, DC

detects the five peaks of the function in the first gener-

ations. However, in the following generations, it appears that

individuals located on the third peak progressively migrate to

the next peak because of replacement errors. At the two-hun-

dredth generation, all individuals are discarded from the third

peak yielding a poor chi-square distribution. This can be an im-

portant drawback because crowding methods might have diffi-

culties to concentrate their population in the feasible domain for

hard-constrained optimization problems.

We will verify these predictions in the next section.

IV. AN ORIGINAL BENCHMARK BASED ON THE OPTIMIZATION

OF A CAPACITOR PROFILE

A. Principle

The problem consists in finding the optimal electrode shape

so that the electric field is uniform on the capacitor profile from
the point B to the point C [see Fig. 2(a)]. The electrode is infinite

in the perpendicular direction to the Oxy plane and to the left of

the point B.

This benchmark is rather interesting because an exact solu-

tion can be obtained analytically from a conformal mapping [7].

The optimal electrode profile from the point B to the point C is

given as follows:

(8)

The problem is solved using the electrode shape optimiza-

tion method described in [8]. A geometric template has been de-

signed to find an equivalent equipotential to the electrode shape

[see Fig. 2(b)]. Eleven fictitious point charges are placed in the

region limited by the internal boundary to simulate the equipo-

tential. The optimization procedure consists in finding the op-

timal position and value for all charges in order to obtain an

uniform electric field on the equipotential line. Consequently,

the problem to be solved has 33 parameters (3 unknowns per

charge). Moreover, two constraints must be fulfilled:

• The first constraint is relative to the fulfillment of the geo-

metric template (the equipotential must be located inside

the template i.e. between the internal and external bound-

aries). This constraint is expressed by (9)

(9)

where and denote themaximum potential value

on the external boundary and the minimum potential value

on the internal boundary respectively.

• The second constraint requires the equipotential to be hor-

izontal at the point B. It is represented by (10).

(10)

where and represent the electric field value

at the point B and the component of the electric field at

that point respectively. This constraint ensure a horizontal

profile with a maximum error of 5 degrees.

When the geometric template is violated i.e. (9) is false, the

objective function to be maximized is computed by taking into

account both constraints as shown in (11) at the bottom of the

page where and are penalty coefficients.

It should be noted that since the fulfillment of the

first constraint has a higher order of priority in relation to the

fulfillment of the second constraint.

must be sufficiently large to prevent convergence on the

external boundary of the feasible domain but not to high to avoid

great discontinuity between feasible and unfeasible domains. In

our simulations, we have set and .

When the geometric constraint is fulfilled, the objective func-

tion is expressed as follows:

(12)

(11)

TABLE III
COMPARISON OF VARIOUS GA SCHEMES ON THE CAPACITOR BENCHMARK

(4 INDEPENDENT RUNS—100 INDIVIDUALS—200 GENERATIONS)

(a)

(b)

(c)

Fig. 3. Optimal solution of the capacitor benchmark. (a) Charge and electric
field distributions. (b) Optimal profile found. (c) Electric field stress on the
contours.

where denotes the mean of the electric field on the equipo-

tential and is the corresponding standard deviation.

The maximum value of giving the optimal profile defined

by (8) is .

B. Simulations, Results and Discussion

Table II summarizes the efficiency of various GA schemes

on the capacitor benchmark. All GA’s are run during 200

generations with a crossover probability = 1, a mutation

rate = 0.001 and a population size = 100. Clearing is

computed with a niche capacity of 1 and a clearing radius of

0.05 (as for the niche radius in the sharing method). RTS uses

a crowding factor CF = 30. Results in Table III are averaged on

four independent runs. and indicate the percentage of

individuals that fulfill the first constraint and both constraints

simultaneously during a run of a GA.

We can notice that real-encoded GA’s (RGA and BGA) sur-

pass the standard binary encoded GA (SGA). Niching methods

are not very efficient on this unimodal problem except clearing,

which improves convergence in all cases. In accordancewith the

predictions made in Section II, we see that crowding schemes

are unable to rapidly concentrate their population in the feasible

domain. In effect, RTS and DC do not create a sufficient number

of individuals that fulfill both constraints simultaneously (this

explains low values noted for for the and indicators). A

standardGA coupledwith fitness sharing is capable of exploring

the feasible domain but fails to differentiate good solutions from

bad configurations in it.

The best solution of objective = 0.987 was found by the

BGA coupled with the clearing method. Its characteristics are

depicted in Fig. 3.

V. CONCLUSIONS

In this paper, an original benchmark consisting in finding an

optimal capacitor profile with a charge simulation method has

been proposed to test optimization algorithms. An analysis of

niching GA’s behavior has been carried out on this problem

and on a simple multimodal function to point out the conver-

gence characteristics of each algorithm. In particular, crowding

methods were unable to concentrate individuals in the feasible

domain. Explicit niching GA’s such as clearing seems to be

more reliable for hard-constrained problems if the niche radius

can be suitably estimated.

REFERENCES

[1] J. A. Vasconcelos, R. R. Saldanha, L. Krähenbühl, and A. Nicolas, “Ge-
netic algorithm coupled with a deterministic method for optimization
in electromagnetics,” IEEE Trans. on Magnetics, vol. 33, no. 2, pp.
1860–1863, 1997.

[2] Th. Bäck, “Self-adaptation in genetic algorithms,” in Proceedings of the
First European Conference of Artificial Life, F. J. Varela and P. Bourgine,
Eds. Cambridge, MA, 1992, pp. 263–271.

[3] B. Sareni and L. Krähenbühl, “Fitness sharing and niching methods re-
visited,” IEEE Trans. on Evolutionary Computation, vol. 2, no. 3, pp.
97–106, 1998.

[4] Th. Bäck, Evolutionary Algorithms in Theory and Practice, NY: Oxford
University Press, 1996.

[5] K. Chellapilla, “Combining mutation operators in evolutionary pro-
gramming,” IEEE Trans. on Evolutionary Computation, vol. 2, no. 3,
pp. 91–96, 1998.

[6] D. Schlierkamp-Voosen and H. Mühlenbein, “Strategy adaptation by
competing subpopulations,” in Parallel Problem Solving from Nature
3—PPSN III, Jerusalem: Springer, 1994, pp. 199–208.

[7] E. Durand, Électrostatique. Paris: Masson, 1966, vol. II.
[8] B. Sareni, L. Krähenbühl, and D. Muller, “Niching genetic algorithms

for optimization in electromagnetics, II. Shape optimization of elec-
trodes using the CSM,” IEEE Trans. on Magnetics, vol. 34, no. 5, pp.
2988–2991, 1998.

[9] B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic niche
sharing for multimodal function optimization,” in Proc. IEEE Int. Conf.
Evolutionary computation, Piscataway, 1996, pp. 786–791.

