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Abstract. In this paper Multiobjective Genetic Algorithms (MOGAs) are used for the design of a small wind 

turbine generator (WTG) coupled to a DC bus through a diode bridge. The originality of the considered system 

resides in the suppression of the Maximum Power Point Tracker (MPPT). The poor efficiency of the 

corresponding passive structure is considerably improved by optimizing the generator characteristics associated 

with the wind turbine in relation to the wind cycle. The optimized configurations are capable of matching very 

closely the behavior of active wind turbine systems which operate at optimal wind powers by using a MPPT 

control device. 
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1. Introduction  

The optimization of wind energy transfer is generally achieved by controlling the speed of a Wind Turbine 

Generator (WTG). In particular, the rotor speed should vary in accordance with the wind speed by maintaining 

the tip speed ratio to the value that maximizes aerodynamic efficiency. For that purpose, many different 

Maximum Power Point Tracking (MPPT) control strategies have been developed, allowing to regulate the 

Permanent Magnet Synchronous Generator (PMSG) voltage [1][2]. The high efficiency of these generators is 

counterbalanced with higher costs and greater complexity of the electronic devices. On the other hand, simpler 

system structures consist in only using a passive rectifier directly connected to the DC bus (see Fig 1). Such 

system is characterized by very low cost but usually offers poor efficiency relatively to the wind power. 

However, thanks to a suitable choice of the system design variables associated with the wind turbine generator 

sizing (especially electrical and geometrical parameters) it is possible to improve significantly the global system 

efficiency. In this paper, we propose an original approach based on Multiobjective Genetic Algorithms for sizing 

a small passive WTG. The whole system mass and the extracted output power are considered as optimization 

criteria. The obtained power efficiency is finally close to the one offered by active WTGs coupled with MPPT 

control devices.   
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Fig. 1 : Synoptic of the passive wind turbine generator (without MPPT control system) 

2. The Sizing and Simulation Models of the Wind Turbine Generator 

Two classes of models have been developed for sizing and simulating the WTG. On the one hand, fine accurate 

models based on the use of empirical equations, finite elements and a complete circuit representation of the 

WTG have been used for the system analysis and validation. On the other hand, surrogate models which 

approximate the system behavior have been employed in the optimization process in order to reduce computing 

times.   

2.1. The Wind Cycle  

The wind Cycle is represented by a typical wind speed sample VW(t) which is approximated with the empirical 

relation 
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2.2. The Wind Turbine Characteristics 

A Savonius Vertical Axis Wind Turbine of radius R = 0.5 m and height H = 2 m is considered as case study. Its 

power coefficient Cp is defined by the following empirical interpolation:  

 lll 4540.01168.01299.0 23 +--=pC , (2) 

where l denotes the tip speed ratio, depending on the turbine rotational speed W and the wind speed VW.  
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The associated wind turbine power can be expressed as:  
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where r  denotes the air density (r = 1.205 kg.m
-3

) and where the swept rotor area A is approximated as:.  

 A = 2R´H . (5) 

The corresponding torque TW produced by the wind turbine is:  
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and the electromagnetic torque of the generator is defined as: 
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where the wind turbine inertia and the damping coefficient are JWT =  16 kg.m² and FWT = 0.06. N.m.s/rad. 

Note that the wind power is maximum when the power coefficient is maximum (Cp
* ≈ 0.22), i.e. for the optimal 

tip speed ratio (l*
≈ 0.82). For various wind speed values, the rotor speed should be adapted to operate at the 

optimal tip speed ratio. Therefore, in order to extract the maximum wind power, a MPPT strategy associated 

with a static converter structure is generally employed to control the rotor speed according to the wind speed 

such as W = l*VW/R. This can be made by using a PWM Voltage Source Rectifier or a passive diode bridge 

coupled with a DC-DC chopper that tunes the extracted power [1].  

2.3. The Permanent Magnet Synchronous Generator 

An analytical model allows us to extract all sizing variables of the PMSG from geometrical features (i.e. the 

radius length ratio Rrl, the number of pole pairs p, the number of slots per pole per phase Nspp) and energetic 

characteristics (the sizing voltage Vb, the current density Jc in a slot, the magnetic flux density By in the yoke, the 

typical sizing power Pb at the base point). For reason of complexity and space limitation, this model is not 



explained in detail in the paper. We invite the reader to refer to [3], [4] for more information. Note that contrary 

to [4] the generator is sized for a specific base speed:  
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where <VW > denotes the average speed of the wind cycle. The PMSG electric parameters (i.e. main inductance, 

stator resistance, magnetic flux, base current) are then deduced from empirical relations [3] or by using the Finite 

Element Method (FEM). For the system simulation, the PMSG is represented in a ABC reference frame and the 

diode rectifier is modeled in instantaneous value by considering ideal switches but taking into account the diode 

overlapping during the commutation interval. Furthermore, this model includes the thermal behavior of the 

synchronous generator in each component (slot copper, slot insulators, stator yoke) evaluated from the magnetic 

and electrical losses. Joule losses are classically computed from the generator current and the stator resistance, 

and magnetic losses are estimated from hysteresis and eddy current losses in the stator parts (i.e. yoke and 

teethes) according to [4]. Since the computational cost associated with this global circuit model and the use of 

finite elements is rather high, surrogate models have been developed for the optimization process in order to 

reduce computing times. In particular, for the system simulation, a simplified causal model is used where the 

synchronous generator with the diode bridge association is replaced with an energetically equivalent DC model 

valid in average value. The synoptic of this model is given in Fig. 2b. Note that the causality is symbolized by 

arrows specifying which physical variables (energetic efforts or flows) are applied in each part of the system. 

The correspondence of this model with the synchronous generator circuit of Fig. 2a is given in Table 1. We also 

mention in the following the characteristics of each block in the synoptic. The electromechanical conversion is 

represented by: 

 
ïî

ï
í
ì

WF=

F=

DCsDC

sDCDCem

pE

IpT '

, (9) 

where p denotes the pole pair number of the generator. The armature reaction in the generator is modelled with a 

voltage drop without power losses: 
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where w denotes the electric angular pulsation associated with the rotor. The transient electric mode leads to a 

DC current in the generator defined as:   
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Finally, the diode overlapping during the commutation interval is represented by a power conservative voltage 

drop: 
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(a) The synchronous generator equivalent circuit  
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(b) The causal synoptic of the equivalent DC model 

Fig. 2 : The energetic equivalent DC model for the synchronous generator 

Table 1 : Correspondence between the synchronous generator circuit and the equivalent DC model 

Variable Synchronous  Generator Equivalent DC – Model 
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3. Multiobjective Optimization of the Wind Turbine Generator by Genetic Algorithms 

3.1. Design Variables, Objectives and Constraints 

The design variables considered for the wind turbine optimisation and their associated bounds are shown in 

Table 2. Note that five variables are continuous parameters (i.e. Rrl, Pb, Vb, By, and Jc) and two are discrete (i.e. p 

and Nspp).  



Table 2 : Design Variable Characteristics 

Design Variable Nature Bounds 

Sizing Voltage [V] Continuous Vb Î [1, 200] 

Radius/Length Ratio Continuous Rrl Î [0.1, 10] 

Number of Pole Pairs Discrete p Î {1,.., 60} 

Current Density [A/mm
2
] Continuous Jc Î [0.5, 10] 

Sizing Power [W] Continuous Pb Î [1, 700] 

Yoke Induction [T] Continuous By Î [1.2, 2.2] 

Number of Slots per Pole per Phase Discrete Nspp Î {1,..,6} 

 

Two conflicting objectives have to be improved: the useful power has to be maximized while minimizing the 

total mass of the system. The useful power is defined as the power extracted from the wind cycle reduced from 

all losses in the wind turbine system (i.e. mechanical losses in the turbine, Joule and iron losses in the generator 

and conduction losses in the diode rectifier). As underlined previously, all losses in the synchronous generator 

are computed according to [4] and the conduction losses Pcond in a diode of the rectifier are classically evaluated 

as follows: 

 2
ddddcond iRiuP += , (13) 

where ud.denotes the diode voltage drop and Rd represents the diode internal resistance (typically Rd = 3.4 mW 

and ud = 0.8 V). Note that switching losses have been neglected. The total mass of the system is obtained by 

considering the wind turbine mass as constant (MWT  ≈ 48 kg)  and the generator mass. This mass is computed 

from the volume of each constitutive component (iron, magnet, copper windings) and the corresponding mass 

density according to [4]. Note that the rectifier mass has been neglected. Moreover, five constraints have to be 

fulfilled to ensure the wind turbine feasibility and to allow complying with the wind cycle. These constraints 

concern the number of wires per slot, the maximum temperature associated with the copper windings in the 

generator, the demagnetization limit of the magnets and the maximum temperature in the semiconductor 

junctions. They are computed similarly to [4].  

3.1. The Optimization Process 

The Nondominated Sorting Genetic Algorithm (NSGAII) [5] is applied for the optimization of the full passive 

wind turbine generator. To take into account the design constraints in the NSGA-II, the Pareto-dominance rule is 

modified as follows: 



- if two individuals are non-feasible, the Pareto-dominance is considered in the constraint space. 

- if two individuals are feasible, the Pareto-dominance is considered in the objective space. 

- if one individual is feasible and the other non-feasible, the feasible individual dominates the non-feasible 

individual. 

In this manner, Pareto ranking tournaments between individuals include the constraint minimization as well as 

the objective minimization. Note that in the case of the NSGA-II, for non-feasible individuals belonging to a 

given front in the constraint space, the computation of the I-distance density estimator [5] is carried out in 

relation to all constraints [4]. In this way, niching will occur in the two different spaces (i.e. constraint and 

objective spaces) and diversity will be preserved to avoid premature convergence. 

Five independent runs are made to take into account the stochastic nature of the NSGA-II. The population size 

and the number of non-dominated individuals in the archive are set to 100 and the number of generations is 

G=200. Mutation and recombination operators are similar to those presented in [6]. They are used with a 

crossover probability of 1, a mutation rate on design variables of 1/m (m denoting here the total number of 

design variables in the problem) and a mutation probability of 5% for the X-gene parameter used in the self-

adaptive recombination scheme. The surrogate sizing and simulation models described in the previous section 

are exploited to evaluate the constraints and the objectives (i.e. the useful power and the total wind turbine mass) 

associated to the individuals in the NSGA-II population. 

3.2. Results 

The Pareto-optimal configurations determined from the five independent runs are displayed in Fig. 3a. Note that 

the global Pareto-optimal front is obtained by merging all fronts associated to these runs. We also represent in 

Fig. 3a the characteristics of three typical solutions and the initial configuration of the WTG which is actually 

used in our lab [1]. This generator is able to operate at optimal wind powers when it is associated with a MPPT 

control device but presents a “poor” efficiency if the MPPT is suppressed. As shown in Fig 3b, the power 

extracted from the wind cycle is strongly reduced in this case.  The WTG optimization considerably improves 

both objectives. As it can be seen in Fig. 3, these passive optimized solutions can match very closely the 

behavior of active WTGs operating at optimal wind powers by using a MPPT control device. Some Pareto-

optimal solutions are even slightly better than the initial configuration of the generator with an MPPT control 

device since all losses in the system are reduced thanks to the global optimization process (see Table 3 for 

justification).  

 



W
in

d
 T

u
rb

in
e

 M
a

s
s

 [
k
g

]

0 50 100 150 200 250

40

50

60

70

80

90

100

110

120

Useful Power [W]

Init ial 

Configuration

(without MPPT)

Init ial 

Configuration

(with MPPT)

�

�

�

W
in

d
 T

u
rb

in
e

 M
a

s
s

 [
k
g

]

0 50 100 150 200 250

40

50

60

70

80

90

100

110

120

Useful Power [W]

Init ial 

Configuration

(without MPPT)

Init ial 

Configuration

(with MPPT)

�

�

�

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Rotor Speed [rad/s]

E
xt

ra
c
te

d
 W

in
d

 P
o

w
e

r 
[W

]

0

Init ial 

Configuration

(without MPPT)

Optimal

Wind Pow er
�

�

�

Wind Speed

14 m/s

Wind Speed

10 m/s

Wind Speed

12 m/s

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Rotor Speed [rad/s]

E
xt

ra
c
te

d
 W

in
d

 P
o

w
e

r 
[W

]

0

Init ial 

Configuration

(without MPPT)

Optimal

Wind Pow er
�

�

�

Wind Speed

14 m/s

Wind Speed

10 m/s

Wind Speed

12 m/s

 

 (a)  The Pareto-optimal Front  (b) The extracted wind Power of three optimal solutions 

Fig. 3 : Pareto-optimal configurations compared with a non-optimized wind turbine 

Table 3 : Power assessment associated with the particular solutions of Fig 3 

Solution 
Extracted Wind 

Power (W)  

Electromagnetic 

Power (W) 

Iron  

Losses (W) 

Joule 

Losses (W) 

Conduction 

Losses (W)  

Useful 

Power (W) 

Initial Configuration 

(without MPPT) 
124 123 19 16 3 85 

Initial Configuration 

(with MPPT) 
291 274 33 18 3 220 

� 281 266 7 21 2 236 

� 281 266 8 27 2 229 

� 276 263 11 29 3 220 

 

3.3. Model Sensitivity 

To validate these results obtained with the surrogate sizing and simulation models, we compute the 

characteristics of the specific Pareto-optimal solutions of Fig. 3 with the accurate corresponding models. In 

particular, we compare in Table 4 the electric parameter values of the generator (typically the leakage and main 

inductances computed for one conductor per slot) obtained with the fully Analytical Model (AM) and the Finite 

Element Method (FEM). Moreover, we indicate the useful power computed from the FEM sizing and the 

classical synchronous model represented in a ABC frame. It can be noted that the results are globally in 

accordance since differences between the surrogate and accurate models are rather small. We also mention in 

this table the computing time associated with both models for a standard PC. Note that it is about 8 times higher 



for the accurate model. This justifies the use of the surrogate model in an optimization context since 100 000 

runs have been performed to obtain the Pareto-optimal configurations.  

Table 4 : Surrogate and accurate model comparison for the particular solutions of Fig. 3 

Solution 

Main Inductance Lp [mH] Leakage Inductance Ll [mH] Useful Power [W] 

AM FEM AM FEM 

AM sizing + 

Equivalent  DC 

Model 

FEM sizing + 

Synchronous 

Model 

� 33.8 33.4 2.4 2.7 236 231 

� 29.5 29.7 5.8 6.4 229 220 

� 25.6 26.5 14.3 15.6 220 207 

Computing 

Time (s) 
Negligible 120  Negligible 120  40  310  

 

4. Conclusions 

In this work, Multiobjective Genetic Algorithms have been applied to the design of a small passive WTG. For 

this purpose, surrogate and accurate models have been developed for the sizing and the simulation of the WTG. 

An optimization process based on the use of the NSGA-II in association with the implemented surrogate models 

has been exploited to improve the useful power and the mass of the WTG. Three Pareto-optimal solutions have 

been analyzed and compared with the accurate sizing and simulation models. Results show that the optimized 

configurations of the full passive WTGs are able to match very closely the behavior of active WTGs which 

operate at optimal wind powers by using a MPPT control device. In the outlooks of this work, the Pareto-optimal 

solution sensitivity to the wind cycle will be studied in order to take statistical information related to the WTG 

location. Note also that this problem can constitute an original benchmark for investigating design 

methodologies based on model hybridization such as Space Mapping Methods.  
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