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Abstract. This paper investigates the influence of recombination and self-
adaptation in real-encoded Multi-Objective Genetic Algorithms (MOGAS).
NSGA-II and SPEA2 are used as example to characterize the efficiency of
MOGAs in relation to various recombination operators. The blend crossover,
the simulated binary crossover and the breeder genetic crossover are compared
for both MOGAs on multi-objective problems of the literature. Finally, a self-
adaptive recombination scheme is proposed to improve the robustness of MO-
GA:s.

1 Introduction

In recent years, extensive research has been done in the field of Multi-Objective Ge-
netic Algorithms (MOGAs) [1], [2], [3], [4]. However, most of works have been
focused on selection, elitism and niching operators. Although the need of studying the
influence of recombination and self-adaptation in MOGAs has been underlined [5],
only a few contributions on these issues have been carried out [2], [6]. In this paper,
we investigate the efficiency of three crossover operators for real-encoded MOGAs
and propose a self-adaptive recombination scheme which improves their robustness.
The second versions of the Non-dominated Sorting Genetic Algorithm (NSGA-II) [3]
and of the Strength Pareto Genetic Algorithm (SPEA?2) [4] are used as example to
characterize the efficiency of the studied recombination operators on test problems of
the literature.

2 Elitist Multi-objective Genetic Algorithms

Since the mid-1990s, there has been a growing interest in solving multi-objective
problems by Genetic Algorithms. In particular, elitist MOGAs based on Pareto ap-
proaches have become more and more popular because of their capabilities to ap-
proximate the set of optimal trade-offs in a single run [1], [3], [4]. Elitist MOGAs use
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an external population, namely archive, which preserves non-dominated individuals in
the population. At each generation, individuals (parents) selected from the archive
(and/or from the population) following Pareto domination rules are crossed and mu-
tated to create new individuals (children). The population of children and the archive
are merged to assess the non-dominated set of the next generation. If the number of
non-dominated individuals is higher than the size of the archive, a clustering method
is used to preserve most representative solutions and eliminate others in order to keep
a constant archive size. Note that niching is used in the selection scheme when indi-
viduals involved in a tournament have the same Pareto domination rank.

The second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II)
is based on the principles previously exposed. NSGA-II determines all successive
fronts in the population (the best front corresponding to the non-dominated set).
Moreover, a crowding distance is used to estimate the density of solutions surround-
ing each individual on a given front. In a tournament, if individuals belong to the
same front, the selected one is that with the greater crowding distance. This niching
index is also used in the clustering operator to uniformly distribute the individuals on
the Pareto front. All details of the algorithm can be found in [3].

The new version of the Strength Pareto Genetic Algorithm (SPEA2) is rather
similar to the NSGA-II. It essentially differs in the clustering method used to merge
non-dominated individuals in the archive and on the selection method based on a
fitness assignment (called strength) related to Pareto ranking of individuals in the
population [4].

In this, study NSGA-II and SPEA2 are taken as reference to investigate the influ-
ence of recombination and self-adaptation in real-encoded MOGA:s.

3 Recombination and Self-Adaptive Procedures

We examine various recombination and self-adaptive procedures for real-encoded
MOGAs :

3.1 The Blend Crossover

From two parent solutions p,(i) and p,(i), the blend crossover (BLX-¢) creates one
child c(7) as follows [7] :

c(@)= pi(D)+ B(pr (D)= pi (D) (1)

where £ is a random variable in the interval [-a,1+ «], i denoting the index related
to the object variable of the child and parents solutions. If & is set to zero, this cross-
over creates a random solution inside the range defined by the parents similarly to the
arithmetical crossover [8]. Eshelman and Schaffer have reported that BLX-0.5 (with
a = 0.5) performs better than BLX with any other ¢ value in a number of test prob-
lems.



3.2 The Simulated Binary Crossover

The simulated binary crossover (SBX) simulates the working principle of the single
point crossover operator on binary strings [9]. From two parent solutions p (i) and
p,(i), it creates two children ¢ (i) and c,(7) as follows :

{ ¢ () =05[A+Hp, () +A=F)p, ()]
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with a spread factor £ defined by (3),
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where u 1s a random variable in the interval [0,1] and 77 is a nonnegative real number
that characterizes the distribution of the children in relation to their parents. A large
value of 77 gives a higher probability for creating children near parents. Acting alone
and without any mutation operator, SBX presents interesting properties of self-
adaptation similarly to Evolution Strategies [9].

3.3 The Breeder Genetic Crossover

From two parent solutions p,(i) and p,(i), the BGX crossover creates one child c(i) as
follows [10]:
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c(i)=p (D)=

where A, is normally set to 0.5 times the domain of definition of the object variable i
and the metric denotes the Euclidean distance in the object variable space. 0 is com-
puted from a distribution that favors small values:

O =2k (5)

where u is a random variable in the interval [0,1], the precision constant k being typi-
cally set to 16. Note that in [10], the child was placed more often in the direction to
the best parent (p,(i) being the parent with the better fitness) and the minus sign in (4)
was chosen with probability 0.9. In this work, the choice of p (i) and the sign in (4)
are made with a probability 0.5.

In Fig. 1, the probability density function per child for the previous investigated
crossover operators 1s depicted. The corresponding parents p, and p, are marked with
a full circle. Note these three crossover operators are rather complementary since
BGX with k=16 essentially reinforces the accuracy in the neighborhood of the parents
whereas SBX-0.5 favors global exploration.
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Fig. 1. Probability distribution of children solutions related to each crossover operators

3.4 Self-Adaptive Mutation

We also investigate a self-adaptive mutation operator used in standard Evolution
Strategies [11], [9]. Each individual is characterized by its object variables x(i) and
associated standard deviation o(i). Children (c(i),0.(i)) are created from their parents
(p(i),0,(i)) using the following rule :

o.(i)=0, () exp(7'N(0,1)+ 7 N;(0,1)) (6)
c(i)=p)+o.(i)N;(0,I) (7)

where N(0,1) denotes a normally distributed random number with mean O and stan-
dard deviation 1. N(0,1) indicates that the random number is generated anew for each
value of i. The factors 7 and 7’are commonly set to (2m1/2)'” % and (2m)'1/ ? where m
denotes the number of object variables [11].

3.5 Self-Adaptive Recombination

As it 1s not possible to a priori know which crossover operator will be the most effi-
cient on a specific problem, we propose a self-adaptive scheme similar to that of
Spears for binary encoded GAs [12]. It consists in associating in the chromosome of
individuals an additional gene (X-gene) that codes the type of crossover to apply
during the recombination. When recombining two parents, the operating crossover is
randomly chosen from the X-gene of the parents. Using this procedure, the MOGA
will favor the crossover that produces the best children through the selection operator.
To avoid premature convergence to a particular type of crossover, the X-gene also
undergoes mutation.



4 Experimental Tests

4.1 Test Problems

We consider three multi-objective problems of the literature [13], [14] displayed in
Table 1. ZDT4 is a multimodal continuous problem, which contains 21° local Pareto
fronts. The global Pareto front is obtained with g=1 and is convex. ZTD6 has a non-
uniformly distributed search space with solutions non-uniformly distributed along the
Pareto front (the front is biased for solutions for which f,(x,) is close to one). The
Pareto front is obtained with g=1 and is non-convex. SCH is a generalization of the
Schaffer’s problem. A large variable space domain and a convex Pareto front charac-
terize it.

Table 1. Test problems used in this study (minimization of both objectives)

Problem Characteristics
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4.2 Performance Criteria

Three performance criteria are used to assess the efficiency of MOGAs :

Average deviation to the theoretical Pareto-optimal front. The average distance
£ of the non-dominated set to the Pareto-optimal front is computed as follows [13],

ézﬁZmin{”a—a*” ate ) (8)

acF



where F (respectively F'*) denotes the non-dominated set in the final population (re-
spectively the theoretical Pareto-optimal front), a and a* belonging to each subset.
The metric in (8) is the Euclidean distance computed in the objective space.

Spread. We define the spread &;, as the average minimum distance of the non-

n
dominated set to the Pareto-optimal solutions that minimizes each objective
independently.

& nin :%inﬁn{”a—ag‘ml ae F} )
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where n is the number of objectives and a; ;, represents the theoretical solution of
the Pareto-optimal front that minimizes the i-th objective. Spread characterizes the
ability of MOGA:s s to detect boundary solutions of the Pareto-optimal front.

Spacing. Spacing A is a measure based on consecutive distances among the solutions
of the non-dominated set [3]. It assesses the ability of the MOGAs to distribute its
population uniformly along the Pareto-optimal front.

|l
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where d. is the Euclidean distance between two consecutive solutions of the non-
dominated set, d being the average of these distances. A value of zero for this metric
indicates all the non-dominated solutions found are equidistantly spaced. Unlike the
definition of A in [3], we do not include in the non-dominated set the boundary solu-
tions of the theoretical Pareto-optimal front to take into account the spread (spread is
independently evaluated by (9)).

Note that these criteria are complementary to assess the efficiency of MOGAs as
indicated by Fig. 2 which illustrates various situations of the non-dominated set in
relation to the theoretical Pareto-optimal front.

5 Tests Results

We successively compare the efficiency of NSGA-II and SPEA?2 on the previous test
problems using each crossover operators and self-adaptive procedures of sect. 3. All
tests are made with the same number of objective function evaluations. NSGA-II and
SPEA?2 are run for 200 generations with a population size of 100. The archive size is
also set to 100 and the crossover probability is 1. Both MOGAs use the BGA muta-
tion operator [10] with a mutation rate of 1/m (where m is the number of variables).
The self-adaptive recombination scheme employs the BGX with k=16, the SBX with
n =1 and the BLX-0.5. The X-gene undergoes mutation with a probability of 5%.
NSGA-II and SPEA?2 with self-adaptive mutations operate with initial standard de-
viations set to 1/10 times the domain of definition of the object variables and without
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Fig. 2. Illustration of the performance criteria used in this study on various situations. The non-
dominated set is symbolized with full circles and the theoretical Pareto optimal front is repre-
sented by a continuous line. £ =0 (resp. € # 0 ) indicates a good (resp. a bad) average devia-

tion, £ .. =0 (resp. &, #0 ) a good (resp. a bad) spread and A=0 (resp. A#0) a good (resp. a
bad) spacing

any crossover operator. For all investigated tests, 100 runs are made with random
populations to take into account the stochastic nature of the MOGA. An average sta-
tistic is taken from the final population for the performance criteria.

5.1 Influence of the Recombination Operators

We present in Tables 2—4 the values of the performance criteria on the investigated
problems for the NSGA-II and the SPEA?2 in relation to each recombination and self-
adaptive procedures. From these results, we propose a sort of the recombination and
self-adaptive operators on these test problems for each MOGA. Note that this sort was
established by giving priority to the average deviation £ .

As also underlined in a earlier study [2], it can been seen that MOGAs without
crossover operator perform poorly even if they use self-adaptive mutations. Table 2
shows that NSGA-II and SPEA2 with BLX-0.5 give the best results on ZDT4.
BLX-0.5 associated with the SPEA2 works well on ZDT6 but performs poorly when
it is coupled with the NSGA-II. This behavior will be also noted for the self-adaptive
recombination scheme in the following section. NSGA-II with the BGX crossover



works well on ZDT6 but performs extremely poorly on SCH (convergence was not
achieved after 200 generations; only one non-dominated individual was found in the
final population in all runs). Except with the SBX crossover, NSGA-II and SPEA2
fail to spread correctly their population on SCH. Therefore, SBX is ranked at the top
of the sort for this problem despite a slightly lowest quality for £ and A.

Finally, it can be seen that best results are always obtained by simple crossover
acting alone. However, the efficiency of each crossover operator clearly depends on
the characteristics of the test problem. Therefore, using simultaneously multiple
crossover operators through a self-adaptive recombination scheme tends to improve
the robustness of the MOGAs. We verify this property since the self-adaptive scheme
performs extremely well in all cases (the ranking efficiency always equals 2).

Table 2. Performance criteria on problem ZDT4. Results are averaged on 100 runs with ran-
dom initial populations. Best results are indicated in bold types and margin errors with 95%

confidence are given in brackets

MOGA  Operator Av.dev. € Spread £,;,  Spacing A Ranking
BGX (k=16)  2.231[0.185] 1.769[0.148] 0.112[0.011] 4 (poor)
SBX (n=1) 1.961 [0.170] 1.656 [0.138] 0.033 [0.009] 3 (good)

NSGA-II BLX-0.5 1.483 [0.151] 1.275[0.122] 0.019[0.006] 1 (excellent)
Self-Ad. Mut. 10.41 [1.000] 9.439 [0.939] 0.017 [0.001] 5 (very poor)
Self-Ad. Rec. 1.688 [0.164] 1.437[0.136] 0.021 [0.008] 2 (very good)
BGX (k=16)  5.343[0.436] 4.367[0.380] 0.301 [0.041] 4 (poor)
SBX (n=1) 2.233[0.221] 1.894 [0.163] 0.028 [0.008] 3 (good)

SPEA2 BLX-0.5 1.527 [0.148] 1.373[0.122] 0.021 [0.005] 1 (excellent)
Self-Ad. Mut. 10.55[1.090] 9.525[1.015] 0.012 [0.002] 5 (very poor)
Self-Ad. Rec. 1.616 [0.161] 1.427[0.133] 0.024 [0.006] 2 (very good)

Table 3. Performance criteria on problem ZDT6. Results are averaged on 100 runs with ran-
dom initial populations. Best results are indicated in bold types and margin errors with 95%
confidence are given in brackets

MOGA Operator Av.dev. € Spread €,;,  Spacing A Ranking
BGX (k=16) 0.000 [0.000] 0.000 [0.000] 0.006 [0.000] 1 (excellent)
SBX (n=1) 0.18510.018] 0.001 [0.000] 0.202 [0.022] 4 (poor)

NSGA-II BLX-0.5 0.081 [0.044] 0.000 [0000] 0.096 [0.054] 3 (good)
Self-Ad. Mut. 1.866 [0.114] 0.442 [0.077] 0.543 [0.063] 5 (very poor)
Self-Ad. Rec. 0.014 [0.006] 0.000 [0.000] 0.024 [0.010] 2 (very good)
BGX (k=16) 0.068 [0.008]  0.000 [0.000] 0.071 [0.006] 3 (good)
SBX (n=1) 0.186 [0.016]  0.000 [0.000] 0.141[0.015] 4 (poor)

SPEA2 BLX-0.5 0.059 [0.005] 0.000 [0.000] 0.055 [0.005] 1 (very good)
Self-Ad. Mut. 1.662 [0.126] 0.554 [0.090] 0.484 [0.049] 5 (very poor)
Self-Ad. Rec. 0.061 [0.006] 0.000 [0.000] 0.056 [0.007] 2 (very good)




Table 4. Performance criteria on problem SCH. Results are averaged on 100 runs with random
initial populations. Best results are indicated in bold types and margin errors with 95% confi-

dence are given in brackets

MOGA Operator Av.dev. € Spread €, Spacing A Ranking
BGX (k=16) no convergence achieved in 200 generations 5 (very poor)
SBX (n=1) 0.007 [0.000] 0.086 [0.006] 0.006 [0.000] 1 (excellent)
NSGA-II BLX-0.5 0.004 [0.000]  0.209 [0.008] 0.004 [0.000] 3 (good)
Self-Ad. Mut.  0.091 [0.006] 0.195 [0.059] 0.008 [0.001] 4 (poor)
Self-Ad. Rec.  0.004 [0.000] 0.118 [0.009] 0.005 [0.000] 2 (very good)
BGX (k=16) no convergence achieved in 200 generations 5 (very poor)
SBX (n=1) 0.006 [0.000] 0.100 [0.007] 0.005 [0.000] 1 (very good)
SPEA2 BLX-0.5 0.009 [0.001]  0.289 [0.010] 0.002 [0.000] 3 (good)
Self-Ad. Mut.  0.302 [0.306] 0.445[0.299] 0.008 [0.002] 4 (poor)
Self-Ad. Rec.  0.006 [0.000] 0.129 [0.009] 0.004 [0.000] 2 (very good)

5.2 Analysis of the Self-Adaptive Recombination Scheme

To understand the mechanism of the self-adaptive recombination scheme, we plot in
Fig. 3-5 the origin of children for each investigated test problem as a function of the
generation number. Results are extended to 400 generations and averaged on 100
runs. We also indicate the threshold from which the clustering is operating.

It can be seen that the self-adaptive recombination scheme is able to direct the
MOGA towards the crossover operator which performs the best on a given test prob-
lem. Therefore, the BLX-0.5 which has the best global exploration properties, is rap-
idly favored on ZDT4 to avoid misleading local Pareto-optimal fronts (see Fig. 3).
Because of the large search space, this crossover is also preferred on SCH at the be-
ginning of the search but both MOGAs finally switch towards the SBX crossover to
better distribute individuals on boundary points (see Fig. 5 and Table 3). Curiously,
the behavior of the self-adaptive recombination scheme on ZDT6 is radically differ-
ent for the SPEA2 and the NSGA-II. These results are in accordance with those of
sect. 5.1 (see Table 3) which show that SPEA2 performs better with SBX and
NSGA-II better with BGX. However, both MOGA need to use the BGX crossover to
avoid misleading attractors of high f, values in the neighbourhood of the boundary
point of the Pareto front defined by f; =0.28.

Note that the steady state behavior of the archive characterized by clustering op-
erations does not necessary correspond to the steady state operations of the self-
adaptive recombination scheme. Recombination rates of each crossover operator can
evolve continuously during the search as shown in Fig 3-5.

Finally, we examine in Table 5-7 the influence of the X-gene mutation rate on the
efficiency of MOGAs with the studied self-adaptive recombination scheme. Results
show that performance criteria are not very sensitive to this factor. However, low
mutation rates have to be preferred to exploit benefit of self-adaptation through the
selection procedure.
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Fig. 3. Origin of children in the self-adaptive recombination scheme. Results on ZDT4 (aver-
age on 100 runs)
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Fig. 4. Origin of children in the self-adaptive recombination scheme. Results on ZDT6 (aver-
age on 100 runs)

Origin of children (%)

no clustering clustering
100
90 — —BGX (k=16)

....... SBX (71=1

80 H (7=1)
70 |
60
50
40
30 |
20 [
10 k =

et
0 PV P P gyt e, NS PR bt s e et Snnm]

0 100 200 300 400
Generation
(a) NSGA-II

Origin of children (%)

no clusterlﬂq‘ clustering _
100 -~ . =
90 | — —BGX (k=16)
ol N7 SBX (n=1)
70 i
60 .
FIREE
0 e ~—
40 “‘\\“\\‘«-:»““"\“\‘
20 j . o
20 |
10
LSl e e o e o e s e s e

100 200

Generation

(b) SPEA2

300 400

Fig. 5. Origin of children in the self-adaptive recombination scheme. Results on SCH (average

on

100 runs)



Table 5. Influence of the X-gene mutation rate on ZDT4 (average on 100 runs). Best results

are indicated in bold types and margin errors with 95% confidence are given in brackets

MOGA X-gene mutation rate ~ Av. dev. £ Spread € i, Spacing A
0 1.806 [0.198] 1.516 [0.158] 0.027 [0.012]
NSGAII 5% 1.688 [0.164] 1.437 [0.136] 0.021 [0.008]
20% 1.699 [0.182] 1.460 [0.148] 0.019 [0.005]
100% (random case) 2.084 [0.187] 1.783 [0.151] 0.035 [0.010]
0 1.624 [0.138] 1.446 [0.118] 0.018 [0.004]
SPEA2 5% 1.616 [0.161] 1.427 [0.133] 0.024 10.006]
20% 1.733 [0.182] 1.521 [0.135] 0.020 [0.006]

100% (random case)

2.192[0.201]

1.838 [0.147]

0.037 [0.009]

Table 6. Influence of the X-gene mutation rate on ZDT6 (average on 100 runs). Best results

are indicated in bold types and margin errors with 95% confidence are given in brackets

MOGA X-gene mutation rate ~ Av. dev. £ Spread € i, Spacing A
0 0.005 [0.005] 0.000 [0.000] 0.011 [0.005]
NSGAII 5% 0.014 [0.006] 0.000 [0.000] 0.024 [0.010]
20% 0.015 [0.006] 0.000 [0.000] 0.026 [0.010]
100% (random case) 0.012 [0.004] 0.000 [0.000] 0.023 [0.008]
0 0.076 [0.008] 0.000 [0.000] 0.064 [0.007]
SPEAY 5% 0.061 [0.006] 0.000 [0.000] 0.056 [0.007]
20% 0.071 [0.008] 0.000 [0.000] 0.064 [0.008]

100% (random case)

0.080 [0.007]

0.000 [0.000]

0.069 [0.007]

Table 7. Influence of the X-gene mutation rate on SCH (average on 100 runs). Best results are

indicated in bold types and margin errors with 95% confidence are given in brackets

MOGA X-gene mutation rate  Av. dev. £ Spread € i, Spacing A
0 0.004 [0.000] 0.210 [0.009] 0.004 [0.000]
NSGA-II 5% 0.004 [0.000] 0.118 [0.009] 0.005 [0.000]
20% 0.004 [0.000] 0.103 [0.009] 0.005 [0.000]
100% (random case) 0.006 [0.000] 0.124 10.009] 0.005 [0.000]
0 0.003 [0.000] 0.289 [0.009] 0.002 [0.000]
SPEAD 5% 0.006 [0.000] 0.129 [0.009] 0.004 [0.000]
20% 0.003 [0.000] 0.132 [0.009] 0.004 [0.000]

100% (random case)

0.006 [0.000]

0.169 [0.009]

0.004 [0.000]

6 Conclusion

In this paper, we have shown that the efficiency of real-encoded MOGAs strongly
depends on the crossover operators used to explore new solutions of the search space.
Therefore, we have proposed a self-adaptive recombination scheme based on three
complementary crossover operators to reduce the sensitivity to the crossover proce-



dure and improve MOGA robustness. First results are promising and further investi-
gations on difficult constrained problems should confirm the advantage of using this
technique in MOGAs.
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