557 research outputs found

    Christmas

    Get PDF

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    Mission Festival

    Get PDF

    Harvest Time

    Get PDF

    School Days

    Get PDF

    Fuel

    Get PDF

    Multitier Modules

    Get PDF
    Multitier programming languages address the complexity of developing distributed systems abstracting over low level implementation details such as data representation, serialization and network protocols. Since the functionalities of different peers can be defined in the same compilation unit, multitier languages do not force developers to modularize software along network boundaries. Unfortunately, combining the code for all tiers into the same compilation unit poses a scalability challenge or forces developers to resort to traditional modularization abstractions that are agnostic to the multitier nature of the language. In this paper, we address this issue with a module system for multitier languages. Our module system supports encapsulating each (cross-peer) functionality and defining it over abstract peer types. As a result, we disentangle modularization and distribution and we enable the definition of a distributed system as a composition of multitier modules, each representing a subsystem. Our case studies on distributed algorithms, distributed data structures, as well as on the Apache Flink task distribution system, show that multitier modules allow the definition of reusable (abstract) patterns of interaction in distributed software and enable separating the modularization and distribution concerns, properly separating functionalities in distributed systems

    ContextErlang: A language for distributed context-aware self-adaptive applications

    Get PDF
    Self-adaptive software modifies its behavior at run time to satisfy changing requirements in a dynamic environment. Context-oriented programming (COP) has been recently proposed as a specialized programming paradigm for context-aware and adaptive systems. COP mostly focuses on run time adaptation of the application’s behavior by supporting modular descriptions of behavioral variations. However, self-adaptive applications must satisfy additional requirements, such as distribution and concurrency, support for unforeseen changes and enforcement of correct behavior in the presence of dynamic change. Addressing these issues at the language level requires a holistic design that covers all aspects and takes into account the possibly cumbersome interaction of those features, for example concurrency and dynamic change. We present ContextErlang, a COP programming language in which adaptive abstractions are seamlessly integrated with distribution and concurrency. We define ContextErlang’s formal semantics, validated through an executable prototype, and we show how it supports formal proofs that the language design ensures satisfaction of certain safety requirements. We provide empirical evidence that ContextErlang is an effective solution through case studies and a performance assessment. We also show how the same design principles that lead to the development of ContextErlang can be followed to systematically design contextual extensions of other languages. A concrete example is presented concerning ContextScala
    • …
    corecore