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Abstract. The problem of formal software specification has been ad-
dressed and discussed since the infancy of software engineering. How-
ever, among all the proposed solutions, none is universally accepted yet.
Many different formal descriptions can in fact be given for the same
software component; thus, the problem of determining the consistency
relation among those descriptions becomes relevant and potentially crit-
ical. In this work, we propose a method for comparing two specific kinds
of formal specifications of containers. In particular, we check the consis-
tency of intensional behavior models with algebraic specifications. The
consistency check is performed by generating a behavioral equivalence
model from the intensional model, converting the algebraic axioms into
temporal logic formulae, and then checking them against the model by
using the NuSMV model checker. An automated software tool which en-
codes the problem as model checking has been implemented to check the
consistency of recovered specifications of relevant Java classes.

1 Introduction and Motivations

Given a software component, its specification is a description of its functionality,
guaranteed by its provider, upon which clients can rely [1]. Although the problem
of formally and precisely specifying software has been discussed through all the
history of software engineering, none of the proposed solutions has been univer-
sally accepted yet. For almost every specification methodology, it is possible to
distinguish between a syntactic part, which describes the component’s signature,
and a semantic part, which describes the behavior of the component in terms of
visible effects for the clients. The difficult problems are in the semantic part.

Different descriptions can in fact be given for the same software component.
A possible classification of specifications distinguishes between operational and
descriptive specifications [2]. An operational specification describes the desired
behavior by providing a model implementation of the system, for example by
using abstract automata. Examples of operational specifications are state ma-
chine models (e.g. [3]). Another different specification style is through descriptive
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specifications, which are used to state the desired properties of a software com-
ponent by using a declarative language, for example by using logic formulae.
Examples of such notations are JML [4] or algebraic specifications [5]. Different
specification styles (and languages) may differ in their expressiveness and very
often their use depends on the preference and taste of the specifier, the avail-
ability of support tools, etc. Moreover, sometimes different specifications for the
same piece of software are provided to describe different viewpoints. Living with
multiple specifications of the same entity, however, can be dangerous. In particu-
lar, a question naturally arises about their consistency or even their equivalence.
Intuitively, let us consider two specifications A and B. We say that A is con-
sistent with B if all the behaviors specified by A are also specified by B. The
equivalence problem can be stated as mutual consistency, that is, we consider A
and B equivalent if and only if A is consistent with B and vice-versa. In general,
it is not possible to formally state a precise definition of consistency without
instantiating the specific formalisms used to express A and B. Another relevant
problem of software specification is that its production might be as expensive as
coding. This difficulty is why specifications are often partial, given informally,
or they are completely absent. To address this issue, recent research [6, 7, 8] has
proposed several techniques for automatic recovery.

This paper casts the general problem of automatically comparing two formal
specifications of stateful components into two instance specification languages.
It proposes an automated methodology to check algebraic specifications against
intensional behavior models [9] by using symbolic model checking [10]. For both
specification techniques, inference methods and tools are available: algebraic
specifications can be recovered with a tool named Heureka [8] and intensional
behavior models can be inferred by our recent work Spy [7]. However, the pos-
sibility to extract the specifications is not essential to the proposed approach; it
will be used only to leverage an empirical evaluation of the contribution based
on recovered specifications. Even if the specification comparison methodology is
not restricted to any particular kind of software components, the specifications
styles are particularly suitable for classes implementing containers. For this rea-
son, we will consider containers as the case study entities for which we apply our
specification consistency method. Containers are rather complex abstract data
types, implemented by components with infinite states. For instance, consider a
set of strings. Let strings be defined over a finite alphabet I; their cardinality is
|I∗| = |�|. If we now consider containers implementing sets of strings in I∗, their
cardinality is |℘(�)|. Thus, when dealing with containers, we are possibly deal-
ing with components with a number of states which may be non-denumerable.
To avoid intrinsic unmanageable complexity, in this paper we address the prob-
lem of specification consistency with a specific limitation. We do not aim at
finding a proof of consistency of two specifications, which may require complex
formalisms and would hardly be automated. Instead, we cast the problem by
providing an automatic way of comparing the behavioral information prescribed
by the specifications under a finite subset of the behaviors of the component,
and we guarantee that under that limit the specifications are either consistent
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or not. Intuitively, the proposed approach instantiates an intensional behavior
model as a finite state machine (a BEM, Behavioral Equivalence Model), whose
states represent behaviorally equivalent classes of component instances, and al-
gebraic specifications are finitized and translated into temporal logic formulae.
Algebraic specifications play the role of properties to be verified against a lim-
ited and partial model of the component. This approach has been implemented
and extensively tested; in particular, we verified the consistency of specifications
recovered from relevant number of classes coming from the Java library.

A justification for the analysis of such complex specifications by instantiating
them to finite models can be found in the so-called small scope hypothesis [11].
This hypothesis is fundamental when dealing with large state spaces; intuitively,
it states that most bugs have small counterexamples. Within our context, the
hypothesis can be formulated as follows: if the specifications are not consistent,
a counterexample which shows the inconsistency is likely to be found in small and
partial models of the specifications. Conversely, if the analysis does not show any
counterexample, in theory we cannot conclude anything about their consistency,
but in practice it is very unlikely that the two specifications are inconsistent.

This paper is organized as follows. Section 2 illustrates algebraic specifications
and intensional behavior models and details the problem of comparing those two
specification techniques. Section 3 describes the proposed approach for checking
algebraic specifications against intensional behavior models. Section 4 provides
empirical evaluation of the methodology. Section 5 discusses related work in the
state of the art. Finally, Section 6 outlines conclusions and future work.

2 Specifying Containers

This section illustrates two different techniques, intensional behavior models
and algebraic specifications, that can be used to specify the behavior of stateful
components. Both techniques focus on software components implementing con-
tainers. Such components are designed according to the principle of information
hiding, that is, clients cannot access the data structures internal to the compo-
nent, but they must interact with it by using a set of methods which define the
interface of the component. To illustrate the two specification techniques, we
refer to the Deque container, which is inspired by the ArrayDeque class of the
Java library. Essentially, the class is a double-ended queue, that is, a queue that
also supports LIFO removal through the pop operation. Figure 1 illustrates the
interface of this data abstraction when strings are used as contained objects.

public class Deque {
public Deque ( ) { . . } public void push ( St r ing elem ) { . . }
public St r ing pop ( ) { . . } public St r ing deq ( ) { . . }
public I n t e g e r s i z e ( ) { . . }

}
Fig. 1. The public interface of Deque
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sorts : Deque, String, Boolean, Integer
operations :
deque : → Deque
push : Deque × String → Deque; size : Deque → Integer
deq.state : Deque → Deque; deq.retval : Deque → String ∪ {Exception}
pop.state : Deque → Deque; pop.retval : Deque → String ∪ {Exception}
axioms : ∀x ∈ Deque e, f ∈ String

pop.state(push(x, e)) = x; pop.retval(push(x, e)) = e
pop.state(Deque()) = Deque(); pop.retval(Deque(), e) � Exception
deq.state(push(push(x, e), f)) = push(deq(push(x, e)), f)
deq.state(push(Deque(), e)) = Deque()
deq.state(Deque()) = Deque(); deq.retval(push(Deque(), e)) = e
deq.retval(push(push(x, e), f)) = deq.retval(push(x, e))
deq.retval(Deque()) � Exception
size(Deque()) = 0; size(push(x, e)) = size(x) + 1

Fig. 2. An algebraic specification of the Deque data abstraction

According to the classification scheme of [1], a method can be a constructor, an
observer or a modifier. A constructor is a method that produces a new instance
of the class. An observer is a method that returns a values expressing some
information about the internal state of the object (e.g., the size of a container),
while a modifier is a method that changes the internal state of the object. In
practice, a method can play both roles of observer and modifier. It is therefore
useful to distinguish between impure and pure observers; that is, observers that
modify the internal state or not, respectively. In the case of the Deque data
abstraction on Fig. 1, the method Deque() is a constructor; method size() is a
pure observer, method push(String) is a modifier and methods pop() and deq()
are both observers and modifiers.

Section 2.1 briefly introduces algebraic specifications, while Section 2.2 illus-
trates intensional behavior models. Thus, we proceed to introduce how those
models can be compared.

2.1 Algebraic Specifications

Algebraic specifications (ASs), initially investigated in [5], are nowadays sup-
ported by a variety of languages, such as [12]. ASs model a component’s hidden
state implicitly by specifying axioms on sequences of operations. An algebraic
specification Σ = (Π, E) is composed of two parts: the signature Π and the set
of axioms E. Formally, a signature Π = (α, Ξ, F ) is a tuple where α is the sort
to be defined by the specification, Ξ is the set of the external sorts, and F is a
set of functional symbols fi, describing the signatures of operations. Each func-
tional symbol has a type, that is, a tuple t ∈ ({α} ∪ Ξ)+. The length nt of each
t specifies the arity of the functional symbol; the first nt − 1 elements specify
the domain of the functional symbol while the last element denotes its range; we
denote each functional symbol as fi : ξ1, . . . , ξnt−1 → ξnt (where ξi ∈ ({α}∪Ξ))
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to clearly distinguish domain and range. Each axiom is a universally quantified
formula expressing an equality among terms in the algebra. Fig. 2 shows the AS
for our illustrating example, the Deque described in Fig. 1. The notation used
in this specification explicitly manages the case of impure observers by using
two different implicitly defined operations, one for the returned value (e.g., the
pop.retval operation) and one for the sort to be defined (e.g., the pop.state op-
eration). Moreover, we model exceptions as particular values of the codomain of
observers. In the case of impure observer, we specify the exception as a particu-
lar returned value and we state that its occurrence does not modify the internal
state. For example, see the definition of the impure observer pop in Figure 2.

In this paper, we consider a particular class of ASs, called linear specifica-
tions. An algebraic specification is linear when its signature is linear. A sig-
nature defining a sort α is linear if the following conditions hold: (i) there is
exactly one constant f :→ α; (ii) Every non-costant function is in the form
f : α, ξ2, . . . , ξnt−1 → ξnt , with ξi<nt ∈ Ξ and ξnt ∈ ({α} ∪ Ξ). For simplicity,
we also require axioms to not include hidden functions and conditional axioms.
The set of axioms defines the properties that the specified data abstraction
should exhibit. Formally, the concept of algebra is used to assign semantics to
signatures and specifications. An algebra is composed of a set, the carrier set of
the algebra, and a family of functions on that set. An algebra A is a Π-algebra,
that is, it satisfies the signature Π , if it gives an interpretation of the sorts
and the functional symbols in the signature. Moreover, an algebra A is also a Σ-
Algebra, that is, it satisfies the whole specification Σ, if A gives an interpretation
of the signature Π which also satisfies the set of axioms. The actual semantics
prescribed by the set of axioms depends on the semantics given by the equal-
ity relation of them. Given a possible implementation of the data abstraction
adhering to a specification Σ, which is by definition a Σ-algebra, the equality
relation expressed with the set of axioms can be interpreted as a specification
of which sets of instances are in the same abstract state [1]. Different definitions
of this concept exist in the literature. The most commonly used is based on the
concept of behavioral equivalence [13]. Given two objects o1 and o2 instances of
a class C, o1 and o2 are behaviorally equivalent if for any sequence of operations
t of C ending with an observer, the objects o1.t and o2.t obtained by invoking t
are themselves behaviorally equivalent. For observers returning primitive types,
they are behaviorally equivalent if their values are the same.

Heureka [8] is a tool for recovering ASs for Java classes. Heureka leverages
on the concept of behavioral equivalence to infer which sequence of method
invocations produce instances that are likely to be behaviorally equivalent. Thus,
the equations produced by this step are generalized into likely algebraic axioms.

2.2 Intensional Behavior Models

Another possible way to specify the behavior of stateful components is by using
behavior models. Essentially, a behavior model is a finite state automaton where
each state is labeled with observer return values and each transition represents
a modifier invocation. Behavioral equivalence models (BEM) [7] are particular



238 C. Ghezzi, A. Mocci, and G. Salvaneschi

Deque
size()= 0
pop()� Exception
deq()� Exception

Deque()

pop(), deq()

Deque
size()= 1
pop()= a
deq()= a

Deque
size()= 1
pop()= b
deq()= b

Deque
size()= 2
pop()= b
deq()= a

Deque
size()= 2
pop()= a
deq()= a

Deque
size()= 2
pop()= b
deq()= b

Deque
size()= 2
pop()= a
deq()= b

push(a)

p
u
sh

(b
)

push(a)

p
o
p
()

pop()pop()

deq()

push(b)
push(b)

p
u
sh

(a
)

pop()

p
o
p
()

pop()

deq()deq()

deq
()deq()

deq()

Fig. 3. A Bem of the Deque container

kind of behavior models, where each state represents a set of behaviorally equiv-
alent instances of a data abstraction. A Bem is defined by choosing a finite set
of actual parameters for each method. Figure 3 shows a possible Bem for the
ArrayDeque data abstraction when a and b are used as actual parameters for the
push method. Thus, each transition modeling the behavior of the push method
is labeled with either push(a) or push(b). Each state is labeled with observer
return values. Obviously, a finite state machine cannot describe every possible
behavior of the Deque data abstraction, even if we limit the inserted elements
to two possible strings. For example, the Bem of Figure 3 models the behavior
of the data abstraction only up to size 2.

To overcome this limitation, we proposed intensional behavior models [9], and
a corresponding recovery technique, called Spy [7]. The key idea is to inten-
sionally describe every possible Bem of the data abstraction. Since Bems are
finite-state automata, they can be viewed as graphs, with nodes labeled with
observer return values. Attributed graph transformation systems (Gts) [14] can
be used to intensionally describe the generation of a set of attributed graphs. In
this way, we can specify how to generate all possible Bems corresponding to all
possible instances of the container class of interest.

A Gts is composed of a set of rules, as in a classic Chomsky grammar. In
a GTS, rules describe how a graph is modified by their application. Each rule
is described by three graphs, the negative application condition (NAC), the left
hand side graph (LHS), and the right hand side graph (RHS), and a set of
attribute conditions AC. Figure 4 describes the intensional behavior model of
the Deque data abstraction. A rule can be applied when the following conditions
hold for a source graph. The LHS describes which topological conditions must
be matched by a subgraph of the source graph to make the rule applicable. The
application of the rule replaces such subgraph with the subraph described by
the RHS. NACs express conditions that must not be matched for the rule to be
applied. Both LHS and NAC nodes and arcs are labeled with variables on the
domain of attributes. The AC set is composed of binary predicates on variables
defined on the LHS attribute variables.

For example, Figure 4(a) describes the rule for the constructor of the Deque
data abstraction. Consider an initial empty graph. The LHS of the constructor
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Fig. 4. Deque Intensional Behavior Model

rule is trivially matched because the graph is empty and the LHS is empty, and
the NAC is not matched since the empty graph does not contain any Deque
node. Thus, the constructor rule is applicable. The RHS graph describes how
the matching subgraph must be modified if the rule is applied; in the case of
the constructor rule, it introduces an initial Deque node representing the empty
deque. As for the push rule of Figure 4(b), note that integer numbers are used
to establish a correspondence between nodels of LHS and RHS. If the ap-
plicability conditions are verified, the rule transforms the source graph into a
new graph. The resulting graph is built by replacing the LHS subgraph with
RHS. Numbered nodes in the LHS are replaced by identically numbered nodes
in RHS. Attributes are modified according to functions labeling nodes in the
RHS. Referring to the push rule in Figure 4(b), the application of RHS adds
a new state representing the state obtained after a push application, and a
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transition labeled with the modifier. The newly introduced state represents a
new set of behaviorally equivalent instances built through sequences of appli-
cations of operations. The NAC prevents further applications of the push rule
with the same LHS and the same string as a parameter. If we have two String
objects on the graph representing the instance pool to generate a Bem, the rule
can be applied two times, generating two states representing a stack with a single
element. It is then possible to apply the rule in Figure 4(d), corresponding to a
pop method, by matching states 1 and 3 of the rule with the empty stack and
the stack containing a single element.

The Spy [7] tool implements intensional behavior model recovery from dynamic
analysis. It exploits the same notion of behavioral equivalence asHeureka. It first
starts by recovering a Bem for the class to be analized, and then tries to generalize
its transitions by recovering intensional behavior model rules. We do not include
details on the recovery approach in this paper; the reader who is interested in more
details can refer to [7].

2.3 Outline of the Validation Approach

We now provide an intuitive description of the foundations of the proposed vali-
dation approach. The aim of the proposed method is to validate an AS against an
intensional behavior model, both modeling the behavior of a container. Figure 5
describes a workflow of the proposed approach through its constituent steps. In
an ideal world, given a specification Σ and an intensional behavior model I, it
would be desirable to check that the (possibly infinite-state) Bem generated
by I satisfies the specification Σ, that is, the set of states, together with the
transition function and the state labelling are a Σ-algebra. However, we already
emphasized that containers have a state space that may be infinite, and in gen-
eral not even denumerable, as in the case of the Deque data abstraction over
the set of all possible strings on a finite alphabet.

We therefore limit the analysis as follows. First, we require the analyzer to
provide interpretations of the external sorts in the ASs; we require that those
sorts, together with the operations among them, have a finite carrier set. Those
external sorts define the so-called instance pools, that is, the set of actual param-
eters for methods, that are used to generate a Bem from the intensional behavior
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model. As already stated, limiting the instance pools to be finite does not imply
that the container has a finite number of states; for this reason, we also limit the
rule application to generate a finite-state Bem. In this case, verifying the consis-
tency of the specification Σ to such a finite-state model, boils down to verifying
that the algebra determined by those limitations is a Σ-algebra. Since we want
to verify that the algebra determined by the Bem is a Σ-algebra, we must pre-
cisely interpret the symbols of the specification with the mathematical definition
of the Bem. Let us consider a linear specification Σ = (Π, E). A Bem over the
same signature Π is a tuple BΠ = 〈Q, I, δ, q0, Ψ〉, composed of a set of states Q,
an initial state q0, an input set I, a transition function δ, and a set Ψ of state
labelling functions representing observer return values. The input set of the Bem
is the set of instantiated modifiers I = M̄Π . Moreover, the set Ψ is composed
as follows: for every observer functional symbol fo : α, ξ1, . . . , ξnt−1 → ξnt ∈ F ,
there is a Ψfo : Q × ŌΠ → ξnt , which is a state labelling function representing
return values for the set of instantiated observers ŌΠ .

The sets of instantiated modifiers M̄Π and observers ŌΠ are defined as
follows. Let us consider the provided instance pools, IP (ξi), for each exter-
nal sort ξi ∈ Ξ. Thus, the sets of instantiated modifiers and observer return
values are defined as tuples whose first element is the functional symbol and
the other elements are elements from the instance pools. For a given modifier
fm : α, ξ1, . . . , ξnt−1 → α ∈ F , the possible invocations of the modifier with the
specified instance pools are: M̄fm = {〈fm, e1, . . . , ent〉|ei ∈ IP (ξi)}. As of the
push method, the instantiated modifiers with IP (String) = {a, b}, are 〈push, a〉
and 〈push, b〉. The whole set of possible modifier invocations, that is, the in-
put set of the Bem, is the union of the instantiated modifiers for each modifier:
M̄Π =

⋃
fm

M̄fm . Similarly, we define instantiated observer set Ōfo for a given
observer fo and the whole set of possible observer invocations ŌΠ . We are now
ready to define A(BΠ), that is, the Π-algebra over the Bem:

– The carrier sets for each external sort ξi ∈ Ξ are the instance pools IP (ξi);
– The carrier set for the defined sort α is the set of states Q;
– For each functional symbol f ∈ F of the signature Π , we defined the inter-

pretation fA(BΠ) as follows:
• Since Π is linear, there is only one constructor fc, for which f

A(BΠ)
c = q0;

• For every modifier fm : α, ξ1, . . . , ξnt−1 → α ∈ F , f
A(BΠ)
m = δ|I∈M̄fm

;
• For every observer fo : α, ξ1, . . . , ξnt−1 → ξnt ∈ F ,

f
A(BΠ)
o (q, e1, . . . ent−1) = Ψfo(q, 〈e1, . . . ent−1〉).

At this point, the core of our approach relies on validating the axioms of the
specification Σ over the Bem Π-algebra A(BΠ). Given the interpretations pro-
vided by the Bem Π-algebra, axioms can be rewritten accordingly, and they
become simple properties of the transition and labeling function of the Bem.
Let us consider the simple Bem on Figure 3, and consider the following ax-
iom: ∀s ∈ Deque, e ∈ String : pop(push(s, e)).state = s. With the chosen
instance pools and the given interpretation, the axiom becomes: ∀s ∈ Q, e ∈
IP (String) : δ(δ(s, 〈push, e〉), 〈pop〉) = s. Since IP (String) is finite, the axiom



242 C. Ghezzi, A. Mocci, and G. Salvaneschi

can be instantiated for every external sort: ∀s ∈ Q, δ(δ(s, 〈push, a〉), 〈pop〉) =
s ∧ δ(δ(s, 〈push, b〉), 〈pop〉) = s.

The last step is the precise definition of the validity of axioms in our model.
The only quantified values in this case can be elements of the specified sort, that
is, states of the Bem. Theoretically, it would be possible to verify directly those
axioms by proving that for every possible valuation of variables in the model.
However, since the Bem is finite, the interpreted functions might be partial, and
thus most of the axioms could be not verified just because the model is finite.
Instead, we would like to verify that in all the cases on which the interpreted
functions are defined on the Bem, the axioms hold. For example, the axiom
above cannot hold in any finite Bem of the Deque, since there does not exist a
finite Bem where the push operation is defined in every state. Thus, our problem
reduces to verifying the axioms in all the valuations of the variables for which the
transition function δ is defined, and we consider the axiom holding precisely in
these cases. Fortunately, an explicit management of this problem can be avoided
by a proper encoding of the Bem, which will be clear in the following section.

3 Validating Axioms through Model Checking

In the previous section, consistency of an algebraic specification with an in-
tensional behavior model has been reduced to determining if the axioms of an
algebraic specification Σ are verified in the Bem Π-algebra A(BΠ). Axioms can
be interpreted as properties of the transition relation δ and the observer labeling
functions Ψfo . In this section, we will show how this problem can be reduced to
checking temporal logic formulae derived from the algebraic axioms, as they are
interpreted in the Bem Π-algebra A(BΠ), against a Kripke structure derived
by the Bem. To prove this, we encode the Bem as a Kripke structure and the
property over the infinite traces as an LTL formula. The approach is realized in
two steps, which correspond to the structure of this section:

1. Formal Bem encoding: the Bem is encoded into a Kripke structure;
2. Axiom rewriting: algebraic axioms are translated into temporal formulae

expressed in LTL, by following certain translation patterns.

Formal Bem Encoding. A Bem is encoded into a Kripke structure which can
be directly used to generate an equivalent model in the input language of the
NuSMV model checker. A Kripke structure is similar to a nondeterministic finite
state automaton, where each state is labeled with a set of atomic propositional
formulae Φ. Formally, the Kripke structure is composed of a Frame F and an
evaluation function V . The frame is a tuple F = 〈S,S0,R〉, where S is a set
of states, S0 ⊆ S are the inital states of the frame, and R ⊆ S × S is the
reachability relation between states. The evaluation function V : Φ → ℘(S)
essentially defines which atomic formulae are true in which states. In fact, for
each formula φ ∈ Φ, V (φ) is the set of states where φ is true. Our encoding of a
Bem as a Kripke structure prescribes that each state of the frame corresponds
to a state of the Bem together with an operation, that is, to a pair 〈q, i〉 with
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q ∈ Q ∧ i ∈ I. Formally, the set S of states of the frame is defined as S =
{〈q, i〉 : q ∈ Q ∧ i ∈ I ∧ ∃q′ ∈ Q : δ(q, i) = q′}; the set of initial states is
defined as S0 = {〈q, i〉 : 〈q, i〉 ∈ S ∧ q = q0}. In other words, each state on the
frame models a state of the Bem where an existing transition, corresponding
to a given modifier, is enabled. Thus, we encode the reachability relation as
follows: 〈q, i〉R〈q′, i′〉 ⇔ δ(q, i) = q′. This encoding is a classic way to translate
a deterministic transition-labeled automaton into a Kripke structure where non-
determinism models the possible operation choice. Practically, from each state
of the frame, the next reachable states always represent the state reached by
applying a given transition on the Bem, but they differ with respect to the next
possibly enabled operation.

In almost any existing model checker, the frame is defined by means of some
temporal logic axioms or some operational constructs, whose semantics implicitly
defines the structure of the frame, that is, its states and its reachability relation.
Thus, the encoding is based on the direct use of the set of atomic formulae Φ
and axioms based on them. We can split the set of atomic formulae Φ in three
different sets to encode the Kripke structure defined above:

– ΦS , the set of atomic formulae representing states of the Bem;
– ΦI , the set of atomic formulae representing enabled transitions;
– ΦO, the set of atomic formulae representing observer return values.

ΦS has the same cardinality as the set of states Q of the Bem. It contains
a set of mutually exclusive propositions, each being true iff the current state
of the frame models a given state of the Bem. If we define a representation
bijection μS : ΦS → Q, then ∀φS ∈ ΦS : V (φS) = {〈μS(φS), i〉 ∈ S}. The same
encoding is applied to transitions (i.e., instantiated modifiers). That is, if we
define a representation bijection μI : ΦI → I, then the evaluation function V
is defined as follows: ∀φI ∈ ΦI : V (φI) = {〈q, μI(φI)〉 ∈ S}. Finally, we must
encode observer return values with ad-hoc propositional formulae. Consider any
observed pair of instantiated observer and return value present in the Bem:
〈ō, ent〉, such that ō ∈ Ōfo ∧ ∃q ∈ Q : Ψfo(q, ō) = ent . For any of these pairs, we
define a specific propositional formula, defined by a representation bijection μO.
Then, ∀φO ∈ ΦO : μO(φO) = 〈ō, ent〉 ⇒ V (φO) = {(q, i) ∈ S : Ψfo(q, ō) = ent}.
In practice, we encode each observer - return value pair in the Bem as an atomic
formula in the Kripke structure. At this point, we have defined every possible
atomic formula used in the encoding of the Bem. As stated above, we need to
encode the frame structure described previously as a set of axioms. For space
reasons, we omit the actual encoding; the reader can find them in [15].

Rewriting Axioms as LTL Formulae. To explain the rationale behind the
translation of algebraic axioms into LTL formulae, consider the axiom ∀x ∈
Deque, e ∈ String : pop.state(push(x, e)) = x and its equivalent property on
the δ function derived by interpreting the Bem: ∀s ∈ Q, e ∈ IP (String) :
δ(δ(s, 〈push, e〉), 〈pop〉) = s. Consider all the possible infinite traces of the Bem,
that is, all the ω-words defined in the alphabet M̄Π , and the generalized tran-
sition function δ∗ : Q × M̄∗

Π → Q. Suppose that the axiom above holds in the
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model. Given any infinite trace x ∈ M̄ω
Π , if the axiom holds, then for every

finite prefix x̄ of x such that x̄ = x̄0〈push, a〉〈pop〉 or x̄ = x̄0〈push, b〉〈pop〉,
then the state reached by the sequence of operations x̄0 is the same as the
one reached by x̄, that is, δ∗(q0, x̄0) = δ∗(q0, x̄). In practice, the traces we
are interested in all the ones generated by the transitions where the δ func-
tion of the Bem has been defined. The encoding we defined above guaran-
tees that the traces generated by the Kripke structure are exactly those. Each
state of the frame encodes both the current state of the Bem, that is, a for-
mula in ΦS , and the current operation applied, that is, a formula in ΦI , to-
gether with formulae encoding the current return values of observers. Thus, a
property about the traces of the Bem model like the one we defined for the
axiom above, can be written as an LTL formula. In the case above, the corre-
sponding LTL formula is: ∀φS ∈ ΦS : G(φS ∧ μI(〈push, a〉) ∧ X(μI(〈pop〉)) ⇒
X2φS)∧G(φS ∧ μI(〈push, b〉)∧X(μI(〈pop〉) ⇒ X2φS). A pattern for axioms in
this form is the the following:

Pattern 1. Any axiom in the following form:∀x ∈ α : mj(. . . m1(m0(x)) . . .) =
x where mi, ni ∈ M̄Π , is translated to the following LTL formula: ∀φs ∈ ΦS :
G(φs ∧ μ−1

I (m0) ∧ X(μ−1
I (m1)) ∧ . . . ∧ Xj(μ−1

I (mj)) ⇒ Xj+1φs)

Please note that a formal proof of the correspondence expressed by this pattern
cannot be included for space limitations. However, the reader can find proofs
in [15]. We identified several patterns for translating algebraic axioms to LTL
formulae, based on the approach described above, but for space reasons we are
not able to show all the patterns.

4 Evaluation

Both the NuSMV encoding of the Bem and the algebraic axiom translation
have been implemented as a software tool. We now proceed to empirically eval-
uate the performance of the encoding and model checking as prescribed by the
proposed approach. In Section 1, we illustrated one of the possible applications
of our validation approach in the context of specification recovery. In this paper,
we proposed a solution to an instance of the general problem of automatic com-
parison of recovered formal specifications of containers, that is, the problem of
checking algebraic specifications against intensional behavior models. Moreover,
the tools and the extracted specifications are particularly suitable for classes
implementing containers. Thus, an empirical assessment may compare algebraic
specifications and intensional behavior models as recovered from the respective
extraction tools, for relevant containers such as the ones implemented in the
Java library. We selected a set of container classes implemented in the java.util
package of the Java library, and extracted both algebraic specifications with
Heureka and the intensional behavior models with Spy. We report here two
different evaluation experiments. For both the experiments, we generated a ran-
dom set of instance pools to instantiate the algebraic axioms and generate a
Bem of the class to be analyzed. In the first experiment, we used the same set
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Table 1. Empirical Results

Experiment I Experiment II
Class Axioms Performance Axioms Performance

Ver. Not Ver. Time Mem. Ver. Not Ver. Time Mem.
(mm:ss) (MB) (mm:ss) (MB)

ArrayDeque Exh. 20 0 00:04.30 63.68 10 3 00:04.30 52.4
32 states BMC 1 0 00:11.4 74.40 0 1 00:01.12 44.40

PriorityQueue Exh. 13 0 00:03.50 30.01 7 4 00:02.10 23.01
37 states BMC 1 0 00:14.40 57.92 0 0 − −

Stack Exh. 11 0 00:07.90 68.68 4 0 00:02.90 40.58
157 states BMC 1 0 00:09.40 60.92 1 0 00:09.40 60.92

TreeMap Exh. 21 0 07:06.00 274.87 12 6 04:06.00 204.87
64 states BMC 1 0 01:00.20 269.26 0 0 − −
TreeSet Exh. 23 0 03:05.20 69.64 13 7 01:35.20 49.64
33 states BMC 3 0 41:42.50 511.12 1 0 12:21.53 317.14

of test cases as inference basis for both the extraction methods. The inference
basis was manually checked to be relevant in the sense that it included all the
interesting behaviors of the component; the testing approach was similar to the
simpler one used to assess the Spy method [7]. The rationale behind this choice
is that we expect the two specifications to be coherent. Instead, the second ex-
periment uses on purpose two different inference bases. We choose to use the
same inference basis of the first experiment for the intensional model, and in-
stead use a smaller inference basis for Heureka. The smaller inference basis has
been chosen to not include some behaviors of the component. We expect that
some of the recovered algebraic axioms could be wrong; thus, some of the prop-
erties expressed by these axioms should not be verified by the model checker.
The reason for this choice is simply to verify that our approach is able to detect
inconsistency behind recovered specifications. Table 1 shows empirical results of
the validation approach for both the experiments. The first column include the
name of the checked class and immediately below the number of states of the
generated Bem. The second column contains the number of axioms that have
been checked, showing verified and not verified axioms. The last two columns
include the total time and memory needed for the verification. The experiments
have been performed in a Intel R© Core DuoTM machine at 2.16 Ghz with 2 Gb
of RAM. In the general case, we tried to verify each axiom with the exhaustive
search, based on BDDs [10]. For each class, the first row of the table illustrates
the empirical results for axioms for which the exhaustive verification was possi-
ble under reasonable amounts of time (i.e., within an hour of execution time).
In some cases, expecially with patterns involving two sequences of operations,
exhaustive search could be too expensive in terms of execution time and memory
consumption, up to unfeasibility with the used resources. For such axioms, we
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used the Bounded Model Checking (BMC) [16] feature of NuSMV, based on
SAT solving techniques. Essentially, BMC limits the search up to a given depth.
Results of the first experiment on Table 1 show that every axiom has been veri-
fied in the intensional behavior model, that is, that the specification recovered by
Heureka does not contradict the model inferred by Spy. Instead, the results of
the second experiment show that some of the axioms were not verified, and thus
our approach is able to detect inconsistencies between algebraic specifications
and intensional behavior models.

5 Related Work

This paper proposed a methodology to cross-validate intensional behavior models
and algebraic specifications by using model checking. The use of model check-
ing is justified because it is inherently a methodology for cross-validation of
specifications. In fact, model checking consists in general in the problem of
checking if an operational description satisfies a set of properties expressed in
temporal logic. Both the operational description and the temporal logic prop-
erties can be considered as specifications, and the process of model checking
can be seen as a method to validate their consistency. In particular, a recent
advance [17] introduces multi-valued model checking, which explicitly manages
situations like uncertainty and inconsistency. Other related works come from the
algebraic specification community; for example, HetCASL [18] is a framework
for the formal analysis of heterogeneous algebraic specifications by means of
theorem proving. Several related state-of-the-art techniques come from require-
ments engineering community, that is, from methodologies involving discovery
and management of inconsistent requirements within the context of multiple
viewpoints or requirement-related artifacts. A recent advance [19] proposed goal
model checking over operational descriptions derived from scenarios. Finally,
some relevant related works include techniques for model comparison to support
software evolution analysis, such as [20]. However, those techniques are used to
compare the same software artifacts during their evolution, and not to compare
different software artifacts.

6 Conclusions

We illustrated a method for comparing specifications of classes implementing
containers by using model checking. In particular, we proposed a model-checking
based technique to check the consistency of intensional behavior models against
algebraic specifications. In fact, the former can be used to generate a particular
finite-state model, the behavioral equivalence model, while the latter plays the
role of a set of properties to be verified. To perform model checking, we provided
a formal encoding of the Bem as a Kripke structure and a practical encoding in
the source code of the NuSMV model checker. Moreover, we identified a com-
prehensive set of patterns to translate algebraic specifications to LTL formulae.
We showed that it is possible to check algebraic specifications against intensional
behavior models in reasonable amounts of time and occupied memory.
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