
Accepted Manuscript

ContextErlang: A language for distributed context-aware
self-adaptive applications

Guido Salvaneschi, Carlo Ghezzi, Matteo Pradella

PII: S0167-6423(14)00557-7
DOI: 10.1016/j.scico.2014.11.016
Reference: SCICO 1854

To appear in: Science of Computer Programming

Received date: 11 May 2013
Revised date: 27 October 2014
Accepted date: 6 November 2014

Please cite this article in press as: G. Salvaneschi et al., ContextErlang: A language for
distributed context-aware self-adaptive applications, Sci. Comput. Program. (2015),
http://dx.doi.org/10.1016/j.scico.2014.11.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2014.11.016

ContextErlang: A Language for Distributed Context-Aware
Self-Adaptive Applications1

Guido Salvaneschia, Carlo Ghezzib, Matteo Pradellab

a Software Technology Group, TU Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany, salvaneschi@st.informatik.tu-darmstadt.de
b DEEPSE Group, DEIB, Politecnico di Milano Piazza L. Da Vinci, 32 20133 Milano, Italy, {carlo.ghezzi, matteo.pradella}@polimi.it

Abstract

Self-adaptive software modifies its behavior at run time to satisfy changing requirements in a dynamic environment.
Context-oriented programming (COP) has been recently proposed as a specialized programming paradigm for context-
aware and adaptive systems. COP mostly focuses on run time adaptation of the application’s behavior by supporting
modular descriptions of behavioral variations. However, self-adaptive applications must satisfy additional require-
ments, such as distribution and concurrency, support for unforeseen changes and enforcement of correct behavior in
the presence of dynamic change. Addressing these issues at the language level requires a holistic design that covers
all aspects and takes into account the possibly cumbersome interaction of those features, for example concurrency and
dynamic change.

We present ContextErlang, a COP programming language in which adaptive abstractions are seamlessly integrated
with distribution and concurrency. We define ContextErlang’s formal semantics, validated through an executable
prototype, and we show how it supports formal proofs that the language design ensures satisfaction of certain safety
requirements. We provide empirical evidence that ContextErlang is an effective solution through case studies and a
performance assessment. We also show how the same design principles that lead to the development of ContextErlang
can be followed to systematically design contextual extensions of other languages. A concrete example is presented
concerning ContextScala.

Keywords: Context-oriented programming, Context, Context-awareness, Concurrency, Distribution, Dynamic
change, Formal semantics.

1. Introduction

Self-adaptive software [2] is capable of adapting to different conditions to satisfy changing requirements. This
feature is necessary when applications operate in environments that change dynamically. Sources of change include
spatial positions of moving hosts, which may in addition join and leave the network dynamically, variable connectivity
conditions, and changing load to meet fluctuating usage profiles. The need for addressing those conditions has become
more common with the widespread use of mobile devices, the availability of distributed cooperative applications, and
more generally the increased complexity of computing systems. In the attempt to tackle such problems, in the last few
years, autonomic computing has been extensively investigated by researchers [3]. Autonomic computing starts from
the assumption that the complexity of computing systems is growing up to a point that human support is not sufficient
any more and systems must self-adapt to meet their requirements with limited or no human supervision.

The characterizing feature of self-adaptive software is that the behavior of the application must change dynami-
cally in response to different external and internal conditions. This goal can be achieved in different ways. Traditional
solutions address the problem at the software architecture and middleware levels [4, 5, 6]. More recently, researchers
proposed context-oriented programming (COP) as a dedicated paradigm to support dynamic software adaptation [7].
COP provides abstractions that are specifically designed for run time change and adaptation, supporting modular-
ization and disciplined dynamic composition of behavioral variations, which constitute a crosscutting concern. In

1This paper is an extended version of a preliminary conference paper [1].

Preprint submitted to Science of Computer Programming December 10, 2014

addition, COP relieves programmers of the need to implement at the machinery required to support dynamic change.
As a result, COP solutions are less verbose, and, thanks to commonly accepted abstractions, clearly express the design
intentions, which would otherwise be hidden in ad-hoc solutions.

Current COP languages focus on modularization of behavioral variations and their dynamic activation [8]. How-
ever, in a real-world self-adaptive system, a whole spectrum of additional requirements must be considered. For
example, real-world adaptive systems are often distributed. In this scenario, concurrent components run in parallel
and may need to adapt to different context conditions. Different contexts can be active at the same time in different
regions of the system. Since some components are dedicated to gathering contextual conditions via sensors, they must
be able to trigger behavioral change on other components. Asynchronous communication simplifies the design of
complex systems, so it is desirable that activation of behavioral variations is performed by an asynchronous mecha-
nism. Another crucial aspect is that when an application runs in a highly dynamic environment, it must be ensured that
behavioral changes activated on the application do not conflict, leading to inconsistent behavior. Finally, adaptations
can be hard to foresee upfront and mechanisms for dynamic loading of new variations must be provided.

Supporting all these requirements is not easy. For example dynamic change and concurrency can easily lead to
inconsistencies. In addition, the activation mechanism should seamlessly interact with distribution to support remote
adaptation. Finally, the scope of context adaptation must be compatible with the organization of the distributed
system. In summary, it is not possible to support these requirements by offering separate independent features; a
comprehensive coherent design is instead required to tackle these issues.

ContextErlang2 is a COP language that addresses the aforementioned requirements of self-adaptive applications.
Specifically, we leverage the agent-based model of Erlang3 to support context adaptations. ContextErlang is based on
the concept of context-aware reactive agents. Context-aware agents have a basic behavior which can be altered by
variations, i.e., behavioral units that can be dynamically activated on the agent. The composition of such variations
determines the actual behavior of the agent. However, variations are not activated in isolation. Instead, an abstract data
type specified by the programmer controls the composition and introduces constraints that avoid possible conflicts.
Variation activation and the other context-related operations are performed by sending special messages to the agent.
Therefore, in ContextErlang, asynchronous activation – as required by real-world adaptive systems – is the norm.
Since the programmer can enable adaptations at the granularity of single agents, she has full control over fine-grained
adaptation of each application component. Context-aware agents and the messaging mechanism are compatible with
existing Erlang applications since we developed ContextErlang as part of the Open Telecom Platform (OTP), on which
practically any real-world Erlang application is based. As a result, ContextErlang applications inherit the distribution
and the fault-tolerance support of OTP. In addition, ContextErlang supports variation transmission: an agent on a
remote Erlang node can be provided with a new behavior by sending a variation to the node and activating it on
the agent. This solution is needed for systems that must adapt to unforeseen situations. Since concurrency, in the
presence of dynamic change can easily lead to inconsistencies, we formalize ContextErlang with a minimal calculus
that defines its semantics and the behavior of the language in all circumstances.

In summary, the paper makes the following contributions:

• Introduction of COP in the Actor concurrency model through the design of ContextErlang.

• A complete implementation of ContextErlang as part of Erlang OTP, an industrial-strength language for dis-
tributed, concurrent and fault-tolerant applications.

• A formalization of the core language with an operational semantics that validates its key design principles.

• Experimental validation and evaluation of our approach through performance comparison and prototypes,
among which ContextScala, a complete implementation of another language sharing the same principles and
semantics of ContextErlang.

2The implementation of ContextErlang and the software presented in the rest of the paper is available at:
http://www.guidosalvaneschi.com/wp/software/contexterlang/
3http://www.erlang.org/

2

A preliminary version of this work focused on the informal integration of COP with the Actor model [1]. This
paper is a comprehensive overview of how ContextErlang meets the requirements of adaptive systems and includes a
formalization of the most important features of the language.

The paper is organized as follows. In Section 2 we outline the requirements of adaptive applications and discuss
the possible solutions. In Section 3 we present the design of ContextErlang, and in Section 4 its formal seman-
tics. Section 5 presents the validation of our work. Section 6 discusses the related work and Section 7 draws some
conclusions.

2. Adaptive Software and COP

In this section, we discuss the requirements of self-adaptive systems on programming language support, we intro-
duce the main features of COP, and discuss how current COP languages only partially address the requirements and
which problems are still open. Finally, we sketch the ContextErlang solution that is detailed in the next section.

Compared to traditional applications, self-adaptive systems have specific requirements that must be considered by
software designers. Supporting these requirements is an important goal of the technology used to implement them.
The main requirements are:

• Dynamic adaptation. Software applications operate in an environment that changes frequently. For this reason,
adaptive software must provide mechanisms to dynamically modify its behavior depending on the changing
conditions.

• Modularization of behavioral variation. Adaptive software can perform dynamic adaptation at different levels
of abstraction [2]. For the purpose of this paper, a fundamental distinction is between parameter adaptation
versus compositional adaptation – according to the terminology introduced by McKinley et al. [9]. Adaptation
at the parameter level means that the same module is run with different input parameters. On the contrary, more
complex adaptations that concern behaviors, like alternative algorithms or modifications of the same algorithm,
are more challenging because they often crosscut the main organizing direction of the application and require
proper modularization [10].

• Asynchronous variation activation. Adaptive systems are often modeled by the MAPE-K loop model (moni-

toring, analyzing, planning, execution and global knowledge) proposed by the autonomic computing commu-
nity [3]. An autonomic manager controls a managed element to achieve the adaptive behavior. The autonomic
manager collects information through sensors and modifies the behavior of the system through effectors. In
a complex system, the autonomic manager and the managed element are not only conceptually separated, but
they are also implemented as different components. When the size of a systems grows, there can be several
autonomic managers that observe different sensors and are responsible for activating different adaptations. In
this scenario, managed elements run independently of the autonomic managers and must be asynchronously
notified of behavioral changes.

• Constraints on variation composition. As already discussed, in adaptive systems behavioral variations are
activated at run time, possibly by different managers. In highly dynamic scenarios, several adaptations can be
activated on the same component, so the risk of inconsistencies among variations is concrete. For example, in a
mobile application that adapts to the presence of a Wi-Fi connection, the online and the offline variations should
not be active at the same time.

• Support for unforeseen adaptation. Designers of adaptive software must equip the system with the functionali-
ties required to properly respond to the most diverse conditions. However, designers can hardly foresee all the
adaptations that can be needed when the system will become operational. The need for a new adaptation can
be quite frequent due to unpredictable changes in the environment and stopping the system to introduce the re-
quired functionality could be unacceptable. For this reason, several adaptive systems adopt solutions that allow
one to update the running code without incurring in the downtime of stopping the system for recompilation.
For example, Aspect Oriented Programming (AOP) frameworks like PROSE [11, 12] and JAC [13, 14], support
remote uploading and dynamic activation of aspect components.

3

• Distribution. In computing systems, the need for adaptation is often mainly due to changing connectivity
conditions and environmental factors. Examples include changes in the physical location of mobile hosts,
variability of network bandwidth, and changes of requests and load from the clients. Given these factors, it is
not surprising that, in most scenarios, adaptive systems are distributed. As a result, run time adaptation must be
designed also taking into account remote communication and host decoupling.

2.1. Context-oriented Programming

COP is an interesting starting point to meet the requirements outlined in the previous section since it supports
dynamic adaptation and modularization of behavioral variations. In this section, we provide a short introduction to
COP. The reader interested to a more general analysis and an overview of the existing COP languages can refer to the
survey [8].

While in traditional OO programming method dispatching is two-dimensional, depending on the message and on
the receiver, COP adds a further dimension: methods may also be dispatched according to the current context [7]. In
COP, the notion of context is abstract and general. Every computationally accessible information can be considered
as context. The user condition (e.g., online/offline, enabled backup) can be considered its current context. Thanks to
this approach, context can be effectively used to model the variability required by adaptive systems.

COP provides ad-hoc language-level abstractions to modularize context-dependent behavioral variations and dy-
namically activate and combine them. In COP languages, behavioral variations are reified in layers4, abstractions
which group partial method definitions. For example, the following class defines two partial method definitions for
the method m inside the layers l1 and l2.
class MyClass {

layer l2 {

void m() { System.out.println("m: l2"); proceed(); ...; }

}

layer l1 {

void m() { System.out.println("m: l1"); proceed(); ...; }

}

void m(){ ...; System.out.println("m"); }

}

Layers are activated through an explicit statement such as
with(layersList) {

codeBlock

}

and activation is scoped to the dynamic extent of the code block. When a method is called from codeBlock and partial
definitions are available for that method in the active layers, the partial definitions are executed. For example, the call
m() in
MyClass o = new MyClass()

with(l2,l1) {

o.m()

}

// output:

m: l2

m: l1

m

executes the partial definition of m inside the layer l2. In COP, the proceed keyword allows dynamic combination. It
is similar to proceed in Aspect-Oriented Programming (AOP) and calls the partial definition in the next active layer
or the basic definition. As a result, the partial definition of m inside l2 proceeds to the partial definition of m inside l1,
which finally proceeds to the execution of the basic behavior, i.e., method m. Thanks to the mechanism introduced by
COP for dynamic context activation and composition, run time adaptation is implemented without cluttering the code
with if statements to express context dependency.

4For continuity with our previous work, ContextErlang keeps the name variation also to indicate the language abstraction. ContextErlang
variations are quite similar to COP layers; a comparison between the two is in Section 6.

4

Figure 1: The ContextChat application.

In the following sections we will illustrate these concepts more thoroughly with a running example written in
ContextErlang.

2.2. The ContextChat Case Study

To illustrate the design choices behind our work, we introduce a running example called ContextChat, our proto-
type of an instant messaging server. We discuss possible designs and implementations of ContextChat using existing
COP languages and ContextErlang. More details of the implementation will be presented along the paper to show
ContextErlang’s features.

In ContextChat, the connected clients can exchange messages in real time. The server also implements some
advanced features, which can be dynamically activated. When users go offline, received messages are stored on the
server and delivered later when the addressee connects. An optional backup can be enabled by the user to save both
the received and sent messages on a remote server. Additionally, the system can activate a tracing functionality to
collect information on client communications. In a distributed environment, this allows for self-adaptive behavior,
moving users who often exchange messages on the same physical machine and reducing cross-node communications.

An abstract view of the application is sketched in Figure 1. For each user i an always-alive component Ui embodies
the user even when he or she is offline (e.g. U4). Border components Bi are created when clients Ci connect. Each
border component is in charge of the network connection with the client and controls the always-alive component.
Consider the scenario in which the client C1 sends a message to the client C2. C1 communicates the message to the
border component (e.g. via some protocol over HTTPS). The border component B1 decodes the “send msg” command
and controls U1. B1 activates the send message functionality on U1. U1 forwards the message to U2 and through B2
the message reaches C2.

2.3. The Context-Oriented Programming Solution

In ContextChat, the variations to the basic behavior are clearly identified, should be separated from the rest in the
codebase, must be dynamically activated, and depend on the current context of the application – as we explain in a
while. Therefore, COP looks like the natural solution for the requirements of ContextChat.

Figure 2 shows a possible implementation of the User object implementing an Ui component in a COP language
extension to Java, such as ContextJ [15]. Layers are used to model partial behavioral variations. For example, in
Figure 2 the tracing layer contains a partial definition of the receive msg and of the send msg methods. Method calls
are dispatched according to the active layers and proceed keyword allows dynamic combination of variations active
at the same time.

Dynamic scope is a powerful mechanism for variations activation, since it allows remote effect, setting the active
layers once and automatically adapting all the objects in the execution flow. This behavior has already proved useful in
several application scenarios [15, 16, 17]. However, implementing ContextChat with the traditional COP dynamically
scoped activation highlights some inconveniences. We argue that these problems are due to the asynchronous nature
of context provisioning, to the concurrent nature of the application and to its non-trivial complexity. Therefore the
issues analyzed next are likely to be encountered in any sufficiently large self-adaptive application that needs to be
organized in several functional modules, and are not specific to this example.

First, a context change is often signaled by an asynchronous event coming from outside the execution flow. Since
layers are activated when the control flow reaches the statement, the with construct is inherently synchronous and is

5

public class User {

layer offline {

void receive_msg(User source,M msg){

store_chats.store_message(source, msg);

} }

layer tracing { ...

void receive_msg(User source,M msg){

// send msg to the tracing listener

proceed(source, msg);

}

void send_msg(User source,M msg){

// send msg to the tracing listener

proceed(source, msg);

} }

layer backup { ...

void receive_msg(User source,M msg){

// send msg to the remote server

proceed(source, msg);

} }

... // Other methods

void receive_msg(User source,M msg){

//forward msg to my border component

}

void send_msg(User dest,M msg){

// forward to dest client

} }

Figure 2: An implementation of the chat server in ContextJ.

not suitable for these cases. For example, the tracing layer is activated by an external engine in charge of implement-
ing the autonomic behavior. The same holds for the activation of the backup functionality, which can be performed
anytime by the client while User objects are exchanging messages with other users. A possible solution is to adopt
inversion of control [18] and first class layers. For example, a setActiveLayers callback method can be implemented
in the User class to notify the change of the active layers and store them locally. However, this solution increases
the complexity of the application, making it less readable. Indeed, in this case, inversion of control does not capture
the design intention. Conceptually, the programmer’s intention is to cause an entity adaptation and not to notify an
entity letting it perform the activation at the next with statement. In addition, in some applications, it is not possible
to identify unique entry points for the control flow. As already noticed by COP researchers [19], in these cases layer
composition statements must be scattered and replicated across all the possible control flows, such as all the callback
methods in a GUI application.

Second, in a highly concurrent environment, the control flow can follow complex paths. These paths hardly map on
dynamically scoped program sections, i.e., contextual regions whose adaptation condition is known where the region
is entered. For example, the User object (Figure 2) may be traversed by several control flows, and the information of
which behavioral variation to activate is not directly available to all of them. The backup functionality is enabled by
the client C1 and therefore the associated border component B1 can trigger the backup behavior by interacting with the
User object U1 in the dynamic scope of a with statement. However, when the User object U1 is called from another
User object U2 to receive a message, U2 does not know if the backup layer should be activated on U1.

A third issue is that in a complex application with several components, dynamic scope is difficult to control and
could extend too far. For example, when a border component B1 delivers a message through the associated User

object U1 and the client C1 activated the backup feature on U1, the backup functionality is propagated along the flow
to the other User object U2.

COP researchers have already investigated the limitations of dynamically scoped variation activation. Contex-
tJS [20] is an open implementation of COP supporting user-defined activation strategies, such as indefinite scope or
per-object activation. Per-object activation is performed by calling a setWithLayer method on the instance. Per-
object activation solves the problem of the activation along the execution path, since objects identify the boundaries
in which layer activation is constrained. This solution nicely fits in the OO model, resembling the way other de-

6

public class User {

void onStatusChanged(Status s){...}

...

}

direction UserLayerActivations{

declare event StatusOffline(User u)

:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.OFFLINE) :sendTo(u);

declare event StatusOnline(User u)

:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.ONLINE) :sendTo(u);

... // Other events

transition StatusOffline: Offline switchTo Online;

transition StatusOnline: Online switchTo Offline;

... // Other transitions

}

Figure 3: ContextChat in EventCJ.

sign problems have been solved for objects. For example, in Java, concurrency is addressed at the language level by
assigning a monitor to each object. Similarly, in per-object activation, a list of currently active layers is associated
to each object. EventCJ [21] is a Java COP extension supporting declarative layer transitions and implicit activation
through pointcut-like predicates. The issue of asynchronous activation, discussed previously, is solved by AspectJ-like
statements: when a pointcut-like event occurs, a layer transition is triggered. Layers are activated on per-object basis.
Figure 3 shows a possible implementation of a User object in EventCJ. Events and layer transitions are declared inside
direction modules. When the onStatusChanged method is called, the StatusOffline or the StatusOnline events
are triggered, depending on the parameters. These events trigger layer transitions from Online to Offline and vice
versa. The approach solves the problem of asynchronous activation by introducing points in the program execution
which implicitly activate layers.

However, none of the existing COP languages leverages the concurrency model to easily support asynchronous
context propagation. As a result, the layer activation mechanism can be quite complex, as shown by the example in
(Figure 3).

As we have seen, the backup and the tracing functionalities in the example are activated by a different thread than
the one actually affected by them. This aspect is not peculiar of our example, but is common to many self-adaptive
applications designed according to the MAPE-K model, because the adaptive application is decoupled into a man-
aged element, which implements the application logic, and the autonomic manager, which collects data from sensors
and plans the adaptive behavior. So, these subsystems are not only conceptually separated, but usually run in sepa-
rate threads and communicate asynchronously. However, the relation between context-adaptation and the language
concurrency model has not been investigated so far in COP research. Even more advanced COP languages are quite
traditional in this sense. ContextJS is single-threaded, since it extends JavaScript, a single-threaded language. EventCJ
instead adopts the standard Java share-and-lock concurrency model. By exploiting the integration of COP with the
Actor Model, ContextErlang directly addresses the issue of context propagation in concurrent systems, and allows for
asynchronous context provisioning directly in the language, without pointcut-like expressions. This approach solves
in a natural way the problem of context confinement by adopting actors as context boundaries.

2.4. Overview of the ContextErlang Solution

ContextErlang mainly differs from other COP languages in the way it supports the activation of context-specific
functionalities. To address the issue of asynchronous context provisioning, variations are activated through messages.
This approach nicely reflects the design intention and avoids the cluttering of control inversion. To cope with the com-
plexity of a concurrent application organized in several behavioral units, in ContextErlang, variations are activated on
per-agent basis, and each agent can be controlled individually. This also eliminates the risk of unintended adaptation
propagation. After activation, variations are implicitly associated with the agent. They are managed transparently and
do not need dedicated local variables or other boilerplate code.

7

-module(cache).

-behavior(gen_server).

...

start() ->

gen_server:start_link({local, ?MODULE},

?MODULE, [], []).

get(Name) -> gen_server:call(?MODULE, {get, Name}).

add(Name, Item) -> gen_server:cast(?MODULE, {add, Name, Item}).

init([]) ->

% ... initialization here

{ok, State}.

handle_call({get, Name}, From, State) ->

% ... retrieve Item from the state

Reply = Item, {reply, Reply, State}.

handle_cast({add, Name, Item}, State) ->

% ... add Item to the state

{noreply, State}.

terminate(Reason, State) ->

% ... manage shutdown here

ok.

Figure 4: A callback module of an OTP gen server.

To make the benefits of such design more concrete, hereafter we illustrate how ContextChat is designed in Con-
textErlang. Always-alive components are context-aware agents (namely users) exchanging Erlang messages. Border
components are standard Erlang agents, since no special adaptation is required. The offline, online, backup and
tracing variations implement the dynamically activatable features for the user agents. Other agents can directly
control the adaptation state of a user agent. For example when a client Ci closes the connection, the border agent
sends a context-related message to the associated agent Ui, which has the effect of activating the offline variation. In
a similar way Bi activates the backup of the conversations and the autonomic engine activates the tracing variation.
Active variations can be dynamically combined to allow coexisting multiple adaptations. For example, the backup

variation proceeds to either the online or the offline variation to send a chat to a backup server and then either
forward or store it locally.

ContextErlang provides a powerful feature: variation transmission. To illustrate it, we augment the ContextChat
application with an additional functionality. A client can apply a customizable filter to its outgoing messages such as
capitalizing all the first letters of sentences or adding emoticons to each message. Despite its simplicity, this feature is
interesting because the type of filter cannot be forecast in advance. In ContextErlang this kind of situation is specif-
ically addressed by variation transmission, which allows one to send a variation to a remote agent and dynamically
load it. In this way the agent can react to unforeseen situations.

Further insights into the details of the ContextChat implementation in ContextErlang are provided in the following
sections.

3. The Design of ContextErlang

3.1. Erlang and the Open Telecom Platform

To achieve the high quality standards of Erlang applications, ContextErlang is built on the OTP platform – a library
and a set of procedures for structuring fault-tolerant, large-scale, distributed software. To keep the paper reasonably
self-contained, we provide a minimal description of the Erlang syntax and a short introduction to the OTP.

While the language provides the basic functionalities for software development, practically any real-world Erlang
application is based on the OTP platform. The concept of behavior is central in OTP and is based on the idea that, in
an application, many processes enact similar patterns, such as serving requests, handling events, or monitoring other
processes. OTP generalizes these common patterns, and gives a ready implementation of the generic structure (called
the behavior), which provides features such as message passing, error handling and fault-tolerance. The user only

8

needs to implement the specific part in a callback module, which exposes a predefined interface. This kind of code
structuring makes programs easier to understand, and prescribes a general architecture that should be common to all
OTP applications. In this paper we use the term behavior also to indicate the way an agent behaves with respect to the
software system. To avoid confusion, when necessary, we will use the term OTP behavior to disambiguate.

In Figure 4 we present a callback module for the most common OTP behavior, the gen server, a process which
stands waiting for requests from other processes. An Erlang module starts with attributes introduced by “-”. They
state the module name, the exported functions and other declarations. The functions’ implementation follows. A
function body is started by “->”. Braces indicate tuples of fixed length, brackets indicate lists. Variables start with
an uppercase letter, other literals are atoms, i.e., literal constants. The ?MODULE literal macroexpands to the module
name. In the example, the process implements a cache that allows for adding and retrieving items. The gen server

process is spawned with the start function. It is common practice in OTP that the callback hides the interaction
with the behavior, providing an API to the user. In this case, the callback exposes the get and the add functions that
in turn interact with the spawned process. A call to the get function invokes call on the gen server module, which
causes a message to be sent to the created process. When the message is received, the corresponding callback function
handle call({get, Name}, From, State) is invoked (note that this function is executed in a different process with
respect to call). The returned result is sent back through a message and the gen server:call function ends. All the
machinery associated with message passing, possible message loss, timeout, and dispatching over callback functions,
is hidden from the programmer. call functions are used for synchronous messages expecting a return value, cast
functions are asynchronous and do not return a value to the caller.

The OTP platform addresses several requirements of a distributed system. For example, agents can be organized in
hierarchies where supervisors (i.e., modules implementing the supervisor OTP behavior) can control other working
agents, be notified of failures, and adopt countermeasures. Another fundamental feature is that agents can be spawned
on remote hosts simply by specifying the address of the remote Erlang system. Messages can be sent to local or
remote agents transparently, supporting seamless migration of applications to a distributed setting. Finally, agents
are an ideal way to structure distributed software where different subsystems must be decoupled, run in parallel, and
communicate asynchronously.

3.2. ContextErlang Basics

To support fast development of self-adaptive applications, ContextErlang provides context-aware agents through
the OTP context agent behavior. According to the OTP conventions, the programmer only needs to define the
callback module containing the functions for the core functionalities. We refer to these functions as handle functions5.

Behavioral adaptation of context-aware agents is performed in ContextErlang through variations. A variation
encapsulates a set of changes that modify the way an agent reacts to messages. Variations are combined in a stack
fashion through proceed. When the agent receives a request message, the function to execute is searched along the
stack of active variations up to the callback. This design is substantially similar to the layer combination in other COP
languages. It clearly separates the basic behavior of an agent from the variations, making the application easier to
understand and maintain, and supports reuse through combination of variations.

Figure 5 shows the callback of the context-aware agents that implement user agents inside the ContextChat server.
The callback declares a function for receiving messages and a function for sending them to a different agent. Based
on this example, hereafter, we analyze how the programmer can interact with variations in ContextErlang. Then we
discuss how variations are declared and activated and how they can be sent to another node, changing the behavior of
remote agents.

Modularization of variations. A variation is an Erlang module defining a set of handle functions exposed to the
contextual dispatching. Implementing variations as Erlang modules has several advantages. It simplifies their de-
velopment since it does not require syntax extensions, increasing the chances of acceptance by the programmers
and avoiding the risk of breaking compatibility with existing tools. In addition, it improves extensibility, since new
variations can be added by implementing new modules without modifying the existing code.

5In the OTP terminology, functions inside callback modules are commonly referred to as callback functions. Since in ContextErlang
functions like handle call and handle cast appear both in callback and in variation modules, we indicate them uniformly with the term
handle functions to avoid confusion.

9

-module(user).

-behavior(context_agent).

-include("context_agent_api.hrl"). % contextual API

% API

receive(AgentId, Source, Msg) -> context_agent:cast(AgentId, {receive_msg, Source, Msg}).

send(AgentId, Dest, Msg) -> context_agent:cast(AgentId, {send_msg, Dest, Msg}).

handle_cast({receive_msg, Source, Msg}, State) ->

% ... forward to my client

{noreply, State}.

handle_cast({send_msg, Dest, Msg}, State) ->

% ... forward to dest client

{noreply, State}.

% startup, shutdown and other auxiliary functions

Figure 5: The callback for the user agents in ContextChat.

-module(offline).

-context_cast([receive_msg/2]). % Contextual dispatch

...

handle_cast({receive_msg, Source, Msg}, State) ->

store_chats:store_message(Source, Msg),

{noreply, State}.

Figure 6: The offline variation in ContextChat.

The offline variation (Figure 6) defines an asynchronous receive msg function, which at the moment of the
activation overrides the corresponding function in the callback module. In Figure 7, the backup variation redefines
the receive msg function to forward the message to a remote server in charge of the backup. If the backup variation
is activated on top of the user callback, a call to receive causes the implementation inside backup to be called. The
proceed call resolves to the implementation of receive msg inside the callback module.

Variations can require an initialization or a shutdown phase to work properly. For example, if the offline variation
in ContextChat saves the conversations on disk, a file must be created and opened. ContextErlang allows a variation to
declare the on activation and the on deactivation functions, which are guaranteed to be called when the variation
is respectively activated or deactivated. Initialization and cleanup code are placed inside these functions.

Variations activation model. Self-adaptive and context aware systems are inherently concurrent because, conceptu-
ally, they receive signals from the context in parallel with the execution of the application logic. For this reason,
context-aware features in adaptive applications are tightly coupled with concurrency features.

To allow asynchronous contextual adaptation, variation activation is performed in an imperative way by a different
agent (an exception is discussed in Section 3.4). A common pattern is that a single agent enacts the role of context
manager, and activates variations on the other agents depending on the context conditions. We expect that additional
patterns will be identified with the practical development of agent-based context-aware applications. For example,
agents could be organized in communities sharing a local context manager, while global context managers supervise
other managers, in a hierarchical fashion.

The modification of the behavior of context-aware agents is exposed by the API of the context agent module. The
activate variations function activates a list of variations on a given agent. In this example, the offline variation is
activated on the agent AgentId. Then the backup variation is activated on top of the offline variation:

context_agent:call(

{activate_variations, AgentId, [offline]}),

...

context_agent:call(

{activate_variations, AgentId, [backup, offline]}),

10

-module(backup).

-context_cast([receive_msg/2]).

...

handle_cast({receive_msg, Source, Msg}, State) ->

% send Msg to the remote server

...

?proceed_cast({receive_msg, Source, Msg}, State),

{noreply, State}.

Figure 7: The backup variation in ContextChat.

CONTEXT SPEC ::= [SLOT SPEC*]

SLOT SPEC ::= { Slotname, SLOT }
SLOT ::= SWITCH SLOT

| ACTIVATABLE SLOT
| FREE SLOT

SWITCH SLOT ::= [(Varname1,)* { Varname2, active } (,Varname3)*]
ACTIVATABLE SLOT ::= { Varname, active } | { Varname }
FREE SLOT ::= free slot

Figure 8: The syntax specification of a context ADT.

The same updating mechanism can then be used for variations deactivation. We require the atoms in the list to be
valid names of modules available to the Erlang virtual machine. Besides direct interaction with the context agent,
we adhere to the OTP convention of hiding the interaction with OTP behaviors inside the callback and referencing the
agent with the callback name (Section 3.1). The following code equivalent to the first call in the previous example:

user:activate_variations(AgentId, [offline]),

This is achieved thanks to a context agent api.hrl module, which makes the API available when imported by the
callback.

Unforeseen adaptation with variation transmission. Variation transmission is a powerful mechanism to implement
software which reacts to unforeseen conditions. For example, our previous work [22] shows how this feature can be
used to adapt PDA devices to support rescue operations in an emergency scenario.

To design variation transmission and variation dynamic loading we leveraged advanced Erlang VM features, such
as run-time code manipulation, dynamic module loading and remote procedure call. The variation code module
provides the API for the functionalities concerning variation transmission. The following call sends a variation var to
a remote node node2, and loads var in the virtual machine of node2:

% on node1@machine1

variation_code:send_var(node2@machine2, var)

The send var call requires the var module to be available to the node1 virtual machine. In the case of the ContextChat
server, variation transmission can be used to allow clients to create a filter variation that manipulates the characters of
their messages. The variation is then dynamically loaded and activated on the user agent. To include the filter in a
variation, on the fly compilation is obtained using the Erlang compiler API. After this process completes, the variation
can be activated on an agent as usual:

user:activate_variations(AgentId, [text_effect])

Of course, loading a module created from a user-defined filter is potentially dangerous and proper input validation is
required to avoid security flaws.

11

3.3. Coherence Among Variations: the Context Abstract Data Type

COP behavioral variations are activated and combined while the application is running. Consistency among vari-
ations must therefore be ensured. For example, the offline and the online variations in the ContextChat example
should not be active at the same time. COP researchers have already investigated this problem. For example, reflec-
tion [23] has been leveraged to dynamically check the constraints. Other solutions use domain specific languages
(DSL) to express declarative constraints on layers [24], in a way similar to selecting features in software product
lines. A constraint violation raises an error which must be interactively managed by the programmer, so the need
for human intervention limits the applicability of this approach. Subjective-C [25] also introduces a DSL to express
context dependencies. The system inspects all the user-defined relations, possibly triggering an activation if needed.
Another approach is to employ formal verification to statically guarantee layer constraints [21].

Our solution starts from the observation that organizing adaptability concerns in an application, and mapping them
to variations and meaningful variation combinations, always requires careful design. For this reason, in practice, the
programmer defines in advance which variation combinations are required. To explicitly capture these design choices,
ContextErlang introduces a context abstract data type (ADT). The context ADT encapsulates the variations that can
be activated on an agent, organizing the possible variation combinations and enforcing constraints on their activation.
In this way the user of the context ADT instance is forced by the interface to activate only valid combinations (i.e.,
those designed in advance by the ADT programmer). The creation of an unforeseen combination, required by remote
variation transmission, is made explicit. Note that the context ADT solution is not specific to ContextErlang and in
principle could be ported to layer-based COP languages.

The context ADT module creates a context data type instance from a given specification. The context ADT is
organized as a fixed-size stack. Each level of the stack, referred as a slot, has a name for direct access. Three types of
slots are defined. Activatable slots contain a single variation, which can be active or not. Switch slots contain one or
more variations, only one of which can be active at a certain time instant. Free slots contain a single variation which
is left undefined and can be assigned later. Free slots are the way variations transmitted by remote nodes can be used.
In the following example a context ADT is created for the variations of a user agent.

Spec = [{persistency, {backup, active}}, % Activatable slot, backup is initally active

{tracing, {trace, active}}, % Activatable slot, trace is initally active

{status, [{offline, active}, online]}, % Switch slot, offline is initally active

{text_effect, free_slot}, % Free slot, initally empty

{base_behavior, {user, active}}],

Context = context_ADT:create(Spec),

user:start_link(AgentId, Context)

The formal syntax of the context ADT is reported in Figure 8.
To start an agent with a given context ADT, the ADT is passed to the start link function which spawns a new

agent. The management of the variations in the context ADT is performed through the provided API. The following
call performs a switch on the status slot, activating the online variation.

user:in_cur_context_switch(AgentId, online, status)

The effect of the call is shown in Figure 9. Similar functions are used to activate and deactivate the variation in an
activatable slot, and for filling a free slot with a variation sent from a remote agent. After being filled, the variation in
the free slot can be activated normally.

The introduction of a context ADT raises a number of critical issues. A possible drawback is that ADT specifi-
cations require an extra design effort. However, the impact on complexity is minimized by using a DSL. In addition,
introducing a variation into an existing context ADT instance requires changing the specification, forcing the program-
mer to think about how to combine variations in a coherent way. In any case, the effort required is similar to writing
a new set of layer transitions in EventCJ when a new layer is added. Another issue concerns our choice to limit the
stack size and force variations to obey to certain constrains, which possibly limit variation capabilities. This design
choice favors safety over flexibility. However, in our experience, more flexibility is not really required. For example,
changing active variations by specifying the list of all the active ones (like we showed in the previous sections) is a
highly dynamic and flexible mechanism, which gives the programmer more freedom than it is really needed in most
scenarios. Even in the examples provided in COP literature, most activation schema are quite simple and encompass

12

Figure 9: The context ADT in ContextErlang. Switching from the online to the offline variation.

only few variations, often in mutual exclusion [21, 7, 15, 19]. Nonetheless, in the spirit of leaving the exploration of
more dynamic solutions open, we decided to keep both activation mechanisms.

The context ADT solution is different from other COP proposals because it enforces the ADT user to adopt correct
configurations. Other approaches, instead, allow one to freely operate with variations. Note, however, that the content
of the variations is not checked statically – a choice compliant with Erlang’s dynamic typing. For this reason, run
time errors due to wrong function calls can still occur, even using context ADTs. Interestingly, none of the approaches
proposed so far, including the context ADT, can automatically verify the correctness of variations configurations and
run-time transitions against a given specification. Investigation in this direction is an open research problem.

3.4. Concurrency: Consistency with Context Change

Combining COP with concurrency is not an easy task. Integrating Erlang’s actors with run-time behavioral change
requires careful scrutiny of how these aspects interact. In this section we clarify some fundamental points.

A crucial requirement is that behavioral changes should be safe, i.e., a change of the active variations should
not corrupt the task in execution. As we will explain shortly, this cannot be achieved by simply forbidding a context
change while a message-triggered computation is active. In fact, this functionality is sometimes required. Our solution
is based on shaping ContextErlang around the following principles:

• Non interference. The context of a running computation cannot be altered by a contextual message.

• Agent authority. An agent retains ultimate authority on its current context.

The first rule states that if an agent A sends a message to an agent B, triggering a computation cmp on B, no agent (not
even A) can change the context of B while cmp is executed by sending a contextual message to B. This is achieved by
processing context-related and other messages one at a time, picking them up from the agent mailbox. Therefore, it is
not possible that context-related messages interfere with the execution activated by a standard message.

The second rule states that an agent can change its context arbitrarily during a computation. This principle is
reminiscent of OO programming, where an object is ultimately responsible for how it responds to messages. This rule
is required in some practical scenarios with non-trivial concurrency patterns. For example, when a client connects
to the ContextChat server, some data structures in the user agent can be required to be initialized. Examples are the
source IP, the client version, or a status variable that must be set to online. In addition to these operations, since the
client is now connected, the online variation must be activated and the offline variation deactivated. Now consider
the case in which these actions (state changes and variation activation) are performed by two subsequent calls from
another agent. With an unlucky interleaving, a call coming form a third agent can fall between these two, and find the
agent with the status set to online but still with the offline variation active.

In general, with the functions for variation management seen so far, it is not possible to execute a variation
manipulation atomically with a set of operations. Of course, agents can coordinate to enforce this constraint at a higher
level, implementing some synchronization mechanism. However this solution requires development of possibly error-
prone code even for trivial tasks. For this reason in ContextErlang all the functions like in cur context switch have
an immediate counterpart which has effect on the context-aware agent that calls them. For example when the user

agent receives the init message, it atomically initializes its internal data structures and activates the online variation
atomically.

13

-module(user).

...

handle_cast({init, Data}, State) ->

% ... initialize the data structure

user:in_my_cur_context_switch(online, status),

{noreply, State}.

Atomicity is guaranteed: while a message is served, other messages are queued and cannot interrupt it. Interestingly,
immediate activation is more general than message-based activation, since context-related messages could be imple-
mented as standard messages which trigger the execution of an immediate activation. To alleviate the programmer
from this annoying task we maintain both versions.

4. Formal Semantics

We introduce ContextErlangLite, a kernel untyped language for distributed, concurrent computation. It supports
context adaptation through context-aware agents, variation activation and remote variation transmission. This core
language allows one to reason about the core features of ContextErlang applications, ignoring irrelevant implemen-
tation details. This flexibility can also be used to apply the founding principles of ContextErlang to other languages
based on the Actor model: we will discuss this aspect in Section 5.2 by presenting a new COP language implemented
on top of Scala.6

The formal semantics for ContextErlangLite is provided in terms of transitions between system configurations.
System configurations model the possible evolutions of a set of nodes executing a given program. A ContextErlang
application is made, at run time, by a set of processes holding a state and waiting for incoming messages.

Related relevant work in the field of formal semantics for the COP paradigm is discussed in Section 6. Because of
the concurrent nature of ContextErlang, the approach we present hereafter was mainly influenced by non-COP core
languages, such as the formal semantics of CoBoxes [26] and the work of DeBoer et al. on futures [27].

Conventions used in the formalization. Ordered sequences are indicated with overlined letters when they are comma-
separated, as in functions parameters: a = a1, ... an. Space-separated ordered sequences are indicated with the Kleene
star operator “∗”. The empty sequence is indicated as ∅ while ε indicates unassigned (null) values. The · operator is
used to indicate the syntactic concatenation of sequences. In the semantics of the language, we use · to stress the fact
that sequences are ordered, as in the case of message queues. Otherwise, ∪ is used to merge sequences when the order
does not matter. We use the operator ∈ to indicate the presence of an element in a sequence: a ∈ Seq = a1a2 . . . ak iff
∃i : 1 ≤ i ≤ k, a = ai.

We define our formal framework in terms of changes between node configurations, agent configurations and
system configurations. When the distinction is clear from the context, we use the terms agent/node/system and agen-
t/node/system configurations interchangeably.

4.1. Syntax

Figure 10 shows the abstract syntax of the ContextErlangLite. Starting from the given syntax, other constructs can
be added as usual. A program P is a sequence of node declarations, starting with the declaration of the main node.
Each node declaration explicitly states the name n of the node and a sequence of module declarations MlDec the node
is aware of. The main node has a special role at system startup (Section 4.4). For this reason its body, besides module
declarations, contains an expression mainexp that triggers the entire computation.

A module declaration can be a callback cml declaration or a variation vml declaration. Both, after the callback

or variation keyword, consist of a name and a set of method declarations B. Expressions include the let operator,
values v, variables x, synchronous and asynchronous method invocations e.m(e) and e!m(e). Expressions include also
the creation of a new agent newProc(cml, e) with a callback module cml on a node which results from evaluating a
given expression e. The expression e1; e2 is syntactic sugar for let x = e1 in e2 with x in FV(e2), where FV(e) is
the set of free variables in the expression e. Other expressions are context-related: the proceed primitive for calling

6http://www.scala-lang.org/

14

Prog ::= MainNode Node∗ program

MainNode ::= node n = { MlDec∗ mainexp } main node declaration

Node ::= node n = { MlDec∗ } node declaration

mainexp ::= e main expression

MlDec ::= variation vml{ B∗ } variation declaration

| callback cml{ B∗ } callback declaration

B ::= m(x){e} method declaration

e ::= let x = e in e let operator

| v value

| x variable

| e1; e2 expression sequence

| selfNode reference to local node

| e.m(e) synchronous method call

| e!m(e) asynchronous call

| newProc(cml, e) remote agent creation

| proceed(e) : m(x) : vml proceed call

| selfChange(e) variation change

| varSend(e1, e2) variation transmission

v ::= n | vml | cml values

x ∈ variable names, cml ∈ callback module names,
vml ∈ variation module names, m ∈ method names, n ∈ node identifiers

Figure 10: The abstract syntax of ContextErlangLite.

Conf ::= N | P | Conf Conf | ε system configuration

N ::= 〈L, n〉N node configuration

P ::= agent configuration

〈self, base, A,M, sender, active, susp〉P
msg ::= 〈p,m(v)〉M | 〈m(v)〉M message

p ::= 〈w, n〉R agent reference

self ::= p agent self reference

sender ::= p | ε agent waiting for answer

active ::= e | ε agent’s active task

susp ::= e | ε agent’s suspended task

base ::= cml agent’s callback module name

ml ::= cml | vml module name

e ::= ... expressions

v ::= ... | p | ok values

L ::= ml∗ loaded module names

M ::= msg∗ inbox message queue

A ::= vml∗ active variation names

cml callback module name

vml variation module name

w node agent reference

n node reference

m method name

Figure 11: The semantic entities of ContextErlangLite.

15

the next eligible function in a variation stack, selfChange(e) for the activation of a variation sequence on an agent,
varSend(e1, e2) for sending a variation to a remote node.

Values that can be explicitly used in a program are node names n, variation names vml, and callback names cml.
Following the convention in [28], underline phrases are inserted by elaboration and are not part of the surface syntax.
For example, in the expression proceed(e) : m(x) : vml the annotations of the method m(x) and of the variation
module vml, in which proceed is called, are added statically by a code processor and are not part of the core language.
This convention is adopted to simplify the semantic rules. We assume that a correct ContextErlangLite program
respects the following constraints:

• Module names for callbacks and variations cml and vml in module declarations are unique.

• Method signatures (method name and parameters arity) are unique within a module declaration.

• Node names in node declarations are unique.

• Node names used in the program are valid node names, i.e., they are names of declared nodes.

4.2. Semantic entities

This section introduces the semantic entities used to describe the behavior of the system. A configuration Conf is
a sequence of node and agent configurations. Therefore, the top-level configuration is a snapshot of the whole system.
A node configuration is a record 〈L, n〉N, where L is a sequence of loaded modules and n is a node identifier.

An agent configuration is a tuple 〈self , base, A,M, sender, active, susp〉P; self is the (unique) reference to the agent
and is represented as a tuple 〈w, n〉R, which identifies the agent with a unique identifier w and a reference to the node
itself n; base is the name of the callback module, which constitutes the basic behavior of the agent; A is the sequence
of names of the active variations that modify the basic behavior of the agent; M is the inbox of the agent, i.e., a
sequence of incoming messages; sender is a reference to the agent that requested a method execution to this agent and
is waiting for a reply; active is the currently active task (i.e., the code in execution); susp is a suspended task. Both the
active and the suspended tasks are evaluation contexts, with the hole filled with the next expression to be evaluated.

There are two types of messages: 〈p,m(v)〉M and 〈m(v)〉M, where m(v) is the method call with the actual parameters
and p is a reference to the sending agent. The former, which includes the sender’s reference, stands for a synchronous
call; the latter instead stands for an asynchronous call. The definition ml ::= cml | vml allows callback modules and
variation modules to be treated in a uniform way. Expressions are the same defined in the syntax of the language.
Values can be agent references p and the ok return value in addition to the values already defined in the syntax.

Evaluation contexts. We use evaluation contexts for a compact representation. In context reduction semantics, a
term is decomposed into a reduction context and a redex, and semantic rules reduce the redex [29]. This allows for
avoiding to provide a partitioning algorithm, relying on as few implementation details as possible. Evaluation contexts
are terms with an empty part � in a certain position. We indicate with e�[e′] the replacement of the hole � in e with
the expression e′.

e� ::= � | let x = e� in e | e�!m(e) | v!m(v, e�, e) |
e�.m(e) | v.m(v, e�, e) |
newProc(e�, e) | newProc(v, e�) |
proceed(v, e�, e) : vml : m(x) |
selfChange(v, e�, e) |
varSend(e�, e) | varSend(v, e�)

In our syntax, redexes can only be expressions, so holes appear only at positions where expressions are expected.

Auxiliary predicates and functions. To simplify the semantic rules, we introduce some auxiliary predicates and func-
tions. The rules shown in Figure 12 define predicates and functions operating on the static code of the program. The
rules [callback declared in node], [variation declared in node] and [module declared in node] define the predicate
∈D which holds if a module is declared inside a node. The [method body] rules define the mbody(cml,m(v)) function
which returns the method body for a call m(x), searching it in a variation module with name cml. A similar rule is

16

node n = { ... callback cml { ... } ... }
cml ∈D n

[callback declared in node]

node n = { ... variation vml { ... } ... }
vml ∈D n

[variation declared in node]

vml ∈D n ∨ cml ∈D n

ml ∈D n
[module declared in node]

|v| = |x|
variation vml {... (x)e ...}
mbody(vml,m(v)) = (x)e

|v| = |x|
callback cml {... (x)e ...}
mbody(cml,m(v)) = (x)e

[method body]

|v| = |x|
variation vml {... (x)e ...}

m(v) ∈D vml

|v| = |x|
callback cml {... (x)e ...}

m(v) ∈D cml

[method ownership]

mli : � j (m(v) ∈D ml j, j < i, 1 ≤ i ≤ n, 1 ≤ j ≤ n)
getml(ml1 ... mln, m(v)) = mli

[module selection]

Figure 12: Auxiliary predicates and functions that extract information from the program code.

given for callback modules. The [method ownership] rules define a predicate stating that a method eligible for man-
aging a given call is defined inside a certain module. The rule [module selection] defines the function getml that given
a sequence of module names ml1 ... mlk and a method call m(v), returns the name of the first module in the sequence
implementing a method compatible with the signature of the call. This function is used for method dispatching over
the sequence of the active variations of an agent.

4.3. Rules

The dynamic semantics of ContextErlangLite is defined in terms of a small-step reduction relation on configu-
rations of agents and nodes. Rules are applied to (sub)configurations. The arrow notation in the rules means that a
(sub)configuration reduces in one step to another (sub)configuration. Matches of rules on configurations are modulo
associativity and commutativity of node configurations and agent configurations. Hereafter, the semantic rules of
ContextErlangLite are analyzed in detail. Groups of rules that conceptually participate in the same semantic operation
and whose activation is usually related are described together. For terms which can assume the value ε we use the
notation xε as a shorthand for x ∪ ε.
Let. The [let] rule expresses the substitution of variables within expressions in other expressions. We use e2[e1/x] to
denote the standard capture-avoiding substitution of the expression e1 for the free variable x in the expression e2

Agent creation. The newProc(cml, n) command creates a new agent with callback module name cml on the node n.
newProc(cml, n) is reduced to a reference p to the new agent (rule [new proc]). The created agent belongs to the node
n. If not already loaded, the module name cml is added to the names of loaded modules of the node n (lazy loading).
The new agent is initialized with an empty set of active variation names and an empty message queue. The [self node]
rule allows an agent to obtain a reference to the node where it is running and can be used by an agent to spawn another
agent on the same node.

Method call. In the case of a synchronous method call, an agent sends a message to another agent, which adds it to
its inbox queue [sync mth call]. Synchronous call messages contain the reference to the sender (for the delivery of the
response), and the call itself i.e., the name of the method with the actual parameters. The current task of the sender

17

〈p, cml, A,M, pε1, e�[let x = v in e], ε〉P
→ 〈p, cml, A,M, pε1, e�[e[v/x]], ε〉P

[let]

L′ = L ∪ {cml2}, cml2 ∈D n2 w fresh in n2 p2 = 〈w, n2〉R
〈p1, cml1, A,M, pε3, e�[newProc(cml2, n2)], ε〉P 〈L, n2〉N

→ 〈p1, cml1, A,M, pε3, e�[p2], ε〉P 〈p2, cml2,∅,∅, ε, ε, ε〉P 〈L′, n2〉N
[new proc]

p = 〈w, n〉R
〈p, cml, A,M, pε1, e�[selfNode], ε〉P
→ 〈p, cml, A,M, pε1, e�[n], ε〉P

[self node]

msg = 〈p1,m(v)〉M
〈p1, cml1, A1,M1, pε3, e�[p2.m(v)], ε〉P 〈p2, cml2, A2,M2, pε4, eε2, eεsusp〉P

→ 〈p1, cml1, A1,M1, pε3, ε, e�[p2.m(v)]〉P 〈p2, cml2, A2,msg · M2, pε4, eε2, eεsusp〉P
[sync mth call]

msg = 〈m(v)〉M
〈p1, cml1, A1,M1, pε3, e�[p2!m(v)], ε〉P 〈p2, cml2, A2,M2, pε4, eε2, eεsusp〉P
→ 〈p1, cml1, A1,M1, pε3, e�[ok], ε〉P 〈p2, cml2, A2,msg · M2, pε4, eε2, eεsusp〉P

[async mth call]

getml(A · cml,m(v)) = ml mbody(ml,m(v)) = (x)e
〈p1, cml, A,M · 〈p2,m(v)〉M, ε, ε, ε〉P
→ 〈p1, cml, A,M, p2, e[v/x], ε〉P

[sync exec]

getml(A · cml,m(v)) = ml mbody(ml,m(v)) = (x)e
〈p1, cml, A,M · 〈m(v)〉M, ε, ε, ε〉P
→ 〈p1, cml, A,M, ε, e[v/x], ε〉P

[async exec]

〈p1, cml1, A1,M1, p2, v1, ε〉P 〈p2, cml2, A2,M2, pε , ε, e�[p1.m(v2)]〉P
→ 〈p1, cml1, A1,M1, ε, ε, ε〉P 〈p2, cml2, A2,M2, pε , e�[v1], ε〉P

[sync return]

Conf 1 → Conf ′1
Conf 1 Conf 2 → Conf ′1 Conf 2

[subconf]

Figure 13: The formal semantics of ContextErlangLite.

18

A = vml1 ... vmli ... vmlk 1 ≤ i ≤ k |v| = |x|
getml(vmli+1 ... vmlk cml,m(v)) = ml mbody(ml,m(v)) = (x)e

〈p, cml, A,M, pε1, e�[proceed(v) : m(x) : vmli], ε〉P
→ 〈p, cml, A,M, pε1, e�[e[v/x]], ε〉P

[proceed]

A′ = vml p = 〈w, n〉R L′ = L ∪ {ml ∈ vml | ml ∈D n, ml � L}
〈p, cml, A,M, pε1, e�[selfChange(vml)], ε〉P 〈L, n〉N

→ 〈p, cml, A′,M, pε1, e�[ok], ε〉P 〈L′, n〉N
[self var change]

n1 � n2 p = 〈w, n1〉R vml ∈D n1 ∧ vml ∈ L1 L′2 = L2 ∪ vml

〈p, cml, A,M, pε3, e�[varSend(vml, n2)], ε〉P 〈L1, n1〉N 〈L2, n2〉N
→ 〈p, cml, A,M, pε3, e�[ok], ε〉P 〈L1, n1〉N 〈L′2, n2〉N

[variation sending]

Figure 14: The formal semantics of ContextErlangLite: rules associated with context-awareness.

is placed in the suspended task field, while the sender is blocked waiting for a response. In the case of a synchronous
call ([sync mth call]), the message contains only the method to call and the actual parameters. The message is added
to the queue of the receiver; the sender immediately returns and can continue its computation.

When an agent is idle (i.e., the last three fields of the agent record are ε), a message can be removed from the
incoming queue to be served. In the case of a synchronous message [sync exec], the sender of the message is added to
the waiting agent field. Formal parameters are replaced with the actual parameters, and the expression in the method
body is added to the active task field. In the case of an asynchronous message [async exec], since no answer is
expected by the sender, the waiting agent field remains empty. After the parameter substitution, the expression in the
method body is added to the active task field.

The rule [sync return] is triggered when the receiving agent has finished the computation associated with the mes-
sage. In that case, the reference to the waiting agent is removed from the receiver. The sender’s original computation
is reactivated by moving it from the suspended task field to the active field and reducing the method call to the return
value computed by the callee.

Subconfiguration reduction. Reduction applies to a subconfiguration by the rule [subconf]. Rules application on a
partial configuration involves the reduction of the other partial configurations up to the top level configuration.

Proceed. The [proceed] rule formalizes the semantics of proceed, which calls the next eligible method in the active
variations sequence. A proceed call from inside a method m belonging to the variation of name vmli, works as follows.
The sequence of the variations following vmli in the sequence of the active variations names of the agent concatenated
with the callback module name vmli+1 ... vmlk cml is searched for a method with the same signature of m. The
retrieved method is then executed binding the actual parameters of the proceed call. Note that the proceed primitive
is semantically different with respect to the standard method calls, since it is synchronous and it is immediately
executed without interaction with the inbox queue of the called agent.

Variation change. An agent can change the sequence of its own active variations by invoking the selfChange prim-
itive. Like proceed, this primitive does not add a message to the inbox of the agent, but is immediately executed.
The variation names list in the call becomes the new sequence of active variations in the agent [self var change]. The
names of the variations to be activated must be in the set of the already loaded modules names L of the node the agent
belongs to. Otherwise, the variations are required to be in the declarations of the node. In this case, they are (lazily)
loaded by adding them to L.

As we already noted, the formal semantics includes only the immediate version of functions for variation ma-
nipulation. However, in practical applications it is often required that a synchronous or asynchronous request for a

19

variation change is sent from another agent to the agent to be affected by the change. In the semantics, this can be
easily achieved by adding a varChange(vml) method to the callback module of the receiving agent. This method
simply executes the selfChange(vml) operation.

Variation sending. The varSend primitive allows an agent on a node n1 to add to a remote node n2 a variation, which
was previously unknown to n2, i.e., which is not in the declarations D of n2 [variation sending]. The variation name
is immediately added to the set of loaded module names L of n2. This behavior formalizes eager code loading.

4.4. Program Execution

The execution of a ContextErlangLite system starts with an initial agent running alone in the main node. All the
other nodes contain no active agents. The computation is triggered by the initial agent spawning new agents, possibly
on other nodes. The initial system configuration is a set of nodes N1 ... Nk and an initial agent P1:

Conf = N1 N2 ... Ni ... Nk P1

Each node Ni = 〈L, ni〉N is associated with a node declaration in the program, where ni is the node identifier stated in
the declaration. N1 is the main node and n1 its identifier. The initial configuration of each node has an empty set of
loaded module names L.

Ni = 〈∅, ni〉N ∀i : i ∈ 1 ... k

The initial agent P1, whose unique identifier is w1, starts the computation in node n1. To keep the notation uniform
with the other agents, the callback module field is initialized with a fictitious name main, which however is never used
in the execution.

P1 = 〈p1, main,∅,∅, ε,mainexp, ε〉P p1 = 〈w1, n1〉R
The inbox is initialized to the empty set, the sender field and the susp field are set to ε. The expression mainexp is set
as the active task of the process, triggering the all subsequent computation.

4.5. Properties

In this section we consider our guiding principles for managing context in a concurrent and distributed environ-
ment, presented in Section 3.4, and show that they are enforced by the semantics. For convenience, we start from
the second principle, i.e., Agent authority, that states an agent retains ultimate authority on its current context. We
formalize it as the following statement:

Statement 1. Agent authority.
∀ w, n, cml, A, A′,M,M′, pεsusp, p

′
εsusp,Con f ,Con f ′, e, eεsusp, e

′, e′εsusp

if �e�, vml such that e = e�[selfChange(vml)]
and 〈〈w, n〉R, cml, A,M, pεsusp, e, eεsusp〉P,Con f → 〈〈w, n〉R, cml, A′,M′, p′εsusp, e

′
ε , e
′
εsusp〉P,Con f ′

then A = A′.

This result is a direct consequence of the fact that in the semantics the only way of modifying A is by [self var change].

The first principle, i.e., Non interference, states that the context of a running computation cannot be altered by a

contextual message. We formalize it as in the following statement:

Statement 2. Non interference.
∀ w, n, cml, A, A′,M,M′, pεsusp, p

′
εsusp,Con f ,Con f ′, e, eεsusp, e

′, e′εsusp

if �e�, vml such that e = e�[selfChange(vml)]
and 〈〈w, n〉R, cml, A,M · msg, pεsusp, e, eεsusp〉P,Con f → 〈〈w, n〉R, cml, A′,M′, p′εsusp, e

′
ε , e
′
εsusp〉P,Con f ′

where msg is either 〈p2,varChange(vml)〉M or 〈varChange(vml)〉M
then A = A′.

Proof. We know that if e � ε, then the computation is still “running”. Hence, according to the semantics, we can
apply neither [sync exec], nor [async exec]. We also know that e does not contain any selfChange subterm, so we
cannot apply [self var change]. Therefore, A′ = A.

20

4.6. Discussion

The development of ContextErlang’s formal semantics is a key contribution of this work. As we showed above,
it allowed us to reason about all the corner cases in the execution of ContextErlang programs. In particular, the
critical aspect is the consistency of the execution of ContextErlang programs across the change of variations. The
formalization shows that execution of adapted code and behavioral changes do not interfere.

In addition, the semantics was an invaluable tool to reason about the implications of our design choices. For
example, the need for immediate functions for variations activation (Section 3.4) firstly emerged in the development
of the semantics. Interestingly, this issue then practically arose in the development of ContextChat and we finally
formulated it as the agent authority principle stated in the previous sections.

Finally, to get more confidence on the soundness of our formalization, we used Maude [30] to develop an ex-
ecutable prototype. Tool support helped us to test the semantics, checking its correct execution. A semantics with
evaluation contexts, such as the one we introduced here, requires some machinery to be properly encoded in rewriting
logic [31]. Existing tools provide context evaluation out of the box, such as PLT Redex [32] and K-Maude [33].
However we preferred to apply some simplifications and remove evaluation contexts. This choice is motivated by
efficiency considerations and by the possibility of fine-grain tuning in anticipation of the use of our prototype for veri-
fication, a topic that has been already explored in Maude [34]. For example, we chose an imperative style with storage
for the execution of method bodies and a storage stack for nested proceed calls in a way that resembles function calls
in assembly languages. At the price of a less elegant model and of some expressive limitations, this approach allowed
us to get rid of evaluation contexts.

5. Validation

In this section, we discuss how we empirically validated ContextErlang. First, to demonstrate that ContextErlang
is effective in the development of real-world applications we describe here two prototypes: one is the ContextChat
extensively presented in the previous sections, and the other is an autonomic storage server that will be analyzed
next. Second, to show that the design of ContextErlang is applicable in general to languages supporting the Actor
Model, we implemented ContextScala, a COP language based on Scala. Finally, to provide empirical evidence of its
usability, we studied the critical performance aspects of ContextErlang and ContextScala through a micro-benchmark
and compared performance with other COP languages. Then we reimplemented the autonomic storage server in plain
Erlang and compared its performances with the ContextErlang version.

5.1. The Adaptive Storage Server Case Study

The second case study presented in this paper concerns the development of an adaptive storage server. The storage
server is an autonomic application providing storage a space for generic resources such as web pages or serialized data
structures. The application behaves like a key-value map: keys allow one to retrieve resources or modify their value.
Resources can be stored in memory or on disk. Autonomicity ensures that the most requested entities are moved into
memory to reduce service time. The disk is used for other resources to avoid excessive memory consumption.

Each resource is implemented as a context-aware agent, which reacts to messages like set value and get value.
These details are hidden from the user who interacts only with an API module. The implementation of each resource
with an agent is normal in Erlang OTP due to the extremely lightweight Erlang processes [35]. This makes the
application scalable by simply spawning agents on several machines, because Erlang manages remote messaging in a
transparent way. The on disk and the in memory variations can be dynamically activated on each agent. An optional
logging variation provides a trace of the system execution. Autonomic behavior is implemented in a decentralized
fashion: each agent migrates the resource to memory depending on the frequency of the requests it receives.

The development of the application confirmed the validity of the design choices of ContextErlang. Since the
on disk and the in memory variations are mutually exclusive, they can be managed through a switch slot of the context
ADT. The logging variation occupies an activatable slot. The support for initialization and shutting down of variations
(Section 3.3) is required to automatically initialize the needed files when the on disk variation is activated and to
move the resource in memory when it is deactivated. Since each agent adapts autonomously, the in memory variation
activation is performed by the agent itself through the immediate API (Section 3.3). Note that moving the autonomic
capabilities to a centralized engine would require the adaptation to be driven by context-related messages.

21

class OnDisk extends Variation[OnDisk] {

def setValue(i: Any): Any = { ... }

def getValue(): Any = { ... }

...

}

class InMemory extends Variation[InMemory] {

def setValue(i: Any): Any = { ... }

def getValue(): Any = { ... }

...

}

class ResourceAgent() extends ContextAgent {

setActiveVariations(List(’OnDisk))

}

object StorageServer extends App {

val system = ActorSystem("StorageServer")

def store(key: Key, value: Any): Any = {

val actor = system.actorFor(key)

sendMsg(actor,setValue(value))

}

def lookup(key: Key) = { ... }

...

}

case class setValue(i: Any) extends Msg[setValue]

case class getValue() extends Msg[getValue]

-module(on_disk).

handle_call({set,Value}, From, State) -> ...

Ret;

handle_call({get}, From, State) -> ...

{reply, Reply, State1}.

...

-module(in_memory).

handle_call({set,Value}, From, State) -> ...

Ret;

handle_call({get}, From, State) -> ...

{reply, Reply, State1}.

...

-module(resource_agent).

-behavior(context_agent).

start() ->

gen_server:start_link({local, ?MODULE},

?MODULE, [], []).

...

-module(storage_server).

store(Key,Value) ->

resource:set(Key,Value).

lookup(Key) ->

resource:get(Key).

...

Figure 15: Fragments of the autonomic storage server in ContextScala (left), and their ContextErlang counterparts (right).

5.2. Validating the Design: ContextScala

To demonstrate that the design principles of ContextErlang are applicable in general to actor-based languages, we
implemented ContextScala, a COP language that applies the concepts of ContextErlang to the Scala programming
language. We implemented ContextScala on top of the Akka7 framework. Akka is a toolkit for distributed and highly
concurrent fault-tolerant applications in Scala. Like the OTP platform, Akka is based on the Actor model, provides
means to distribute actors on different hosts, monitor their behavior and obtain notifications of failures.

Figure 15 (left) shows part of the autonomic storage server implemented in ContextScala and the respective Con-
textErlang counterparts (right). Clearly, ContextScala applications look different from ContextErlang applications.
First, the language abstractions of ContextErlang, originally designed for Erlang, have to be mapped to Scala. Sec-
ond, the design of ContextScala needs to comply with the Akka design principles. More generally, our goal in the
development of ContextScala was to demonstrate the generality of the ContextErlang model, not to maximize the
similarity with the Erlang implementation and syntax. Here, we outline the design of ContextScala and summarize
the main differences with ContextErlang.

Variations are modeled as classes that extend the Variation[T] class. Like functions in ContextErlang variation
modules, methods in ContextScala variations implement chunks of the variation’s functionality. For example, in
Figure 15, the setValue and the getValue methods in the OnDisk class implement the behavior of the context-aware
agent when the disk is used as a storage. An advantage of this design is that variations can be instantiated and
store local state. However, this feature comes at the cost of creating an instance of the variation for each agent.

7http://akka.io

22

ContextErlang and ContextScala differ in the way they represent messages. In OTP and ContextErlang, messages are
modeled as tuples. According to the Akka best practices, instead, in ContextScala messages are encoded as Scala
case classes, which are immutable, and can be pattern matched. Figure 15 shows the setValue and the getValue

messages used to assign – respectively, store – a value into an agent of the autonomic storage. ContextScala agents
inherit from the ContextAgent class, which provides the functionalities of context-aware agents, including reacting
to contextual messages and dispatching among variations. Internally, ContextAgent extends akka.actor.Actor, the
standard actors in the Akka toolkit. As a result, ContextScala context-aware agents can interoperate with the rest of
the Akka infrastructure in the same way ContextErlang context-aware agents are compatible with the OTP.

The implementation of ContextScala is quite different from ContextErlang. Erlang is a dynamically typed lan-
guage, while Scala is statically typed, which makes it harder to implement a custom dispatching mechanism for
method calls. Internally, ContextScala relies on reflection to overcome the restrictions imposed by the type system.
Obviously, this comes at the cost of reducing safety. For example, run time casts are needed to refine the type of the
return value for variations methods. We note, however, that the Akka actor system already weakens safety compared
to traditional applications, since messages are pattern-matched at run time and the type of the return value cannot be
checked statically.

Despite the obvious differences due to the underlying languages, ContextScala and ContextErlang share the same
key design principles and formal semantics. In ContextScala, like in ContextErlang, developers shape adaptive ap-
plications around the concept of context-aware agents and, like in ContextErlang, adaptations are organized through
variations that are activated and deactivated dynamically. Furthermore, ContextScala enforces the agent authority and
the non interference principles, thanks to the same design inherited from ContextErlang.

5.3. Performance

Our implementation introduces a performance overhead, because a function call requires to be dispatched over
possibly several active variations. ContextErlang is a prototype and a wide space for optimization is available, e.g.
hashing the function lookup. However our evaluation shows that the approach is feasible and already usable even in
the absence of specific optimizations. All the tests we report hereafter were performed on a laptop equipped with an
Intel Core 2 Duo T9500 2.60GHz, 4GB RAM, and GNU/Linux OS. Concerning the languages, the version numbers
are: Erlang R13 hipe, Ruby 1.8.7, ContextR 1.0.2, JavaScript Chrome 16.0.912.63, ContextJS Lively Kernel 2, Python
2.7, ContextPy 1.1, PyContext 1.0, SBCL 1.0.45.0, ContextL 0.61, Scala 2.10.

Microbenchmark. We compare the overhead introduced by ContextErlang with respect to other COP implementa-
tions [36]. The purpose is to compare the message dispatching slowdown introduced by each COP extension. We
decided to keep our methodology as simple as possible, following the approach elaborated in [37] for AOP micro-
benchmarking: compare methods performance without aspects (i.e., a non-advised method) and with aspects de-
ployed.

We assume a message delivery in a non-layered method, as a reference (Table 1, second column). Then we
evaluate the time required to dispatch a layered method with 0 to 5 active proceeding layers/variations (columns 3 to
8). Each method and each partial method increments a global variable (in the ContextErlang benchmark we used an
agent-local variable, since Erlang has no shared state by design). All benchmarks are executed 105 times taking the
mean over 10 executions, with a complete dry run (therefore 106 executions) to achieve steady state of the runtime.
Information about warm-up times for each implementation is not easy to find. However benchmarks are running for
minutes, and we observed a x10 time factor from 105 to 106 executions, increasing our confidence on the steady state
of the runtimes. In the case of ContextErlang, COP functionalities are implemented in the OTP library, which adds
many time-consuming operations due to the built-in fault-tolerance support. Therefore, it would be meaningless to
compare message sending to a ContextErlang context-aware agent with a basic function call. For this reason, we
compare it (Table 1, line 2, column 2) not only with a pure Erlang function call (FC), but also with a message to a
pure Erlang agent (PA), and with a message to a standard gen server OTP agent. Figure 16 shows the ratio between
the time required to call a layered method and a basic method for various languages (note the logarithmic scale). For
ContextErlang we report the comparison with all the three cases.

Previous work [38] highlighted a huge performance impact of COP and motivated research on possible optimiza-
tions [39]. Our evaluation confirms this result. Our results also show that ContextErlang introduces a non-negligible
overhead, which, however, is not dissimilar from other COP languages. For example, a ContextErlang message to

23

Language Basic Call 0 1 2 3 4 5
ContextErlang 540.65 (OTP) / 90.58 (PA) / 9.38 (FC) 815.33 1071.14 1311.59 1531.77 1819.07 2074.73
ContextR 43.52 (Ruby) 768.58 1768.58 2768.58 3768.58 4768.58 5768.58
ContextJS 0.40 (JavaScript) 85.90 158.60 211.00 256.80 299.20 338.30
ContextPy 24.22 (Python) 406.85 661.01 873.50 1163.31 1397.62 1623.49
PyContext 24.48 (Python) 410.66 854.66 1265.21 1668.65 2073.56 2472.16
ContextL 2.2 (Common Lisp) 2.50 3.50 4.30 5.30 6.40 7.40
ContextScala 301.25 (Akka) 502.30 795.03 980.15 1120.13 1302.18 1521.96

Table 1: Performance of COP languages in the microbenchmark. All values are in milliseconds.

 1

 10

 100

ContextErlang
 Vs OTP

ContextErlang
 Vs Erl. Agent

ContextErlang
 Vs Erl. Function

ContextR
 Vs Ruby

ContextJS
 Vs JavaScript

ContextPy
 Vs Python

PyContext
 Vs Python

ContextL
 Vs Common Lisp

ContextScala
 Vs Akka

Pe
rf

or
m

an
ce

 s
lo

w
do

w
n

Variations
0
1
2
3
4
5

Figure 16: Performance of layered methods compared to the basic methods in various COP languages.

a context-aware agent is approximately 87 times slower than a function call in Erlang and 1.5 times slower than a
message sent to a gen server standard OTP agent. Note that Figure 16 should be read carefully. For example, results
of ContextJS are due to the aggressive optimization of JavaScript compiler and VM which makes basic methods ex-
tremely efficient [20]. This leads to the apparently poor performance of the ContextJS COP implementation compared
to the basic language in Figure 16. Nevertheless, ContextJS is among the fastest COP extension in our test (Table 1).

To overcome the limitations of micro-benchmarking, we estimated the overhead of ContextErlang in the adaptive
storage server. We implemented the autonomic storage server in plain Erlang. Variations are simulated by if chains
switching between different behaviors. Active behavioral variations are stored in each agent’s state. Since the logging
functionality introduces a uniform overhead, we left it off. In the experiment, each resource is initially created, it is
requested 10 times, and then deleted. This is equivalent to starting an agent, delivering 10 messages, and shutting
down the agent. We tuned the autonomic behavior so that the resource is initially stored on disk and after the first 2
requests is moved to memory. The measures were taken by repeating this process on all the resources for a variable
number of resources, from 1 up to 1000. For each run we took the mean among 10 executions. Figure 17 shows the
results. To make the graph more readable we plot the trend of the two executions as the mean over 100 values. The
analysis shows that the significant overhead detected by the micro-benchmark becomes almost negligible in a real
application.

6. Related Work

Our work touched several research areas. For each of them, in the sequel, we briefly discuss related work.

Self-adaptive software. An overview of self-adaptive software, the existing technology and the open research chal-
lenges can be found in [2]. According to that work, adaptation mechanisms can be classified along the artifact &

granularity analysis direction, which include parameters, method, aspect, component, application, architecture, sys-
tem and data center. In that classification, COP abstractions roughly lie at the method/aspect granularity level. The
problem of dynamic software adaptation has been extensively tackled from a software architecture standpoint [4, 5, 6].
Architecture-based adaptation frameworks include Rainbow [40] and the Fractal component system [41]. McKinley

24

Figure 17: Performance comparison for the autonomic storage server.

et al. [9] analyze the features required by self-adaptive software and identify AOP, metaprogramming and component-
based architecture as enabling technologies. Special-purpose programming paradigms like metaprogramming and
AOP have been employed for a long time by researchers to support self-adaptive software. An analysis and compari-
son of metaprogramming, AOP and COP in this context can be found in [36].

Context-oriented programming. COP has been recently explored, starting from the pioneering work on ContextL
[16, 23] based on the CLOS metaobject protocol. Over the time, many COP extensions have been developed for
different languages such as Python, Smalltalk, Ruby, JavaScript and Groovy. This effort has been extended to less
dynamic languages, in which COP extensions are more difficult to implement due to the limited reflective capabilities,
such as Java [7, 15, 19, 21, 42]. A comparison of the existing COP languages with a performance evaluation of the
available solutions can be found in [38]. Our recent work [8] surveys the available solutions and compares them from
a software engineering standpoint.

ContextErlang [1, 22] is in the COP tradition since it supports modularization, dynamic activation, and combina-
tion of behavioral variations. It differentiates from most COP approaches, since behavioral variations are activated
on per-agent bases through context-related messages rather than in a dynamic scope. ContextErlang variations are
similar to COP layers. The difference is that layers usually contain partial definitions associated with different classes.
While nothing prevents a ContextErlang variation from containing partial definitions referring to different agents, this
is scarcely used in applications, since the variation must be activated singularly on each agent. Therefore a Contex-
tErlang variation is usually associated with a specific agent and contains the partial definition for that agent.

Ambience is a COP language based on AmOS, an object system built on top of Common Lisp [43]. Ambience
– designed simultaneously with ContextL – is alternative approach to layer-based COP languages, leveraging multi-
methods dispatching and context objects. In [43] the authors recognize the need for variations activation by an external
monitoring thread. In Ambience the context – and therefore the active variations – is global and shared among all
the threads. A monitoring thread can asynchronously change the context of the whole application. In ContextErlang
each agent can adapt individually, as we believe that in certain scenarios this feature is required. For example, in the
ContextChat server, per-agent adaptation is crucial to adapt to each single client. As stated by the authors of Am-
bience, asynchronous activation exposes the system to the risk of behavioral inconsistency. ContextErlang enforces
consistency by design, avoiding that variation activations conflict with other computations (Section 3.3).

Event-based COP. The need for event-based composition and activation has been recognized as an emerging need
for COP in our previous work [44], in which we presented the initial implementation of ContextErlang as a promis-
ing solution. As already discussed (Section 2) Kamina et al. [21] also tackled this issue in the EventCJ Java COP
extensions.

Jcop [19] is a Java COP extension which introduces two constructs. Declarative layer composition allows to ex-
press variation activation declaratively through joinpoint quantification. Conditional composition activates variations

25

depending on a run time condition. So the developer is relieved from specifying variation activation programmatically
in the code. Jcop allows the compact representation of otherwise scattered with activation statements, a problem that
emerged in the development of ContextChat (Section 2). However, activation in Jcop is always dynamically scoped
and can lead to the problem of excessive adaptation propagation.

Aspect-oriented programming. COP has a certain degree of similarity with AOP [10], which may be viewed as a
general term indicating a family of approaches that support modularization of crosscutting concerns. The main con-
tribution of COP with respect to AOP is to provide specific abstractions for context adaptation. AOP can be indirectly
applied for the same purposes and some COP language implementations rely on AOP [21, 19, 42]. However, although
some AOP frameworks exist support dynamic aspect activation, such as Prose [45], AOP focuses on compile time
feature selection and combination, while the COP core concept is run time activation and combination of behavioral
variations. A detailed comparison of the two approaches can be found in [16, 19, 7].

Event-based programming. Event-driven or event-based programming is a programming paradigm in which the flow
of control is determined by events that can be triggered and listened according to the Observer pattern. This approach
is a contribution to address the problem of concerns not amenable to modularization along the main dimension of
decomposition. Implicit invocation (II) languages [18] offer a linguistic support for this mechanism, obtaining better
encapsulation of crosscutting concerns and decoupling from other code.

EScala [46] supports not only events that are imperatively triggered by the programmer, but also implicit events
that are transparently raised at method boundaries, in the style of AOP. Ptolemy [47] also combines ideas from AOP
and II languages. In Ptolemy code blocks are bound to events as closures, which can be executed inside the event
handler. Since basic behavior can be written in the closure and observers can execute code around the execution of
the closure, Ptolemy seems to be the II language that most resembles COP techniques.

Formal approaches in COP. Recently, researchers started investigating the use of formal models to study COP sys-
tems. Schippers et al. [48] present a semantics of layers using a delegation-based machine devoted to the modelling
of crosscutting concerns. Schippers et al. [49] use a graph-transformation approach for the operational semantics
of a delegation-based OO language with actors and layer activation. Kamina et al. [21] propose to describe a COP
system as a finite state automaton. States model context conditions of the system and arcs model context transitions.
The automaton is translated into Promela and verified with the SPIN model checker [50]. The works by form Clarke
and Sergey [51] and by Hirschfeld on ContextFJ [52] describe core calculi that extend Featherweight Java [53] to
encompass COP abstractions. A further extension of ContextFJ also admits changes in the interface of objects [54].
To the best of our knowledge, none of those formalization takes into account distribution and concurrency, as Contex-
tErlangLite does.

Other language-level techniques. Subjective dispatch [55] adds a dimension to the receiver-based method dispatch of
OO languages, considering also the sender in the dispatch mechanism. COP conceptually operates in a similar way,
taking into account the context as a dispatching dimension. Feature oriented programming (FOP) targets crosscutting
concerns with the goal of synthesizing programs in software product lines [56] from single units of functionality
conventionally called features. Features are selected and combined at compile time while COP variations, due to the
volatile nature of the context, are activated and combined dynamically.

Roles describe objects’ state and behavior in a certain context [57]. Pradel and Odersky [58] propose Scala Roles,
a library for Scala that provides support for augmenting objects with roles. As in ContextScala, new functionalities
can be added at run time. In contrast to Scala Roles, where roles apply to objects, in ContextScala, variations apply to
Context-aware agents, which also encapsulate Actor-like concurrency.

Several modularization approaches have been proposed in literature, such as traits [59] and mixins [60], which
offer an alternative to the modularization mechanism provided by classes. Multiclass-granularity solutions include
mixin layers [61] and delegation layers [62]. Compared to COP, these approaches focus on composition of function-
alities and not on activation and deactivation of behavioral variations.

26

7. Conclusions

In this work, we presented ContextErlang, a COP language that supports several features commonly required
by adaptive systems. The design of ContextErlang integrates dynamic adaptation and modularization of behavioral
variations with asynchronous activation and distribution. In addition, ContextErlang supports unforeseen adaptation
and variation constraints – a way to discipline dynamic activation of multiple variations. The key design decision
of ContextErlang has been to integrate the actor model with COP abstractions, a solutions which, to the best of our
knowledge, has never been proposed before. We provided an implementation that fits into the OTP, the de facto

standard for real-world Erlang applications. The paper also presented ContextErlang’s formalization with a core
calculus that specifies the exact semantics. Finally, it provided an extensive empirical assessment of its potential
benefits in the development of self-adaptive software.

Currently, programmers of adaptive systems leverage software architectures or design patterns to implement adap-
tation features. Some solutions also rely on language-level approaches for specific tasks. For example AOP is used
to intercept the program execution at certain joinpoints and redirect the control flow depending on the current con-
text [36]. We believe that addressing the requirements of adaptive software with a coherent language design can
encourage programmers of adaptive-systems to adopt language-level solutions and benefit of their expressivity, con-
ciseness and safety.

Acknowledgments

This research has been partially funded by the European Community’s IDEAS- ERC Programme, Project 227977
(SMSCom) and by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und
Forschung, BMBF) under grant No. 16BY1206E (Sinnodium).

[1] G. Salvaneschi, C. Ghezzi, M. Pradella, ContextErlang: introducing context-oriented programming in the actor model, in: Proceedings of the
11th annual international conference on Aspect-oriented Software Development, AOSD ’12, ACM, New York, NY, USA, 2012, pp. 191–202.

[2] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research challenges, ACM Trans. Auton. Adapt. Syst. 4 (2009) 14:1–14:42.
[3] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (2003) 41–50.
[4] P. Oreizy, N. Medvidovic, R. N. Taylor, Architecture-based runtime software evolution, in: ICSE ’98: Proceedings of the 20th international

conference on Software engineering, IEEE Computer Society, Washington, DC, USA, 1998, pp. 177–186.
[5] R. N. Taylor, N. Medvidovic, P. Oreizy, Architectural styles for runtime software adaptation, in: 3rd European Conference on Software

Architecture (ECSA), IEEE, 2009, pp. 171–180.
[6] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: 2007 Future of Software Engineering, FOSE ’07, IEEE Computer

Society, Washington, DC, USA, 2007, pp. 259–268.
[7] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming, Journal of Object Technology 7 (2008).
[8] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: A software engineering perspective, Journal of Systems and

Software 85 (2012) 1801 – 1817.
[9] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, Composing adaptive software, Computer 37 (2004) 56–64.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of AspectJ, in: J. Knudsen (Ed.), ECOOP 2001
– Object-Oriented Programming, volume 2072 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2001, pp. 327–354.
10.1007/3-540-45337-718.

[11] A. Popovici, T. Gross, G. Alonso, Dynamic weaving for aspect-oriented programming, in: Proceedings of the 1st international conference
on Aspect-oriented software development, AOSD ’02, ACM, New York, NY, USA, 2002, pp. 141–147.

[12] A. Popovici, G. Alonso, T. Gross, Just-in-time aspects: efficient dynamic weaving for Java, in: Proceedings of the 2nd international
conference on Aspect-oriented software development, AOSD ’03, ACM, New York, NY, USA, 2003, pp. 100–109.

[13] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, JAC: A flexible solution for aspect-oriented programming in Java, in: A. Yonezawa,
S. Matsuoka (Eds.), Reflection, volume 2192 of Lecture Notes in Computer Science, Springer, 2001, pp. 1–24.

[14] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, L. Martelli, JAC: An aspect-based distributed dynamic framework (2004).
[15] M. Appeltauer, R. Hirschfeld, M. Haupt, H. Masuhara, ContextJ: Context-oriented Programming with Java, Information and Media Tech-

nologies 6 (2011) 399–419.
[16] P. Costanza, R. Hirschfeld, Language constructs for context-oriented programming: an overview of ContextL, in: Proceedings of the 2005

symposium on Dynamic languages, DLS ’05.
[17] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: A programming paradigm for autonomic systems, CoRR

abs/1105.0069 (2011).
[18] D. Notkin, D. Garlan, W. G. Griswold, K. Sullivan, Adding implicit invocation to languages: Three approaches, in: Object Technologies for

Advanced Software, First JSSST International Symposium, volume 742 of LNCS.
[19] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, K. Kawauchi, Event-specific software composition in context-oriented programming,

in: B. Baudry, E. Wohlstadter (Eds.), Software Composition, volume 6144 of LNCS, 2010.
[20] J. Lincke, M. Appeltauer, B. Steinert, R. Hirschfeld, An open implementation for context-oriented layer composition in ContextJS, Sci.

Comput. Program. 76 (2011) 1194–1209.

27

[21] K. Tetsuo, A. Tomoyuki, H. Masuhara, EventCJ: A context-oriented programming language with declarative event-based context transition,
in: Proceedings of the 10nd international conference on Aspect-oriented software development, AOSD ’11.

[22] C. Ghezzi, M. Pradella, G. Salvaneschi, Programming language support to context-aware adaptation - a case-study with Erlang, SEAMS:
Software Engineering for Adaptive and Self-Managing Systems, International Workshop, ICSE 2010 (2010).

[23] P. Costanza, R. Hirschfeld, Reflective layer activation in contextL, in: SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing.

[24] P. Costanza, T. D’Hondt, Feature descriptions for context-oriented programming, in: Software Product Lines, 12th International Conference
(SPLC), 2008, pp. 9–14.

[25] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, J. Goffaux, Subjective-C: Bringing context to mobile platform programming, in:
Proceedings of the International Conference on Software Language Engineering, 2010, Lecture Notes in Computer Science, Springer-Verlag,
Eindhoven, The Netherlands.

[26] J. Schäfer, A. Poetzsch-Heffter, JCoBox: Generalizing active objects to concurrent components, in: 24th European Conference on Object-
Oriented Programming (ECOOP 2010), LNCS, Springer, 2010, pp. 275–299.

[27] F. S. DeBoer, D. Clarke, E. B. Johnsen, A complete guide to the future, in: Proc. 16th European Symposium on Programming (ESOP07),
volume 4421 of LNCS, Springer-Verlag, 2007, pp. 316–330.

[28] M. Flatt, S. Krishnamurthi, M. Felleisen, A programmer’s reduction semantics for classes and mixins, in: Formal Syntax and Semantics of
Java, Springer-Verlag, London, UK, 1999, pp. 241–269.

[29] M. Felleisen, R. Hieb, The revised report on the syntactic theories of sequential control and state, Theor. Comput. Sci. 103 (1992) 235–271.
[30] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C. L. Talcott, All About Maude — A High-Performance Logical

Framework. How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science, Springer,
2007.

[31] T. F. Serbanuta, G. Rosu, J. Meseguer, A rewriting logic approach to operational semantics, Information and Computation 207 (2009) 305 –
340. Special issue on Structural Operational Semantics (SOS).

[32] M. Felleisen, R. B. Findler, M. Flatt, Semantics Engineering with PLT Redex, The MIT Press, 2009.
[33] T. F. Şerbanuţă, G. Roşu, K-Maude: A rewriting based tool for semantics of programming languages, in: P. C. Ölveczky (Ed.), Rewriting

Logic and Its Applications - 8th International Workshop, WRLA 2010, volume 6381 of Lecture Notes in Computer Science, pp. 104–122.
[34] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL model checker, in: F. Gadducci, U. Montanari (Eds.), Fourth Workshop on

Rewriting Logic and its Applications, WRLA ’02, volume 71 of Electronic Notes in Theoretical Computer Science, Elsevier, 2002.
[35] M. Logan, E. Merritt, R. Carlsson, Erlang and OTP in Action, Manning Publications, 2010.
[36] G. Salvaneschi, C. Ghezzi, M. Pradella, An analysis of language-level support for self-adaptive software, ACM Trans. Auton. Adapt. Syst. 8

(2013) 7:1–7:29.
[37] M. Haupt, M. Mezini, Micro-measurements for dynamic aspect-oriented systems, in: M. Weske, P. Liggesmeyer (Eds.), Object-Oriented and

Internet-Based Technologies, volume 3263 of LNCS, Springer Berlin / Heidelberg, 2004.
[38] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, M. Perscheid, A comparison of context-oriented programming languages, in: COP ’09:

International Workshop on Context-Oriented Programming, ACM, New York, NY, USA, 2009, pp. 1–6.
[39] M. Appeltauer, M. Haupt, R. Hirschfeld, Layered method dispatch with INVOKEDYNAMIC: an implementation study, COP ’10, pp.

4:1–4:6.
[40] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: Architecture-based self-adaptation with reusable infrastructure,

Computer 37 (2004) 46–54.
[41] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani, The FRACTAL component model and its support in Java: Experiences with

auto-adaptive and reconfigurable systems, Softw. Pract. Exper. 36 (2006) 1257–1284.
[42] G. Salvaneschi, C. Ghezzi, M. Pradella, JavaCtx: Seamless Toolchain Integration for Context-Oriented Programming, COP ’11, 2011.
[43] S. González, K. Mens, P. Heymans, Highly dynamic behaviour adaptability through prototypes with subjective multimethods, in: Proceedings

of the 2007 symposium on Dynamic languages, DLS ’07, pp. 77–88.
[44] C. Ghezzi, M. Pradella, G. Salvaneschi, Context-oriented programming in highly concurrent systems, in: Proceedings of the 2nd International

Workshop on Context-Oriented Programming, COP ’10, ACM, New York, NY, USA, 2010.
[45] A. Popovici, T. Gross, G. Alonso, Dynamic weaving for aspect-oriented programming, in: Proceedings of the 1st international conference

on Aspect-oriented software development, AOSD ’02.
[46] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, J. Noyé, EScala: modular event-driven object interactions in Scala, in: Proceedings of the

tenth international conference on Aspect-oriented software development, AOSD ’11, ACM, New York, NY, USA, 2011, pp. 227–240.
[47] H. Rajan, G. T. Leavens, Ptolemy: A language with quantified, typed events, in: J. Vitek (Ed.), ECOOP 2008, Cyprus, volume 5142 of

LNCS, Berlin, pp. 155–179.
[48] H. Schippers, D. Janssens, M. Haupt, R. Hirschfeld, Delegation-based semantics for modularizing crosscutting concerns, in: Proceedings of

the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages and applications, OOPSLA ’08, ACM, New York,
NY, USA, 2008, pp. 525–542.

[49] H. Schippers, T. Molderez, D. Janssens, A graph-based operational semantics for context-oriented programming, in: International Workshop
on Context-oriented Programming at ECOOP’10.

[50] G. Holzmann, Spin model checker, the: primer and reference manual, Addison-Wesley Professional, first edition, 2003.
[51] D. Clarke, I. Sergey, A semantics for context-oriented programming with layers, in: International Workshop on Context-Oriented Program-

ming, COP ’09, ACM, New York, NY, USA, 2009, pp. 10:1–10:6.
[52] R. Hirschfeld, A. Igarashi, H. Masuhara, ContextFJ: a minimal core calculus for context-oriented programming, in: Proceedings of the 10th

international workshop on Foundations of aspect-oriented languages, FOAL ’11, ACM, New York, NY, USA, 2011, pp. 19–23.
[53] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight Java: A minimal core calculus for Java and GJ, in: ACM Transactions on Programming

Languages and Systems, pp. 132–146.
[54] A. Igarashi, R. Hirschfeld, H. Masuhara, A type system for dynamic layer composition, in: In Proceedings of the Workshop on the

28

Foundations of Object-oriented Languages (FOOL), co-located with the Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA) 2012, ACM, Tucson, Arizona, USA.

[55] R. B. Smith, D. Ungar, A simple and unifying approach to subjective objects, TAPOS 2 (1996) 161–178.
[56] D. Batory, J. N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in: Proceedings of the 25th International Conference on Software

Engineering, ICSE ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 187–197.
[57] F. Steimann, On the representation of roles in object-oriented and conceptual modelling, Data Knowl. Eng. 35 (2000) 83–106.
[58] M. Pradel, M. Odersky, Scala Roles - A lightweight approach towards reusable collaborations, in: International Conference on Software and

Data Technologies (ICSOFT ’08).
[59] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A. P. Black, Traits: A mechanism for fine-grained reuse, ACM Trans. Program. Lang. Syst.

28 (2006) 331–388.
[60] G. Bracha, W. Cook, Mixin-based inheritance, in: Proc. OOPSLA 90, ACM Press, 1990, pp. 303–311.
[61] Y. Smaragdakis, D. Batory, Implementing layered designs with mixin layers, in: In ECCOP 98: Proceedings of the 12th European Conference

on Object-Oriented Programming, Springer, 1998, pp. 550–570.
[62] K. Ostermann, Dynamically composable collaborations with delegation layers, in: Proceedings of the 16th European Conference on Object-

Oriented Programming, ECOOP ’02, Springer-Verlag, London, UK, 2002, pp. 89–110.

29

