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Abstract

In this paper, we suggest an algorithm to enhance the accuracy of sensor measurements representing
camera parameters. The process proposed is based solely on a pair of wide baseline (or sparse view) im-
ages. We use the so-called JUDOCA operator to extract junctions. This operator produces junctions in terms
of locations as well as orientations. Such an information is used to estimate an affine transformation matrix,
which is used to guide a variance normalized correlation process that produces a set of possible matches.
The fundamental matrix can be easily estimated using the so-called RANSAC scheme. Consequently, the
essential matrix can be derived given the available calibration matrix. The essential matrix is then decom-
posed using Singular Value Decomposition. In addition to a translation vector, this decomposition results in
a rotation matrix with accurate rotation angles involved. Mathematical derivation is done to extract angles
from the rotation matrix and express them in terms of different rotation systems.

Key Words: Wide baseline matching, sparse view matching, parameters recovery, rotation systems, JU-
DOCA, junction detection, feature detection.

1 INTRODUCTION

Accurate information makes many Computer Vision tasks much easier. For example, point matching and
3D reconstruction of objects would be very much facilitated once the camera parameters for the observed
scene are known accurately. Unfortunately, in many cases, sensors used to capture camera parameters provide
measurements that may be characterized by uncertainty. Different types of errors may be present and vary from
fixed errors to random errors [11]. Fixed errors (also known as bias) are constant deviations from the accurate
value while random errors (also known as precision) vary over time. Such inaccuracy may be indicated as a
fixed value and a range where the true value lies within (e.g.,±10); or a percentage of reading (e.g., 0.5% of the
reading). These types of uncertainty or error representation provide margins that should be taken into account
if any computational processing is to be applied to the measurements read.

Fortunately, information embedded in the images captured can be used to tune the measurements read. Such
a process may get easier in case of short baseline stereo images. In this case, the straightforward scheme
to enhance the accuracy of the rotation angles is by getting a set of good matches and inferring the epipolar
geometry accordingly. However, the task gets harder if the images captured are a pair of wide baseline images
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as perspective deformation imposes a considerable problem. In this paper, we want to tackle the problem of
enhancing the accuracy of the extrinsic camera parameters; especially the three rotation angles, utilizing a pair
of wide baseline images. As different systems can be used to express how a camera is rotated in order to capture
two images for the same scene, we will present the enhanced rotation angles in two different rotation systems
for easy use by different vision algorithms.

Aiming to produce a reliable solution, we suggest using the information inferred by detecting junctions as
a primary step to rotation angle enhancement. Detecting junctions does not rely on the availability of camera
parameters. Hence, the inaccuracy existing in camera parameters does not affect this detection step. On the
contrary, junction detection can be utilized to add more accuracy to the parameters.

This work is not meant to be an intensive research project. Rather, it is mainly a sequence of previously de-
fined methods we use to enhance the accuracy of rotation angles and can be integrated as a software component
with commercial sensors.

The paper is organized as follows. Sec. 2 summarizes the steps of the algorithm proposed. Mathematical
bases used to implement our algorithm are detailed in the subsequent sections (Sec. 3 to Sec. 7). Sec. 8 provides
experimental results and discusses suggestions to test how accurate the parameters have become. Finally, Sec.
9 provides a final conclusion.

2 Algorithm to Enhance Angles Accuracy

Fig. 1 depicts the steps of the algorithm we propose to enhance the accuracy of the rotation angles between a
pair of wide baseline images that are read by inaccurate sensors.

Figure 1: Steps of the proposed algorithm.

The steps can be summarized as follows:

1. Detect junctions in both images using the JUDOCA operator [9] (Sec. 3).

2. Use junction information to establish an affine transformation matrix that approximates the homography
among corresponding junctions (Sec. 4).
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3. Perform variance normalized correlation (VNC) after transformation. This step will result in a number
of matches (Sec. 5).

4. Use RANSAC to estimate the fundamental matrix and exclude outliers (Sec. 6).

5. Use the calibration matrix to get the essential matrix (Sec. 6).

6. Decompose the essential matrix through Singular Value Decomposition (SVD). This provides the accu-
rate rotation matrix and translation vector (Sec. 6).

7. The angles of rotation can be recovered from the rotation matrix using different rotation systems (Sec.
7).

The above steps will be explained in more detail below.

3 Detecting Junctions through JUDOCA

The JUDOCA operator [9] is a junction detector that may be used to detect not only the locations of junctions
but their orientations as well (i.e., the inclination angles of the branches forming the junctions as well as
the number of branches). The operator is based on determining the gradient magnitude through vertical and
horizontal Gaussian filters according to some variance value. Fig. 2(b) shows the gradient magnitude of a
square part of the image shown in Fig. 2(a).

(a) (b)

Figure 2: An example of a 3-edge Y-junction. (a) One corner of a box that produces a Y-junction. (b) A circular
mask is centered at the position of the junction ṗ with three points on the circumference (superimposed on the
gradient image).

The JUDOCA operator scans along the branches of the junctions to detect their existence; however, scan-
ning throughout grayscale regions may be time consuming. In order to speed up the detection process, the
operator creates two binary images; B and B+. The image B is created by imposing a threshold on the gradient
magnitude while B+ is created by calculating the local maxima.

Working on the first binary image B, the operator uses a circular mask at every point and a list of points in
B+ on the circumference of the mask is obtained. The operator scans the radial segments connecting the center
of the mask and each of the circumferential points obtained previously. If the points scanned do not belong to
B, the junction is rejected. If the points belong to B+, the junction strength is incremented.
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In addition to its speed as working on binary images, this operator provides junctions of good accuracy in
terms of their locations, number of edges forming each junction and their orientations as well. An example of
detecting junctions applied to a real-world image is shown in Fig. 3. This operator is freely available online.∗

Figure 3: An example of detecting junctions using JUDOCA applied to a real-world image. (a) 3-edge junc-
tions. (b) 2-edge junctions.

4 Affine Transformation Using JUDOCA

The next step is to establish correspondences between images. This objective is harder in case of wide base-
line (or sparse view) pair of images. This is due to the existence of perspective deformation in such a case as
mentioned above. Thus, a type of invariant measure should be used in order to achieve good results. The in-
formation inferred from the JUDOCA operator can be used to facilitate the process. This information includes
the locations of junctions as well as the orientations of the edges forming them. Such an information may be
utilized to approximate the accurate homographic transformation as a simpler affine version before performing
cross correlation. (Other researchers tackled the affine invariance measure idea as in [14, 15].) Affine trans-
formation matrix has 6 degrees of freedom (DOF’s) and can be fully estimated using 3 pairs of points. In our
case, every 2-edge junction forms a triangle (Fig. 4(b)) that is surrounded by 3 points; one point is the location
of the junction and the other two points are the intersection between the two edges and the circular mask of
JUDOCA. (Notice that a 3-edge junction can be split into three 2-edge junctions as in the example shown in
Fig. 4(b). Suppose that the points of the left junction are ṁ1 = [x1, y1]T , ṁ2 = [x2, y2]T , ṁ3 = [x3, y3]T and
of the right junction are ṁ′

1 = [x′1, y′1]T , ṁ′
2 = [x′2, y′2]T , ṁ′

3 = [x′3, y′3]T (see Fig. 5(a)).† The goal here is to
find a 3×3 transformation matrix H that maps a point in the source triangle to another in the destination triangle
(as shown in Fig. 5(b)). Thus:

m′ = Hm (1)

where m is a point in the left image and m′ is the corresponding right one. We can rewrite Eq. (1) as:



x′

y′

1


 =




hT
1

hT
2

hT
3







x
y
1


 (2)

∗The JUDOCA operator is available at:
http://www.site.uottawa.ca/school/research/viva/projects/judoca

†The notation ṁ = [x, y]T represents an image point in inhomogeneous coordinates while m = [x, y, 1]T represents the same
point in homogeneous coordinates.
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(a)
(b)

Figure 4: (a) One corner of a box that produces a Y-junction. (b) A Y-junction can be split into three 2-edge
junctions. Each 2-edge junction form a triangle.

(a) (b)

Figure 5: (a) Two corresponding junctions (or triangles) (b) Corresponding points within the triangles.

where h1,h2 and h3 represent the rows of the affine transformation matrix. As we have three pairs of points,
we can write: 
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Then, the first row in matrix H can be written as:
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Similarly, the second and the third rows can be expressed as:

h2 =




mT
1

mT
2

mT
3



−1 


y′1
y′2
y′3


 (5)

h3 =




mT
1

mT
2

mT
3



−1 


1
1
1


 (6)



R. Elias / Electronic Letters on Computer Vision and Image Analysis 7(3):36-53, 2008 41

Hence the affine transformation can be estimated to relate a point ṁ = [x, y] to ṁ′ = [x′, y′]T within the areas
of the junctions as [4]:

m′ =
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1


 = Hm =
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5 Affine Variance Normalized Correlation

Variance normalized correlation (VNC) provides reliable results over different viewing conditions [16] and can
be used to cross-correlate different regions surrounding [x, y] and [x′, y′] in multiple views.

V NC(x,y;x′,y′) =

N
2∑

m,n=−N
2

Il(x+m,y+n)−Il(x,y)][Ir(x′+m,y′+n)−Ir(x′,y′)]

√√√√
N
2∑

m,n=−N
2

[Il(x+m,y+n)−Il(x,y)]2

√√√√
N
2∑

m,n=−N
2

[Ir(x′+m,y′+n)−Ir(x′,y′)]2

(8)

where Il(x, y) and Ir(x′, y′) are the mean values of the neighborhoods surrounding [x, y]T and [x′, y′]T re-
spectively. Notice that the previous equation assumes that correlation is performed on the image planes and
inhomogeneous coordinates are used. Many researchers investigated this case; e.g., [5, 6]. In our case, there
are two points to be taken into account.

1. Camera parameters are known within error margin limits. Thus, through the error margins of the sensor
used, a strip surrounding the epipolar line in the right image may be established for each candidate in the
left image. VNC correlation is applied among all candidates in the strip to determine the best match.

2. Correlation should not be applied to the image plane as in Eq. (8). Instead, that equation should be altered
to deal with the perspective deformation existing. This is to be done by applying affine transformation
prior to correlating the areas and performing the following check [3]:

N
2∑

m,n=−N
2

[Il(x + m, y + n)− Il(x, y)][Ir(k̇T )− Ir(ṁ′T )]

√√√√√
N
2∑

m,n=−N
2

[Il(x + m, y + n)− Il(x, y)]2

√√√√√
N
2∑

m,n=−N
2

[Ir(k̇T )− Ir(ṁ′T )]2

≥ tV NC (9)

where N + 1 is the side length of the correlation window in pixels; m′ = Hm = H[x, y, 1]T ; Il(x, y) is
the mean of the neighborhood surrounding [x, y]T ; k = H[x + m, y + n, 1]T ; Ir(ṁ′) is the mean of the
neighborhood surrounding ṁ′; and tV NC is a threshold. Then, the best choice is the one that results in a
true condition for the test (9) above with a maximum value among all candidates.
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6 Deriving Rotation Matrix

So far, the previous procedure should produce a set of putative matches. Such a set may include outliers as well
as good matches. At this point, it is required to covert the set of matches obtained into an accurate fundamental
matrix. In order to achieve this, different methods can be implemented. Those methods can be classified into
linear, iterative and robust methods [1]. Among them is the RANSAC scheme [7, 10] which is used for robust
parameter estimation [19, 20]. RANSAC has the following steps.

1. Seven points are randomly selected.

2. The fundamental matrix is computed from this set where:

m′TFm = 0 (10)

3. Pairs that satisfy the computed F are selected to the support set. The pair is satisfying the matrix F if the
point in one image lies within some threshold, tF, (e.g., 1 pixel) from the computed epipolar line. That
is:

d(Fm,m′) < tF (11)

where d() represents the distance from the point ṁ′ to the epipolar line l′ = Fm; and tF is a threshold.

If (11) results in a true condition, then the pair (ṁ, ṁ′) agrees with the matrix F.

4. The preceding steps are repeated and the fundamental matrix, F, that supports the largest match set is
returned.

Notice that the accuracy of these steps depends in a way on the threshold tF. The larger the threshold
the larger the number of matching pairs to be accepted by RANSAC. This leads to the risk of inaccuracy.
Thus, MLESAC [12] and MAPSAC [13] were proposed to avoid wrong results when using high thresholds
with RANSAC. However, this is not the case in our proposal as in all our experiments, we do not use high
thresholds.

Once the fundamental matrix has been estimated, the essential matrix E can then be retrieved using the
calibration matrix A as:

E = ATFA (12)

Here we assumed that the calibration matrix is the same for the two images. Now, we aim to have the essential
matrix decomposed such that:

E = RT× (13)

where R is the accurate orthogonal rotation matrix and T× is an anti-symmetric matrix defined as:

T× =




0 −tz ty
tz 0 −tx
−ty tx 0


 (14)

where Ṫ = [tx, ty, tz] represents the translation vector from one camera to the other. In order to get the
decomposition of Eq. (13), the essential matrix can be decomposed using Singular Value Decomposition (SVD)
to get:

E = USVT (15)

The rotation matrix R and the translation matrix T× can then be expressed (up to a scale factor) as:

R = UWVT or R = UW−1VT

T× = VZVT where W =




0 −1 0
1 0 0
0 0 1


 and Z =




0 −1 0
1 0 0
0 0 0


 (16)
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The origin is assumed to be at the first camera and the rotation matrix R indicates the rotation from the first
camera to the second one. The translation vector Ṫ can be expressed as [8]:

Ṫ = V




0
0
1


 (17)

and

RṪ = U




0
0
1


 (18)

Note that the translation vector Ṫ is normalized in this case. In addition, there are four possible rotation/translation
pairs based on two possible choices of the rotation matrix and two possible signs of the translation vector. In
other words, the projection matrix of the second camera may be one of the following [8]:

P′ =
[
UWVT |U[0, 0, 1]T

]

P′ =
[
UWVT | − U[0, 0, 1]T

]

P′ =
[
UWTVT |U[0, 0, 1]T

]

P′ =
[
UWTVT | − U[0, 0, 1]T

]
(19)

7 Rotation Angles in Different Systems

The previous step should result in an accurate 3×3 rotation matrix. Such a matrix expresses the rotation from
the first camera to the second one. Rotation angles are embedded in this matrix and can be extracted from it.
There are different rotation systems that can be used to express the rotation between cameras. These systems
share some properties:

1. Any system should result in the same rotation matrix.

2. A system requires the existence of three rotation angles.

3. A 3D rotation can be expressed as a series of three 2D rotations.

In this paper, we will consider two systems; using ω, φ and κ angles as compared to tilt, τ , pan, ρ, and swing,
ψ. Some systems (including commercial) are using only one system to express the rotation angles; thus, we are
including both systems to show the easy conversion between them.

Considering the ω, φ and κ angles, the 3D rotation is performed in three 2D rotations. Fig. 6(a) shows the
first rotation through an angle ω about the X−axis. The second rotation through an angle φ about the rotated
Y−axis is depicted in Fig. 6(b). Finally, the third rotation is through an angle κ about the rotated Z−axis as
shown in Fig. 6(c). The final rotation is calculated by concatenating the three rotation matrices. That is:

R = Rκ Rφ Rω =




cos φ cos κ sin ω sin φ cos κ + cos ω sin κ −cos ω sin φ cos κ + sin ω sin κ
−cos φ sin κ −sin ω sin φ sin κ + cos ω cos κ cos ω sin φ sin κ + sin ω cos κ

sin φ −sin ω cos φ cos ω cos φ




(20)
Fig. 7 shows another system of angles; pan, ρ, tilt, τ , and swing, ψ [18]. As in the previous case, the overall

3D rotation is performed in three separate sequential 2D rotations about the Z−axis, the X−axis and then the
Z−axis again. The final rotation matrix is calculated as:

R = Rψ Rτ Rρ =




cos ψ cos ρ + sin ψ cos τ sin ρ −cos ψ sin ρ + sin ψ cos τ cos ρ sin ψ sin τ
−sin ψ cos ρ + cos ψ cos τ sin ρ sin ψ sin ρ + cos ψ cos τ cos ρ cos ψ sin τ

−sin τ sin ρ −sin τ cos ρ cos τ




(21)
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Figure 6: (a) Rotation through Rω. (b) Rotation through Rφ. (c) Rotation through Rκ.

Both Eqs. (20) and (21) should result in the same rotation matrix. Thus, using those equations, the values of
the tilt, τ , the pan, ρ and the swing, ψ angles given ω, φ and κ can be calculated [18].

τ = cos−1(r33) = cos−1(cos ω cos φ)
ρ = tan−1

(
−r31
−r32

)
= tan−1

( −sin φ
sin ω cos φ

)

ψ = tan−1
(

r13
r23

)
= tan−1

(−cos ω sin φ cos κ+ sin ω sin κ
cos ω sin φ sin κ+ sin ω cos κ

) (22)

The same idea can be used to calculate ω, φ and κ given τ , ρ and ψ.

ω = tan−1
(
−r32
r33

)
= tan−1

(
sin τ cos ρ

cos τ

)

φ = sin−1(r31) = sin−1(−sin τ sin ρ)
κ = tan−1

(
−r21
r11

)
= tan−1

(
sin ψ cos ρ−cos ψ cos τ sin ρ
cos ψ cos ρ+sin ψ cos τ sin ρ

) (23)

Note that the previous method of enhancing the rotation matrix results in measurements with respect to the
first camera. In this setup, the origin of the coordinate system is at the optical center of the first camera, Ċ, and
the rotation angles are measured accordingly. Furthermore, the translation vector obtained (i.e., the location of
the second camera, Ċ′) is measured from that origin and normalized.

8 Experimental Results

In this section, we will show how our procedure can be effective in enhancing the parameters estimated. In
order to show this quantitatively, we compare the results produced through camera parameters estimated using
PhotoModeler and the results after enhancement. PhotoModeler is used to get the camera parameters for the
stereo pairs shown in Fig. 8(a) and (b) and Fig. 9(a) and (b). The parameters obtained are listed in Table 1 and
Table 2.

The fundamental matrix can, then, be calculated through camera parameters as [2]:

F = [A′R′]−1T [Ċ− Ċ′]×[AR]−1

=
[
[A′R′][Ċ− Ċ′]

]
× [A′R′][AR]−1

= [e′]×P′P+

(24)

where A and R are the calibration and rotation matrices of the left camera respectively; and A′ and R′ are their
counterparts of the right camera; Ċ and Ċ′ are the optical centers; and e′ is the right epipole.



R. Elias / Electronic Letters on Computer Vision and Image Analysis 7(3):36-53, 2008 45

Figure 7: Pan, ρ, tilt, τ , and swing, ψ, rotation angles. The angle – in the principal plane – between the optical
axis and the vertical line is called the tilt, τ . The angle – in the ground plane – between the direction of the
Yw-axis and intersection between the principal plane and the ground plane is called the pan, ρ (also known as
azimuth). The angle – in the image plane – between the direction of Y3-axis and the principal line is called the
swing, ψ.

Also, the fundamental matrix can be expressed as [3]:

F = [e′]×[A′R′][AR]−1 (25)

In our experiments, we use all the formulae of Eq. (24) and Eq. (25) with camera parameters produced by
PhotoModeler. All resulted in the same fundamental matrix. Comparisons are performed along two tracks.
The first track is by showing the differences between the fundamental matrices calculated through parameters
produced by PhotoModeler and the fundamental matrices tuned after the correlation method. The second
track we use is by calculating the differences between rays passing through corresponding points and should
theoretically intersect in space while they do not because of the inaccurate camera parameters.

8.1 F Differences

The measure of comparison that we use was proposed by Stephane Laveau from INRIA Sophia-Antipolis and
detailed in [20]. It was meant to characterize the difference between two fundamental matrices. The overall
idea is to measure the differences between points and corresponding epipolar lines on image planes. Suppose
that the two fundamental matrices are F1 and F2, then considering Fig. 10, the steps are the following:

1. A point m = [x, y, 1]T is chosen randomly in the left image.

2. The epipolar line F1m = [a1, b1, c1]T can be drawn in the right image as shown in Fig 10.
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(a) (b) (c)

Figure 8: (a) and (b) The “box” pair. (c) The world coordinate system is shown where the world origin is located
at a corner of a paper on the ground surface and where the XY−plane coincides with the ground surface and
the Z−axis is vertical.

(a) (b) (c)

Figure 9: (a) and (b) The “cubes” pair. (c) The world origin is shown at the corner of a bottom cube where the
XY−plane coincides with the ground surface and the Z−axis is vertical.
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Image X Y Z ω φ κ

Fig. 8(a) -1535.2119 1720.8447 1693.2169 -35.1616 -46.7723 -155.5747
Fig. 8(b) -1694.5607 -142.2461 1585.1900 25.0285 -55.5578 -47.0806

Table 1: The “box” pair: The parameters for each camera estimated by PhotoModeler. The world origin is
located as shown in Fig. 8(c) where the Z−axis is vertical or perpendicular to the ground plane. The units are
in millimeters for X , Y , Z and in degrees for ω, φ and κ. Each image is 640 × 480 pixels. The focal length is
4.3 mm. The format size is 3.5311 × 2.7446 mm.

Image X Y Z ω φ κ

Fig. 9(a) -114.7469 398.9921 355.3564 -52.2783 -17.0877 162.6817
Fig. 9(b) -206.6808 372.5378 351.6793 -49.5184 -27.0316 -132.0044

Table 2: The “cubes” pair: The parameters for each camera estimated by PhotoModeler. The world origin is
located as shown in Fig. 9(c). The Z−axis is vertical or perpendicular to the ground plane. The units are in
millimeters for X , Y , Z and in degrees for ω, φ and κ. Each image is 640 × 480 pixels. The focal length is 6.0
mm. The format size is 3.5311 × 2.7446 mm.

3. A check should be made to ensure that the line F1m intersects the right image. If this is not the case,
start over.

4. A point m′ = [x′, y′, 1]T is selected randomly on F1m.

5. The epipolar line F2m = [a2, b2, c2]T is to be drawn in the right image using F2 and the distance d′1 is
calculated as [17]:

d′1 =
|a2x

′ + b2y
′ + c2|√

a2
2 + b2

2

(26)

6. An epipolar line that corresponds to m′ is drawn in the left image. This epipolar is estimated as FT
2 m′.

The perpendicular distance d1 can be easily estimated as done before.

7. Steps 2 through 6 are repeated while reversing the roles of F1 and F2 and the distances d2 and d′2 are
calculated as done with d1 and d′1.

8. All the previous steps are repeated N times.

9. The difference between the two fundamental matrices is estimated as the average of all d’s.

The above procedure was applied to the “box” stereo pair shown in Fig. 11(a) and Fig. 11(b). The N used
was 1000. The results of the differences are summarized in Table 3. Another stereo pair with its results are
shown in Fig. 12.

8.2 Ray Differences

At this point, we know that there is a difference between a fundamental matrix calculated through parameters
estimated using PhotoModeler and another fundamental matrix estimated after enhancement; however, which
is more accurate?
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Figure 10: Estimating difference between fundamental matrices on image planes.

#points d1 d′1 d2 d′2 Avg

100 6.98 7.917 7.256 7.799 7.488
200 6.722 7.516 6.921 7.403 7.141
300 6.424 7.198 6.768 7.329 6.93
400 6.425 7.109 6.861 7.393 6.947
500 6.413 7.134 6.78 7.344 6.918
600 6.384 7.109 6.691 7.261 6.861
700 6.444 7.197 6.678 7.248 6.892
800 6.509 7.27 6.738 7.332 6.962
900 6.451 7.184 6.733 7.328 6.924
1000 6.498 7.251 6.694 7.282 6.931

Table 3: Differences between fundamental matrices for the pair shown in Fig. 8(a) and Fig. 8(b).

We may use triangulation to assess how accurate our measurements are. The optimal triangulation case is
depicted in Fig. 13(a). In such a case, the rays passing through the optical centers and the corresponding points
in images intersect in space at the location of the 3D point. In most cases and due to different reasons like
inaccuracy in measurements or existence of image noise, the rays are likely to be skew as depicted in Fig.
13(b). If there is no severe inaccuracy, the perpendicular to both rays will be short; otherwise, the greater the
inaccuracy in measurements the farther the rays will be from each other. Thus, in case of ray skewness, the
shortest distance between the skew rays (δ in Fig. 13(b)) should give an indication of measurement accuracy.
Short distances that tend to zero declare good accuracy.

In order to estimate the shortest distance between two skew rays, the vector equations of those rays can be
expressed as:

Ṙ = Ċ + λḊ and Ṙ′ = Ċ′ + λ′Ḋ′ (27)

where Ċ and Ċ′ are the optical centers; λ and λ′ are scaling factors; and Ḋ and Ḋ′ and are the direction vectors
which can be calculated as [2]:

Ḋ = A−1m and Ḋ′ = (AR)−1m′ (28)

where A is the calibration matrix; R is the rotation matrix we estimated; and m and m′ are a pair of correspond-
ing points. Finally, the shortest distance δ between the rays if they are skew can be expressed as:

δ =
Ḋ× Ḋ′

||Ḋ× Ḋ′|| • Ċ′ (29)

where ||.|| indicates the norm; and × and • are the cross and dot products respectively.
We tested our algorithm on groups of correct matches obtained for the pairs shown in Fig. 8(a) and (b) and

in Fig. 9(a) and (b). As a comparison, we tested the differences between skew rays through the parameters
acquired using PhotoModeler as opposite to the differences obtained after enhancement of angles. The results
are shown as bar charts in Fig. 14(a) for the “box” pair and in Fig. 14(b) for the “cubes” pair. The differences
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(a) (b)

(c)

Figure 11: The “box” pair. (a) Left image with a point marked. (b) Right image with epipolar lines obtained
through parameters estimated using PhotoModeler and after enhancement. (c) Differences on image planes
between fundamental matrices calculated using PhotoModeler parameters and our proposed method.

are noticable in both cases for individual corresponding pair of points. The overall differences are shown in
Fig. 14(c), which clearly demonstrates the effectiveness of enhancement.

9 Conclusions

Accuracy of camera parameters including rotation angles affects many Computer Vision tasks. In this paper,
we suggested a sequence of steps to enhance the accuracy of camera rotation angles given a pair of wide
baseline images. We utilized information inferred by the JUDOCA junction detector in order to perform a
cross-correlation matching process that overcame the difficulty of the wide baseline case under consideration.
We used the obtained match set to estimate the fundamental and essential matrices. The later matrix was
decomposed into a rotation and a translation matrices. Details of expressing the angles calculated from the
rotation matrix were explained in two different rotation systems. Finally, test measures were applied and the
overall accuracy was compared to that of PhotoModeler.
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(a) (b)

(c)

Figure 12: The “cubes” pair. (a) Left image with a point marked. (b) Right image with epipolar lines obtained
through parameters estimated using PhotoModeler and after enhancement. (c) Differences on image planes
between fundamental matrices calculated using PhotoModeler parameters and our proposed method. This pair
of images was shot by Prof. R. Laganiere of the University of Ottawa, Canada.
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Figure 14: Error factor for a group of correct matches. (a) The “box” pair. (b) The “cubes” pair. (c) Overall
average.


