37 research outputs found

    Electrostatically driven synthetic microjet arrays as a propulsion method for micro flight

    Full text link
    A propulsion system based on acoustic streaming generated by Helmholtz resonators is presented. High frequency (>60 kHz) electrostatically driven micromachined Helmholtz resonators constitute the basic unit of the system. Microjets produced at the exit of these resonators can be combined to form a distributed propulsion system. A high yield (>85%) fabrication process is introduced for fabrication of individual as well as arrays of resonators. The fabrication results for ten different designs are presented. About 1000 resonators of similar design cover the surface of a 4-in. wafer, effectively converting it to a distributed propulsion system. A number of characterization methods such as monitoring the harmonics of the drive current, laser interferometry, hot-wire anemometry, acoustic spectrum measurement and video particle imaging are used to determine the structural and fluidic behavior of different resonator designs. Collapse and recovery times of the diaphragm in the electrostatic actuator of the resonator are characterized and reduced to less than 10 μs by optimizing the perforation design. The occurrence of acoustic streaming in the micron-scale is verified via video particle imaging. The jet streams produced with pulse drive at low frequencies (~1 kHz) are spatially profiled and jet velocities exceeding 1 m/s are measured at the exit of the resonators. It has been verified that the resonance frequencies of the device at 50 and 175 kHz can be closely predicted by modeling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47854/1/542_2005_Article_600.pd

    Destabilizing turbulence in pipe flow

    Get PDF
    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number (Re) nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead an amplification mechanism, measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery

    System identification and active control of a turbulent boundary layer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (p. 118-123).by Ruben Rathnasingham.Ph.D

    Coupled fluid-structural characteristics of actuators for flow control

    No full text
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1995.Includes bibliographical references (leaves 38-39).by Ruben Rathnasingham.M.S

    Dynamics of Synthetic Jet Arrays for Closed-Loop Flow Control

    No full text

    Microsynthetic Jets

    No full text
    corecore