The reproduction of a living cell requires a repeatable set of chemical
events to be properly coordinated. Such events define a replication cycle,
coupling the growth and shape change of the cell membrane with internal
metabolic reactions. Although the logic of such process is determined by
potentially simple physico-chemical laws, the modeling of a full,
self-maintained cell cycle is not trivial. Here we present a novel approach to
the problem which makes use of so called symmetry breaking instabilities as the
engine of cell growth and division. It is shown that the process occurs as a
consequence of the breaking of spatial symmetry and provides a reliable
mechanism of vesicle growth and reproduction. Our model opens the possibility
of a synthetic protocell lacking information but displaying self-reproduction
under a very simple set of chemical reactions