Branched Polymers on the Given-Mandelbrot Family of Fractals

Deepak Dhar
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, INDIA

Abstract

We study the average number \bar{A}_{n} per site of the number of different configurations of a branched polymer of n bonds on the GivenMandelbrot family of fractals using exact real-space renormalization. Different members of the family are characterized by an integer parameter $b, 2 \leq b \leq \infty$. The fractal dimension varies from $\log _{2} 3$ to 2 as b is varied from 2 to ∞. We find that for all $b \geq 3, \bar{A}_{n}$ varies as $\lambda^{n} \exp \left(b n^{\psi}\right)$, where λ and b are some constants, and $0<\psi<1$. We determine the exponent ψ, and the size exponent ν (average diameter of polymer varies as n^{ν}), exactly for all $b, 3 \leq b \leq \infty$. This generalizes the earlier results of Knezevic and Vannimenus for $b=3$ [Phys. Rev B 35 (1987) 4988].

1 Introduction

The study of statistical physics models on deterministic fractals has a long history $[1,2,3,4]$. Linear and branched polymers on fractals with finite ramification number provide very simple and pedagogical examples of renormalization group techniques at work: these system show a non-trivial critical point, and the values of the critical exponents can be determined by linearizing the exact real-space renormalization transformation. The renormalization equations are coupled polynomial recursion equations in a finite number
of variables, and are easy to study. By studying different geometrical fractals, one can investigate how the critical exponents change with the geometrical properties of the underlying space.

One particular family of fractals which has been used often for such studies is the Given-Mandelbrot family of fractals [5]. Different members of the family are characterized by an integer b, with $2 \leq b \leq \infty$. As we increase b from 2 to ∞, the fractal dimension increases from $\log _{2} 3$ to 2 . The critical properties of linear polymers on the $b=2$ fractal were first studied in [2], and these results were extended to $b \leq 8$ by Elezovic et al [6] using the exact renormalization equations. Surprizingly, it was found that while the exponent ν_{b} appeared to converge to the two-dimensional value $3 / 4$, as b was increased from 2 to 8 , the difference in the susceptibility exponent γ_{b} from the known exact value $43 / 32$ in two dimensions was found to increase with increasing b. This was explained in [7], where the asymptotic behavior of critical exponents for large b was determined theoretically using finite-size scaling arguments, and it was shown that γ_{b} should tend to a different value 133/32 for large b. Numerical Monte Carlo renormalization group techniques have been used to estimate the critical exponents for significantly larger values of b up to $80[8,9]$. Knezevic and Vannimenus (KV) used the real-space renormalization technique to study the properties of branched polymers on the $b=2$ fractal, and also studied the transition from the extended phase to collapsed phase [10]. This was later extended to other fractals, including the $b=3$ fractal [11]. Dense branched polymers for the $b=2$ fractal have been studied in the context of spanning trees and loop-erased random walks [12], and the abelian sandpile model [13]. However, a study of branched polymers on fractals for higher b has not been undertaken so far. Nor are the properties of the large- b limit known.

In this paper we study the number of different configurations of an n bond branched polymer on the Given-Mandelbrot family of fractals using the exact real-space renormalization group techniques. On regular lattices, this number usually varies as $\lambda^{n} n^{-\theta}$, where λ is some lattice -dependent constant, and θ is a critical exponent. General theoretical arguments that prove the exponential growth would allow stronger correction terms like $\exp \left(b n^{\psi}\right)$, with $\psi<1$. Why the first correction term to the exponential growth is a simple power-law term is not fully understood. To see how general is the power-law correction form, one can study this question on different graphs, e.g. fractals. We find the power-law correction also on the $b=2$ fractal. However, this
case is exceptional. For all $b \neq 2$, while the number of configurations still increases exponentially with n, the leading correction term to the exponential growth is the stretched-exponential form: this number varies as $\lambda^{n} e^{b n^{\psi}}$, where λ and b are some constants, and $0<\psi<1$. We determine the singularity exponent ψ, and the size exponent ν (average diameter of polymer varies as n^{ν}), exactly for all $b, 3 \leq b \leq \infty$. This generalizes the earlier results of KV for $b=2$ and 3 .

This paper is organized as follows: In section 2, we start by recapitulating the definition of the Given-Mandelbrot family of fractals, and introduce the generating function for the number of branched polymer configurations with n monomers. Since the fractal does not have translational invariance, we average over different positions of the polymer. The general technique of real-space renormalization applied to these problems is outlined in Section 3, using the $b=2$ case as an illustrative example. The qualitative behavior of the renormalization equations for $b \geq 3$ is discussed in Section 4. It turns out that while the equations involve rather complicated high-degree polynomials, the critical exponents ν and ψ do not depend on most of the terms in these polynomials. We can ignore most of these terms, and still determine the exact values of these exponents, if we can identify the "dominant terms" in the recursion equations. This is done in Section 5. Finally, in Section 6, using our knowledge of the dominant terms, we determine the exponents ν and ψ for all $b \geq 3$, without having to write down the full set of recursion equations.

2 Definitions

For any given integer $b, 2 \leq b<\infty$, the recursive construction of the GivenMandelbrot family of fractals is shown in Fig. 1. We start with a graph with three vertices and three edges forming a triangle. This is called the first order triangle. To construct the graph of the $(r+1)$-th order triangle, we take graphs of $b(b+1) / 2$ triangles of r-th order, and glue them together (i.e. identify corner vertices) as shown in the figure, to form an equilateral triangle with base which is b times longer. The case $b=2$ corresponds to the well-known Sierpinski gasket [Fig. 2].

It is easy to see that the number of edges in the graph of the r-th order triangle is

Figure 1: The recursive construction of the Given-Mandelbrot fractal for $b=4$. (a) The graph of first order riangle.(b) the graph of a $(r+1)$ order triangle, formed by joining $b(b+1) / 2 r$-th order triangles shown as shaded triangles here.

Figure 2: The graph of a 5 -th order triangle for $b=2$.
$3 b^{r}(b+1)^{r} 2^{-r}$, and all vertices have coordination number 4 or 6 , except the corner vertices. The distance between the corner vertices of r-th order triangle is b^{r-1}. Thus, the fractal dimension of the graph is $D_{b}=\log _{b}[b(b+$ $1) / 2$]. For $b=2,3,4 .$. , these values are $1.5849,1.6309,1.6609 \ldots$ respectively. For large b, the fractal dimension tends to 2 as $D_{b} \approx 2-\log _{b} 2$. The spectral dimension \tilde{D}_{b} of the graph can also be calculated exactly for general b [14]. The values of \tilde{D}_{b} for $b=2$ to 10 are listed in [15]. For large b, \tilde{D}_{b} tends to 2, and the leading correction to its limiting value is given by $\tilde{D}_{b} \approx 2-\frac{\log \log b}{\log b}$ [16].

The determination of the generating function for the branched polymers on these fractals follows the treatment of $[2,10,11]$. Let $A_{n}(N)$ be the number of distinct single connected cluster of n bonds on a graph with N total number of bonds in the graph, different translations of the cluster being counted as distinct. For large N, this number increases linearly with N. We then define

$$
\begin{equation*}
\bar{A}_{n}=\operatorname{Lim}_{N \rightarrow \infty} A_{n}(N) / N \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=\sum_{n=0}^{\infty} \bar{A}_{n} x^{n} \tag{2}
\end{equation*}
$$

where we assume the convention $\bar{A}_{0}=1$.

3 Renormalization equations for the $b=2$ fractal

We assign a weight x^{n} to each configuration of the polymer with n occupied bonds, and define restricted partition functions $A^{(r)}, B^{(r)}, C^{(r)}, D^{(r)}, E^{(r)}$ and $F^{(r)}$, as shown in Fig 3. Here $A^{(r)}$ is the sum of weights of all connected configurations of the branched polymer inside a r-th order triangle, such that only one of the corner vertices is occupied by the polymer, and the other two corner vertices are unoccupied. $D^{(r)}$ is the sum of weights of all configurations with two mutually disconnected clusters, each cluster connected to a specified corner vertex. $B^{(r)}$ consists of sum of all configurations of polymer that connect two specified corner vertices of the triangle, with the third vertex remaining unoccupied. Similarly, $E^{(r)}$ an $F^{(r)}$ correspond to sums over

Figure 3: Definition of the restricted partition functions $A^{(r)}, B^{(r)}, C^{(r)}, D^{(r)}, E^{(r)}$ and $F^{(r)}$.
all configurations with all three corner vertices occupied, and mutually disconnected, and connected respectively. $C^{(r)}$ corresponds to all three corner vertices occupied, but only two specified vertices connected to each other by paths involving occupied bonds lying within the triangle.

The values of these restricted functions for $r=1$ are

$$
\begin{equation*}
A^{(1)}=D^{(1)}=E^{(1)}=1 ; \quad B^{(1)}=C^{(1)}=x ; \quad F^{(1)}=3 x^{2}+x^{3} . \tag{3}
\end{equation*}
$$

It is straightforward to write down the recursion equations for these restricted partition functions at level $(r+1)$ in terms of those at level r. One has to sum over all possible polymer configurations for different r-th order triangles, subject to the constraint that all occupied bond are connected to one of the corner vertices of the $(r+1)$-th order triangle. For example, for $b=2$, KV obtained

$$
\begin{gather*}
A^{(r+1)}=A\left[1+2 B+2 B^{2}\right]+2 B^{2} C+F\left[B^{2}+A^{2}+2 B D\right] \tag{4}\\
B^{(r+1)}=B^{2}+B^{3}+F[4 B C+2 A B]+F^{2}[B+D] \tag{5}\\
C^{(r+1)}=A B^{2}+3 B^{2} C+F\left[7 C^{2}+2 B D\right]+F^{2}[C+E] \tag{6}\\
D^{(r+1)}=A^{2}+B\left[6 C^{2}+4 A C+2 A^{2}\right]+D\left[2 B+3 B^{2}\right]+2 F[2 C D+A D+B C+B E] \\
E^{(r+1)}=A^{3}+14 C^{3}+12 B C D+6 A B D+3 B^{2} E+3 F\left[C^{2}+D^{2}+4 C E\right] \tag{7}\\
F^{(r+1)}=3 F B^{2}+6 F^{2} C+F^{3} \tag{8}
\end{gather*}
$$

where we have dropped the superscript (r) over all the variables in the righthand side of all the recursion equations to simplify notation. The generating function $G(x)$ is expressible in terms of these variables

$$
\begin{equation*}
G(x)=\sum_{r=1}^{\infty} 3^{-r}\left(A^{(r)^{2}}+A^{(r)^{2}} B^{(r)}+B^{(r)^{2}} D^{(r)}\right) \tag{10}
\end{equation*}
$$

It was shown by KV that there exist a critical value x_{c}, such that for all $x<x_{c},\left(A^{(r)}, B^{(r)}, C^{(r)}, D^{(r)}, E^{(r)}, F^{(r)}\right)$ tends to a fixed point $\left(A^{*}(x), 0,0, A^{*^{2}}(x), A^{*^{3}}(x), 0\right)$, where the value of $A^{*}(x)$ increases monotonically from 1 to ∞ as x increases from 0 to x_{c}. For all $x>x_{c}, A^{(r)}, B^{(r)}, C^{(r)}, D^{(r)}, E^{(r)}, F^{(r)}$ all diverge to infinity. At $x=x_{c}$, the values of $A^{(r)}, C_{\tilde{A}}^{(r)}, D^{(r)}$ and $E^{(r)}$ diverge to infinity for large r. If we change variables to $\tilde{A}=A F, \tilde{B}=B, \tilde{C}=C F, \tilde{D}=D F^{2}$ and $\tilde{E}=E F^{3}, \tilde{F}=F$, the non-trivial fixed point occurs at finite values of $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}$, with $\tilde{F}=0$. Linearized analysis of the renormalization equations near the fixed point determines the singularity exponent θ for the function $G(x) \sim\left|x_{c}-x\right|^{\theta-1}$, and the exponent ν (correlation length $\sim\left|x_{c}-x\right|^{-\nu}$). KV found $\nu \simeq 0.71655$, and $\theta \simeq 0.5328$.

4 Renormalization equations for $b \geq 3$

Interestingly, the qualitative behavior of the recursion equations is very different for $b>2$. For $b=3$, the singularity of $G(x)$ is not a power-law singularity, but an essential singularity [11]. The case $b>3$ has not been studied so far.

For a general value of b, the equations are still coupled polynomial recursion equations in six variables. We denote the six functions $A^{(r)}, B^{(r)}, \ldots F^{(r)}$
by $K_{i}^{(r)}$, with $i=1$ to 6 , and represent the polynomial recursion equations schematically as

$$
\begin{equation*}
K_{i}^{(r+1)}=f_{i}\left(\left\{K_{j}^{(r)}\right\}\right), \quad \text { for } \quad i=1 \text { to } 6 . \tag{11}
\end{equation*}
$$

where f_{i} are some (b-dependent) polynomial functions of their six arguments. One can also write the generating function $G(x)$ in terms of $\left\{K_{i}^{(r)}\right\}$ in a polynomial form similar to Eq.(10).

$$
\begin{equation*}
G(x)=\sum_{r=1}^{\infty}[b(b+1) / 2]^{-r} g\left(\left\{K_{j}^{(r)}\right\}\right) \tag{12}
\end{equation*}
$$

It is rather tedious to write down the explicit forms of these polynomials for any $b>3$. The number of terms in each f_{i} increases very fast with b. There are approximately 100 terms in each of the recursion equations for $b=3[17]$, and the number would run into thousands for $b=4$. The number of terms would increase as b^{12} for large b, as that is the number of polynomials with six variables with maximum degree $b(b+1) / 2$. Also, the coefficients of the terms become very large, increasing as $\exp \left(b^{2}\right)$. Even for $b=3$, to generate the recursion equations, one has to use a computer. It seems clear that a brute-force approach to determine the recursion equations is not feasible, except for a few additional values of b.

Interestingly, even though the recursion equations are rather complicated, we show below that for all $b \geq 3$, the generating function has an essential singularity of the type $G(x) \sim \exp \left(a\left|x_{c}-x\right|^{-\alpha}\right)$. This corresponds to $\bar{A}_{n} \sim$ $x_{c}^{-n} \exp \left(b n^{\psi}\right)$, where b is some constant, and $\psi=\alpha /(1+\alpha)$. We determine the exact value of the b-dependent exponents ψ and ν for all b.

If we start with the initial conditions (Eq. (3)), and iterate the recursion equations, KV found that many qualitative features of the behavior of the recursion equations for the $b=3$ case are same as for $b=2$: for all x below a critical value $x_{c},\left(A^{(r)}, B^{(r)}, C^{(r)}, D^{(r)}, E^{(r)}, F^{(r)}\right)$ tends to a fixed point $\left(A^{*}(x), 0,0, A^{*^{2}}(x), A^{*^{3}}(x), 0\right)$, where $A^{*}(x)$ diverges to infinity as x tends to x_{c} from below. For all $x>x_{c}$, the values of all $\left\{K_{i}\right\}$ tend to infinity for large r. For $x=x_{c}$, both for $b=2$ and 3 , the values of $A^{(r)}, D^{(r)}$ and $E^{(r)}$ tend to infinity, while $C^{(r)}$ and $F^{(r)}$ decrease to zero with iteration. The main difference is the limiting behavior of $B^{(r)}$ at $x=x_{c}$. It tends to a non-zero limit for $b=2$, but to zero for $b=3$. Also, the variables $\left\{\log K_{i}^{(r)}\right\}$ increase linearly with r for $b=2$, but they increase exponentially with r for $b=3$.

What makes this problem tractable is the fact that while the polynomial recursion equations are complicated, the asymptotic behavior of the variables depends only on a few terms in the recursion equations. To see this, consider first the simple case when each function f_{i} has only a single term, and is of the form

$$
\begin{equation*}
K_{i}^{(r+1)}=c_{i} \prod_{j=1}^{6}\left[K_{j}^{(r)}\right]^{\mathbf{m}_{i j}} \tag{13}
\end{equation*}
$$

where \mathbf{m} is 6×6 matrix of non-negative integers. These recursion equations reduce to linear recursions on taking logarithms of both sides. We get

$$
\begin{equation*}
\log K_{i}^{(r+1)}=\sum_{j=1}^{6} \mathbf{m}_{i j} \log K_{j}^{(r)}+\log c_{i} \tag{14}
\end{equation*}
$$

These are easily solved. We get that for large r, the leading behavior of $K_{i}^{(r)}$ is given by

$$
\begin{equation*}
\log K_{i}^{(r+1)}=\sum_{j=1}^{6}\left[\left(\mathbf{m}^{r}\right)_{i j} \log K_{j}^{(1)}+\left(\frac{\mathbf{m}^{r}-1}{\mathbf{m}-1}\right)_{i j} \log c_{j}\right] \tag{15}
\end{equation*}
$$

Let the eigenvalues of the matrix \mathbf{m} be $\left\{\lambda_{\alpha}\right\}, \alpha=1$ to 6 , ordered so that $\lambda_{\alpha}>\lambda_{\alpha+1}$. Let the corresponding right-eigenvectors be $v_{i \alpha}$, so that

$$
\begin{equation*}
\mathbf{m}_{i j} v_{i \alpha}=\lambda_{\alpha} v_{i \alpha} \tag{16}
\end{equation*}
$$

Then, using the eigenvector decomposition of \mathbf{m}, we see that for large r

$$
\begin{equation*}
\log K_{i}^{(r)}=\delta_{1} \lambda_{1}^{r} v_{i 1}+\delta_{2} \lambda_{2}^{r} v_{i 2}+\text { higher order terms } \tag{17}
\end{equation*}
$$

where δ_{1} and δ_{2} are some coefficients, that can be expressed in terms of $K_{i}^{(1)}, c_{j}$'s, and the left eigenvectors of \mathbf{m}. As \mathbf{m} has non-negative elements and $c_{i} \geq 1, v_{i 1}$ are of the same sign, which can be chosen positive. Then all K_{i} 's increase or decrease with iteration for large r according as $\delta_{1}>0$ or $\delta_{1}<0$. Thus $\delta_{1}=0$ must correspond to $x=x_{c}$, and for small deviations of x from x_{c}, by continuity, we will have δ_{1} proportional to $\left(x-x_{c}\right)$.

If $\delta_{1}=0$, then the behavior of K_{i} 's for large r is governed by the second term in Eq.(17). In this case, all $v_{i 2}$'s are not of same sign. If v_{12}, v_{42} and v_{52} are positive, and the rest negative, we would get K_{1}, K_{4} and K_{5} to diverge,
and K_{2}, K_{3} and K_{6} tend to zero for large r, as expected from the preceding discussion.

Conversely, consider the full recursion equation(11). For any two infinite sequences $a^{(r)}$ and $b^{(r)}$ whose logarithm diverges to infinity as r increases, we define the notation

$$
\begin{equation*}
a \cong b, \text { iff } \lim _{r \rightarrow \infty} \frac{\log a^{(r)}}{\log b^{(r)}}=1 \tag{18}
\end{equation*}
$$

We make the ansatz that at $x=x_{c}$, for large r we have

$$
\begin{equation*}
K_{i}^{(r)} \cong \exp \left(v_{i} \lambda^{r}\right) \tag{19}
\end{equation*}
$$

Then, as the number of terms in the recursion equations is finite, for each K_{i}, there must be at least one term in the right hand side of its recursion equation for which the asymptotic rate of growth of the logarithm is exactly as the same as that of the left hand side. We can define a matrix m such that this dominant term is of the form of Eq.(13). Then we must have

$$
\begin{equation*}
\lambda v_{i}=\sum_{j=1}^{6} \mathbf{m}_{i j} v_{j} \tag{20}
\end{equation*}
$$

while all other terms in the equation for K_{i} are either neglible for large r, or make a contribution of comparable amount. These dominant terms define the matrix \mathbf{m}. The vector $\left\{v_{i}\right\}$, then, is a right eigenvector of \mathbf{m}, with eigenvalue λ.

If there are more than one terms that make contributions of the same order, say in the recursion equation for K_{i}, then for any two such terms, there are two different row-vectors $\mathbf{m}_{\mathbf{i}}$ and $\mathbf{m}_{\mathbf{i}}^{\prime}$ that satisfy eq.(20). Then we can subtract these to get a relation

$$
\begin{equation*}
\sum_{j=1}^{6}\left[\mathbf{m}_{i j}-\mathbf{m}_{i j}^{\prime}\right] v_{j}=0 \tag{21}
\end{equation*}
$$

There is one such equation for every such pair. However, all of them are not independent. We first reduce these to the minimal set of linearly independent equations. then, each one of such equations can be used to eliminate one of the v 's, and then write Eq.(20) as an equation in fewer variables, with a new lower-dimensional matrix \mathbf{m}. This also changes the
coefficients c_{i} and the eigenvectors, but does not change the value of λ_{1} and λ_{2}.

For example, for the $b=3$ fractal, KV found that the dominant terms in the recursion equations are

$$
\begin{gather*}
A^{\prime}=2 A^{2} B^{2} \tag{22}\\
B^{\prime}=A^{2} B^{2} F+3 A B^{4} \tag{23}\\
C^{\prime}=3 A^{2} B^{4}+A^{3} B^{2} F \tag{24}\\
D^{\prime}=4 A^{3} B^{2} \tag{25}\\
E^{\prime}=6 A^{4} B^{2} \tag{26}\\
F^{\prime}=2 B^{6}+6 A B^{4} F \tag{27}
\end{gather*}
$$

We note that the right hand side involves only A, B and F, and the variable C, D and E can be determined in terms of these. In Eq.(23), the two terms on the right hand side are of same order iff $A F \cong B^{2}$. This corresponds to the condition

$$
\begin{equation*}
v_{1}-2 v_{2}+v_{6}=0 \tag{28}
\end{equation*}
$$

Note that we get the same condition if we had used Eqs.(24), or (27) instead of Eq.(23). Let

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{A^{(r)} F^{(r)}}{\left(B^{(r)}\right)^{2}}=f^{*} \tag{29}
\end{equation*}
$$

Then we can write $F=f^{*} B^{2} / A$ for large r, and eliminate F and work with a simpler set of recursions

$$
\begin{equation*}
A^{\prime}=2 A^{2} B^{2}, \quad B^{\prime}=\left(3+f^{*}\right) A B^{4} \tag{30}
\end{equation*}
$$

This corresponds to a 2×2 matrix

$$
\mathbf{m}=\left(\begin{array}{ll}
2 & 2 \tag{31}\\
1 & 4
\end{array}\right)
$$

With this change of variables, the other equations also reduce to single term equations. Also, the matrix \mathbf{m}, and hence the eigenvalues λ_{1} and λ_{2} do not depend on the coefficient $\left(3+f^{*}\right)$.

Similarly, in other cases, the asymptotic behavior of the variables K_{i} 's with the full complicated polynomial recursion relations may be reduced to that for a simpler system of equations where only one term (to be called the dominant term) is kept from each polynomial f_{i} in Eq.(11).

The dominant terms are not unique. Only a few terms in each of the polynomials $f_{i}\left(\left\{K_{j}\right\}\right)$ are dominant, and any of them can be used for determining the matrix \mathbf{m}, and hence the eigenvalues λ_{1} and λ_{2}.

We note that in the neighborhood of different fixed points, different terms are dominant. For example, for branched polymers with attractive self-interaction, the fixed point corresponding to the dense phase is $\left\{K_{i}\right\}=$ $\{0,0, \infty, 0, \infty, \infty\}$. Clearly, near this fixed point, the dominant terms are different.

5 Identifying the dominant terms

The problem of determining the critical exponents for our problem thus is reduced to that of identifying what are the dominant terms in the recursion equations. Each term in the recursion equation corresponds to a class of configurations of the polymers. However, all possible combinations of powers are not allowed in a given equation, as there are connectivity constraints on the allowed configurations. For example, a term like $E^{\frac{b(b+1)}{2}}$ corresponding to all r-th order triangles with configurations of type E has monomers not connected to the corners, and is not allowed.

Also, we note that while we may allow polymers with loops, the ratios like $F^{(r)} / C^{(r)}$ and $B^{(r)} / D^{(r)}$ tend to zero for large r. Thus, any term corresponding to a polymer with loops is dominated by one without loop, obtained by removing one of the bonds in the loop (which changes a type F triangle into type C, or type B into type D). Thus, loops are irrelevant, and the dominant terms correspond to polymer configurations without loops.

To understand the characteristics of dominant configurations better, it is instructive to look at configurations that differ from each other locally.

Consider configurations C_{1} and C_{2} shown in Fig. 4. We assume that these are identical to each other, except in the three r-th order triangles shown. In C_{1}, the vertex common to the three triangles shown is not connected to the polymer, but in C_{2} it is. Then if C_{1} is an allowed configuration, which is

Figure 4: Local modification of polymer confugurations to increase its weight. The weight increases is going from configuration C_{1} to C_{2}, and from C_{3} to C_{4}.
connected to the outside in a specified way, so is C_{2}. If the weight of the rest of polymer outside the three triangles is \mathcal{W}, the weight of C_{1} is $\mathcal{W} A$, while that of C_{2} is $\mathcal{W} B A^{2}$. The ratio of weights is $A B$, which tends to infinity for large r (we shall show this later). This implies that a configuration of type C_{2} will dominate over the corresponding C_{1}.

Again, assume that C_{3} and C_{4} in Fig. 4 are the same configuration outside the three triangles shown. The ratio of weights of C_{4} and C_{3} is $A^{2} F / B$. This also tends to infinity for large r (also proved later), and hence given a configuration of type C_{1} or C_{3}, with two 'empty' triangles near the polymer, we can attach a sidebranch to the polymer to create a configuration that dominates over it.

This technique of creating a more dominant configuration by attaching sidebranches works only if the two triangles into which the polymer is extended are initially totally empty of polymer. This is shown in Fig. 5, where again we obtain the configuration C_{6} by attaching more monomers to the polymer configuration C_{5}, with configuration of polymer outside the triangles remaining unchanged. In this case, the ratio of weights of C_{6} and C_{5} is $D B / A$, which we shall show tends to zero or large r. Hence configurations of type C_{5} dominate over C_{6}. Similarly, we can see that ratio of weights of C_{8} and C_{7} is C, which tends to zero for large r. Thus, a configuration like C_{7} is dominant over the corresponding configuration of type C_{8}. We see that C or D type vertices are not favored in creating a dominant configuration.

We can start with any allowed configuration of the polymer, and use this local modifications to generate configurations which are more dominant (Fig. 6). If we start with an initial configuration with a small segment of polymer, with many empty triangles, we find growth at tips or sidebranches is favorable. We continue this until no such growth sites can be found, and any further growth of polymer reduces its weight. This is then the maximal weight configuration. Fig. 7 shows two such configurations for the $b=7$ fractal corresponding to configurations of type A. We see that in a maximal weight configuration in a $(r+1)$-th order triangle, the polymer goes through as many as possible of the corner vertices of the r-th order triangles that are inside the $(r+1)$-th order triangle (not at the boundary of it), and do not contain any type C, D or E vertices. This is a generalization of the observation of KV [11] that the dominant terms in the recursion equations had the central node of the triangle occupied.

To generate the different terms that are dominant for the different terms

Figure 5: Some examples of configurations where extending the polymer configuration is not favorable. Here C_{5} has higher weight than C_{6}, and C_{7} has higher weight than C_{8}.

Figure 6: Generating the dominant configuration by extending the cluster.

Figure 7: Two of the dominant configurations that contribute to $A^{(r+1)}$ for the $b=7$ fractal.
in different K_{i}, we can take the dominant configuration for $A^{(r+1)}$, and modify it appropriately. For example, consider the dominant configurations for $B^{(r+1)}$. Now, in the dominant configuration for $A^{(r+1)}$, the polymer is as extended as possible, and hence will reach very close to the other corners of the $(r+1)$-th order triangle. Then we have to make only a local modification in the triangles near this corner to connect it to the corner. This is shown in Fig. 8. Let the weight of the dominant configurations of $A^{(r+1)}$ be \mathcal{X}, and the multiplicative factor needed to convert its weight into that of $B^{(r+1)}$ be \mathcal{Y}.

Then, we have, by definition,

$$
\begin{equation*}
A^{(r+1)} \cong \mathcal{X} ; B^{(r+1)} \cong \mathcal{X} \mathcal{Y} \tag{32}
\end{equation*}
$$

To get the dominant configuration of $F^{(r+1)}$, we have to connect the dominant polymer configuration of $A^{(r+1)}$ to both of the other corners. As the polymer in the dominant configuration reaches close to both of them, these local modifications can be done independently. Hence we get

$$
\begin{equation*}
F^{(r+1)} \cong \mathcal{X} \mathcal{Y}^{2} \tag{33}
\end{equation*}
$$

To get the dominant configurations for $D^{(r+1)}$, we have to add a polymer segment disconnected to the first to the second corner. This can also be done by a local modification of the configuration near the corner (see Fig.
8). We define \mathcal{Z} as the factor by which we have to multiply the weight of the configuration of $A^{(r+1)}$ to affect this change. Thus, we have

$$
\begin{equation*}
D^{(r+1)} \cong \mathcal{X} \mathcal{Z} \tag{34}
\end{equation*}
$$

Dominant confugurations for $E^{(r+1)}$ involve two such local changes, which can be done independently. Similarly, for $C^{(r+1)}$ also, we have to make local modifications at the two corners, connecting one corner to the existing $A^{(r+1}$ cluster, and adding a disconnected cluster at the second corner. This gives us

$$
\begin{equation*}
E^{(r+1)} \cong \mathcal{X} \mathcal{Z}^{2} ; \quad C^{(r+1)} \cong \mathcal{X} \mathcal{Y} \mathcal{Z} \tag{35}
\end{equation*}
$$

Thus, as far as the dominant terms are concerned, we can express the six functions f_{i} in terms of three functions \mathcal{X}, \mathcal{Y} and \mathcal{Z}. Equivalently, we can eliminante three of the variables (say C, E and F) using the relations

$$
\begin{equation*}
D^{2} \cong A E, \quad B^{2} \cong A F, \quad A C \cong B D \tag{36}
\end{equation*}
$$

We note that the weights of the two configurations shown in Fig. 7 are $A^{14} B^{8} F^{2}$ and $A^{15} B^{6} F^{3}$ respectively. If $B^{2} \cong A F$, these make asymptotically equal contribution $A^{12} B^{12}$ to \mathcal{X}.

Also, as $A^{2} F / B \cong A B$, it follows that the weight increases by the same factor $A B$ in going from configuration of type C_{1} to C_{2}, and from C_{3} to C_{4} (fig. 4). Similarly, the weight changes by the same factor $B D / A \cong C$, when going from C_{5} to C_{6}, as in going from C_{7} to C_{8}. Again, as $C^{(r)}$ tends to zero for large r, we have justified the asumption made earlier about such extentions being unfavorable.

6 Critical exponents for $b \geq 3$

If we start with the shortest polymer class of configurations that contribute to $A^{(r+1)}$ having just weight $A^{(r)}$, then the first extension is by a corner vertex at the boundary of the triangle, and the resulting weight is $A B$. For any subsequent extention, using either extension of type $C_{1} \rightarrow C_{2}$, or $C_{3} \rightarrow C_{4}$, the weight increases by a factor $A B$. After n such extentions, the weight of the configuration is $A^{n} B^{n}$. For weight to be maximal, we want n to be as

Figure 8: Changing a dominant configuration for $A^{(r+1)}$ (middle figure) to one for $B^{(r+1)}$ (left figure) or $D^{(r+1)}$ (right figure) by local change near a corner. The polymer is connected to another corner vertex of the $(r+1)$-th order triangle (not shown in figure).
large as possible. It is easy to check that the largest value of n allowed (to be denoted by β here) is

$$
\begin{array}{r}
\beta=\left(b^{2}-1\right) / 4, \text { if } b \text { is odd } \\
=b^{2} / 4, \text { if } b \text { is even. } \tag{38}
\end{array}
$$

For example, both the configurations shown in Fig.7, have $\beta=12$. From the argument given above, any further extension of the polymer will be unfavorable. Hence such configurations correspond to the maximal term. If the number of such configurations is $d(b)$, we have

$$
\begin{equation*}
\mathcal{X}=d(b) A^{\beta} B^{\beta} \tag{39}
\end{equation*}
$$

It is difficult to determine $d(b)$ explicitly for a general value of b. Of course, one can determine it for small b. This number would be expected to increase as $\exp \left(b^{2}\right)$ for large b. Fortunately, its precise numerical value does not matter for determining the exponents ν and ψ.

We can similarly determine \mathcal{Y} and \mathcal{Z}. To modify the dominant configuration of $A^{(r+1)}$ to that for $B^{(r+1)}$, one notes that as the former corresponds to a maximally extended polymer, one can find specific configurations such that the polymer reaches upto the r-th order triangle neighboring the corner which we want to reach. Then only changing the configuration in two such triangles is enough (fig. 8). This gives us

$$
\begin{equation*}
\mathcal{Y}=B^{2} / A \tag{40}
\end{equation*}
$$

Similarly, to get configuration of type $D^{(r+1)}$ from \mathcal{X}, we need only add an A-type vertex at that corner (fig. 8). This gives

$$
\begin{equation*}
\mathcal{Z}=A \tag{41}
\end{equation*}
$$

Putting all these together, we see that at the critical point, the recursion equations for $A^{(r)}$ and $B^{(r)}$ are given by

$$
\binom{\log A^{(r+1)}}{\log B^{(r+1)}}=\left(\begin{array}{cc}
\beta & \beta \tag{42}\\
\beta-1 & \beta+2
\end{array}\right)\binom{\log A^{(r)}}{\log B^{(r)}}+\binom{c_{1}}{c_{2}}
$$

For the 2×2 matrix given above, the equation determining the eigenvalues is

$$
\begin{equation*}
\lambda^{2}-2(\beta+1)+3 \beta=0 \tag{43}
\end{equation*}
$$

whoes roots are

$$
\begin{equation*}
\lambda_{ \pm}=\beta+1 \pm \sqrt{\beta^{2}-\beta+1} \tag{44}
\end{equation*}
$$

If $\delta=x_{c}-x$ is very small, then it increases by a factor λ_{+}under iteration, till it becomes sufficiently large so that linear analysis near the fixed point is no longer applicable. The number of iterations $r_{\text {max }}$ required for the deviation to become $\mathcal{O}(1)$ is given by

$$
\begin{equation*}
\lambda_{+}^{r_{\max }} \delta \simeq \mathcal{O}(1) \tag{45}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
r_{\max }=\log (1 / \delta) / \log \lambda_{+} \tag{46}
\end{equation*}
$$

the linear size of polymer varies as $b^{r_{\text {max }}} \sim(1 / \delta)^{\nu}$ with

$$
\begin{equation*}
1 / \nu=\log _{b} \lambda_{+} . \tag{47}
\end{equation*}
$$

It is easy to check that for large b, ν has an expansion of the form

$$
\begin{equation*}
1 / \nu=D_{b}\left(1-\frac{1}{b \log \left(b^{2} / 2\right)}+\text { higher order terms. }\right) \tag{48}
\end{equation*}
$$

For $\delta \ll 1, \log A^{(r)}$ increases as λ_{-}^{r}. The maximum contribution to $G(x)$ in equation (XX) comes from the term $r=r_{\text {max }}$, hence we can replace the
sum by the largest term, and write $\log G(x) \sim \log \mathcal{X}^{\left(r_{\max }\right)} \sim \lambda_{-}^{r_{\text {max }}}$. This gives $\log G(x) \sim(1 / \delta)^{-a}$, with

$$
\begin{equation*}
a=\frac{\log \lambda_{-}}{\log \lambda_{+}} \tag{49}
\end{equation*}
$$

For large b, this varies as $\log (3 / 2) / \log b$, and tends to zero as b tends to infinity.

If $G(x)$ varies as $\exp \left[\left(x_{c}-x\right)^{-a}\right]$ for x near x_{c}, it is easy to see that coefficient of x^{n} in the Taylor expansion of $G(x)$ varies as $x_{c}^{-n} \exp \left(b n^{\psi}\right)$ where b is some constant, and $\psi=a /(1+a)$.

We have listed the numerical values of the critical exponents $1 / \nu$ and ψ, along with the fractal dimension D_{b} for some representative values of b in Table I.

7 Discussion

The critical exponent ν does not tend to the two-dimensional value as b tends to infinity. This is not very surprizing, and a similar behavior has been encountered before in the case of the susceptibility exponent for linear polymers. Basically, there is a crossover from the two-dimensional euclidean value to the fractal value. For polymers with n monomers, with linear size $\ll b$ (i.e. $n \ll b^{1 / \bar{\nu}}$, where $\bar{\nu}$ is the 2 -dimensional value), the space looks euclidean, and their mean size will be similar to that of polymers in regular 2-dimensional space. However, polymers with $n \gg b^{1 / \bar{\nu}}$ feel the constrictions of the corners strongly, and try to avoid them, and become more compact. Their average size is given by n^{ν}, with critical exponent ν dependent on b. There is no exponent θ that we can define for any $b \geq 3$, because of the presence of the essential singularity.

One can define the chemical distance exponent z for our problem, just as we do for the euclidean problem. We take two sites on the branched polymer at a distance ℓ as measured along bonds of the polymer. If the average euclidean distance between these points is $\bar{r}(\ell)$, we define the exponent z by the relation $\bar{r}(\ell) \sim \ell^{1 / z}$, for $1 \ll \ell \ll n^{1 / \nu}$. We have not been able to calculate z for different values of b.

We note that the logarithm of the number of configurations of polymer acts like the entropy. The non-translationally invariant fractal lattice provides a deterministic model for the inhomogenous environment encountered
by the polymer in a random environment. In this case, it would seem more reasonable to average the logarithm of the number of configurations of rooted branched polymers over different positions of the root, as that would correspond to averaging the free energy of the polymer over different positions of the polymer in space. Such averages have been calculated only very recently for linear polymers on fractals [18]. It would be interesting to see if the stretched exponentional form for branched polymers is seen also in these "quenched" averages. Another open problem is the calculation of exponents characterizing the collapse transition of self-attracting polymers on these fractals. It is hoped that future works will throw some light on these questions.

Table I
The fractal dimension D_{b}, and critical exponents $1 / \nu$ and ψ for some values of b

b	D_{b}	$1 / \nu$	ψ
3	1.63093	1.41484	0.13250
4	1.66096	1.55263	0.13381
5	1.68261	1.57268	0.12429
7	1.71241	1.64448	0.10702
10	1.74036	1.70342	0.09154
15	1.76787	1.74406	0.07825
25	1.79685	1.78466	0.06568
50	1.82788	1.82292	0.05375
100	1.85165	1.84951	0.04543

References

[1] D. R. Nelson and M. E. Fisher, Ann. Phys.(NY), 91 (1975) 226.
[2] D. Dhar, J. Math. Phys., 18 (1977) 577; ibid. 19 (1978) 5.
[3] Y. Gefen, B. B. Mandelbrot and A. Aharony, Phys. Rev. Lett. 45 (1980) 855.
[4] R. Rammal G. Toulouse and J. Vannimenus, J. Phys. (Paris), 45 (1984) 389.
[5] J. A. Given and B. B. Mandelbrot, J. Phys. A 16 (1983) L565.
[6] S. Elezovic, M. Knezevic and S. Milosevic, J. Phys. A 20 (1987) 1215.
[7] D. Dhar, J. Phys. (Paris), 49 (1988) 397.
[8] S. Milosevic and I Zivic, J. Phys A 24 (1991) L833.
[9] I. Zivic and S. Milosvic, J. Phys. A 26 (1993) 3393.
[10] M. Knezevic and J. Vannimenus, Phys. Rev. Lett., 56 (1986) 1591.
[11] M. Knezevic and J. Vannimenus, Phys. Rev. B 35 (1987) 4988.
[12] D. Dhar and A. Dhar, Phys. Rev. E 55 (1997) R 2093.
[13] F. Daerden, V. B. Priezzhev and C. Vanderzande, Physica A 292 (2001) 43.
[14] D. Dhar, J. Phys. A 21 (1988) 2261.
[15] R. Hilfer and A. Blumen, J. Phys. A 17 (1984) L537.
[16] S. Milosevic, D. Stassinupoulose and H. E. Stanley, J. Phys. A 21 (1988) 1477.
[17] M. Knezevic, Ph.D. thesis, University of Paris, 1986.
[18] Sumedha and D. Dhar, in preparation.

