51 research outputs found

    Cell libraries and verification

    Get PDF
    Digital electronic devices are often implemented using cell libraries to provide the basic logic elements, such as Boolean functions and on-chip memories. To be usable both during the development of chips, which is usually done in a hardware definition language, and for the final layout, which consists of lithographic masks, cells are described in multiple ways. Among these, there are multiple descriptions of the behavior of cells, for example one at the level of hardware definition languages, and another one in terms of transistors that are ultimately produced. Thus, correct functioning of the device depends also on the correctness of the cell library, requiring all views of a cell to correspond with each other. In this thesis, techniques are presented to verify some of these correspondences in cell libraries. First, a technique is presented to check that the functional description in a hardware definition language and the transistor netlist description implement the same behavior. For this purpose, a semantics is defined for the commonly used subset of the hardware definition language Verilog. This semantics is encoded into Boolean equations, which can also be extracted from a transistor netlist. A model checker is then used to prove equivalence of these two descriptions, or to provide a counterexample showing that they are different. Also in basic elements such as cells, there exists non-determinism reflecting internal behavior that cannot be controlled from the outside. It is however desired that such internal behavior does not lead to different externally observable behavior, i.e., to different computation results. This thesis presents a technique to efficiently check, both for hardware definition language descriptions and transistor netlist descriptions, whether non-determinism does have an effect on the observable computation or not. Power consumption of chips has become a very important topic, especially since devices become mobile and therefore are battery powered. Thus, in order to predict and to maximize battery life, the power consumption of cells should be measured and reduced in an efficient way. To achieve these goals, this thesis also takes the power consumption into account when analyzing non-deterministic behavior. Then, on the one hand, behaviors consuming the same amount of power have to be measured only once. On the other hand, functionally equivalent computations can be forced to consume the least amount of power without affecting the externally observable behavior of the cell, for example by introducing appropriate delays. A way to prevent externally observable non-deterministic behavior in practical hardware designs is by adding timing checks. These checks rule out certain input patterns which must not be generated by the environment of a cell. If an input pattern can be found that is not forbidden by any of the timing checks, yet allows non-deterministic behavior, then the cell’s environment is not sufficiently restricted and hence this usually indicates a forgotten timing check. Therefore, the check for non-determinism is extended to also respect these timing checks and to consider only counterexamples that are not ruled out. If such a counterexample can be found, then it gives an indication what timing checks need to be added. Because current hardware designs run at very high speeds, timing analysis of cells has become a very important issue. For this purpose, cell libraries include a description of the delay arcs present in a cell, giving an amount of time it takes for an input change to have propagated to the outputs of a cell. Also for these descriptions, it is desired that they reflect the actual behavior in the cell. On the one hand, a delay arc that never manifests itself may result in a clock frequency that is lower than necessary. On the other hand, a forgotten delay arc can cause the clock frequency being too high, impairing functioning of the final chip. To relate the functional description of a cell with its timing specification, this thesis presents techniques to check whether delay arcs are consistent with the functionality, and which list all possible delay arcs. Computing new output values of a cell given some new input values requires all connections among the transistors in a cell to obtain stable values. Hitherto it was assumed that such a stable situation will always be reached eventually. To actually check this, a wire is abstracted into a sequence of stable values. Using this abstraction, checking whether stable situations are always reached is reduced to analyzing that an infinite sequence of such stable values exists. This is known in the term rewriting literature as productivity, the infinitary equivalent to termination. The final contribution in this thesis are techniques to automatically prove productivity. For this purpose, existing termination proving tools for term rewriting are re-used to benefit from their tremendous strength and their continuous improvements

    Stream Productivity by Outermost Termination

    Full text link
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. A core property is productivity: unfolding the equations produces the intended stream in the limit. In this paper we show that productivity is equivalent to termination with respect to the balanced outermost strategy of a TRS obtained by adding an additional rule. For specifications not involving branching symbols balancedness is obtained for free, by which tools for proving outermost termination can be used to prove productivity fully automatically

    Efficient Encoding and Transmission of Digital Receipts for Mobile Commerce

    Get PDF
    to discuss products and purchases in real-time. However, the transmission of digital receipts is still a problem, since often Internet connectivity is not available at the point of sale which hampers a real-time interaction. To overcome this problem with current technology, this paper presents a way to efficiently transmit a complete receipt in a QR-code, a certain kind of 2D matrix code (often also called “2D barcode”). Thereby, only a smartphone equipped with a camera is needed and Internet connectivity is not a problem anymore. However, due to size constraints, the encoding of a full receipt needs to be as efficient as possible. We present a custom, domain-specific encoding that was developed exactly for this purpose and show that our prototype implementation performs better than sophisticated, general purpose compression algorithms on this kind of data

    On the Random Structure of Behavioural Transition Systems

    Get PDF
    Random graphs have the property that they are very predictable. Even by exploring a small part reliable observations are possible regarding their structure and size. An unfortunate observation is that standard models for random graphs, such as the  Erdos-Renyi model, do not reflect the structure of the graphs that describe distributed systems and protocols. In this paper we propose to use the parallel composition of such random graphs to model `real' state spaces. We show how we can use this structure to predict the size of state spaces, and we can use it to explain that software bugs are in practice far easier to find than predicted by the standard random graph models. By some practical experiments we show that our new random model is an improvement over the standard model in predicting properties of transition systems representing realistic systems

    Process Algebra as a Common Framework for Hardware/Software Coverification

    Full text link

    Loops under Strategies ... Continued

    Full text link
    While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop detection techniques usually do not take strategies into account. So even if a rewrite system has a loop, it may still be terminating under certain strategies. Therefore, our goal is to develop decision procedures which can determine whether a given loop is also a loop under the respective evaluation strategy. In earlier work, such procedures were presented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current paper, we build upon this work and develop such decision procedures for important strategies like leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this way, we obtain the first approach to disprove termination under these strategies automatically.Comment: In Proceedings IWS 2010, arXiv:1012.533

    Extensional and Intensional Strategies

    Full text link
    This paper is a contribution to the theoretical foundations of strategies. We first present a general definition of abstract strategies which is extensional in the sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system. We then move to a more intensional definition supporting the abstract view but more operational in the sense that it describes a means for determining such a set. We characterize the class of extensional strategies that can be defined intensionally. We also give some hints towards a logical characterization of intensional strategies and propose a few challenging perspectives

    Termination of canonical context-sensitive rewriting and productivity of rewrite systems

    Full text link
    [EN] Termination of programs, i.e., the absence of infinite computations, ensures the existence of normal forms for all initial expressions, thus providing an essential ingredient for the definition of a normalization semantics for functional programs. In lazy functional languages, though, infinite data structures are often delivered as the outcome of computations. For instance, the list of all prime numbers can be returned as a neverending stream of numerical expressions or data structures. If such streams are allowed, requiring termination is hopeless. In this setting, the notion of productivity can be used to provide an account of computations with infinite data structures, as it "captures the idea of computability, of progress of infinite-list programs" (B.A. Sijtsma, On the Productivity of Recursive List Definitions, ACM Transactions on Programming Languages and Systems 11(4):633-649, 1989). However, in the realm of Term Rewriting Systems, which can be seen as (first-order, untyped, unconditional) functional programs, termination of Context-Sensitive Rewriting (CSR) has been showed equivalent to productivity of rewrite systems through appropriate transformations. In this way, tools for proving termination of CSR can be used to prove productivity. In term rewriting, CSR is the restriction of rewriting that arises when reductions are allowed on selected arguments of function symbols only. In this paper we show that well-known results about the computational power of CSR are useful to better understand the existing connections between productivity of rewrite systems and termination of CSR, and also to obtain more powerful techniques to prove productivity of rewrite systems.Partially supported by the EU (FEDER), Spanish MINECO TIN 2013-45732-C4-1-P, and GV PROMETEOII/2015/013.Lucas Alba, S. (2015). Termination of canonical context-sensitive rewriting and productivity of rewrite systems. Electronic Proceedings in Theoretical Computer Science. 200:18-31. https://doi.org/10.4204/EPTCS.200.2S183120
    • …
    corecore