9 research outputs found

    Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices

    Get PDF
    The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.Comment: Submitted for publicatio

    BIT Numerical Mathematics / Asymptotic quadratic convergence of the parallel block-Jacobi EVD algorithm with dynamic ordering for Hermitian matrices

    No full text
    The proof of the asymptotic quadratic convergence is provided for the parallel two-sided block-Jacobi EVD algorithm with dynamic ordering for Hermitian matrices. The discussion covers the case of well-separated eigenvalues as well as clusters of eigenvalues. Having p processors, each parallel iteration step consists of zeroing 2p off-diagonal blocks chosen by dynamic ordering with the aim to maximize the decrease of the off-diagonal Frobenius norm. Numerical experiments illustrate and confirm the developed theory.(VLID)336474
    corecore