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Simple Summary: Polyploidization, or whole-genome duplication (WGD), represents a dramatic
event in evolution. Although its occurrence is much rarer in animals than in plants, distinct WGDs
characterize the stem lineages of vertebrates and teleosts. In tetrapods, true polyploids have been
described in all major groups and include a wide range of genomic configurations and modes of
reproduction. In this work, we provide a comprehensive report on the presence of different types of
polyploidy in tetrapods, with a particular focus on its genomic, evolutionary, and ecological diversity.
We also describe the main routes of the formation of neopolyploids and discuss the two competing
hypotheses that consider polyploidy either as a major force in evolution or, mainly, as an evolutionary
dead end.

Abstract: True polyploid organisms have more than two chromosome sets in their somatic and
germline cells. Polyploidy is a major evolutionary force and has played a significant role in the
early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However,
the contribution of polyploidy to the generation of new genomic, ecological, and species diversity
in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important
pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety
of different forms, genomic configurations, and biological implications. Herein, we report and
discuss the available information on the different origins and evolutionary and ecological significance
of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have
an unparalleled diversity of polyploids and, until recently, they were considered to be the only
vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles,
polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds
and mammals, true polyploidy has generally been considered absent (non-tolerated). These views
are being changed due to an accumulation of new data, and the impact as well as the different
evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation.

Keywords: chromosomes; evolution; genome; reproduction; vertebrates

1. Introduction

True polyploidy, or whole-genome duplication (WGD), is the genetic configuration
wherein more than two sets of homologous chromosomes are present in the genome of
both somatic and germline cells. A polyploidization event may result in instantaneous
speciation by establishing reproductive barriers between the (neo)polyploid lineage and
the parental species that lead to reproductive isolation in a single generation [1,2].

In higher plants, polyploidy is a widely recognized major evolutionary force. It is
present in many species of numerous taxonomic groups and multiple, independent, WGDs
characterized the early genomic evolution (paleopolyploidizations) of several evolutionary
lineages [3,4].
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In animals, true polyploidy has historically been overlooked, and its occurrence has
been underestimated. It has been regarded as only marginally relevant in major processes
of phylogenetic diversification and ecological adaptation and is generally considered
incompatible with ontogenesis and sexual reproduction [5]. However, although true
polyploidy is much rarer in animals than in plants, it is nevertheless present in all major
vertebrate taxonomic groups. It occurs relatively frequently in some groups, and this may
imply diverse mechanisms of origin, ploidy levels, and unique modes of reproduction [6,7].

It is now also widely accepted that at least two distinct ancient WGDs (traditionally
described as the two-round hypothesis) occurred at the base of the evolution of verte-
brates [8]. The first likely occurred after the advent of the urochordates, while the second
occurred before the radiation of jawed vertebrates [9]. Furthermore, a third polyploidiza-
tion event occurred in the stem lineage of teleosts (the teleost genome duplication—TGD)
and additional rounds of WGDs occurred independently in different fish taxa (including
Acipenseridae, Salmonidae, and Cyprinidae) [6,10].

In tetrapods, true polyploidy is known in all the major evolutionary lineages. It is
relatively widespread in squamate reptiles, where it is usually associated with the insur-
gence of unisexual lineages, and is widely represented in amphibians, where it includes an
unparalleled diversity of species and genomic configurations [6,11,12]. In mammals and
birds, WGD was once thought to be absent, but it has been reported in octonotid species
and parrots and chickens [13–15].

In this work, we describe the diverse routes through which neopolyploids can originate
and provide an updated and comprehensive summary of the evolutionary and ecological
diversity of polyploidy in all the major groups of tetrapods. We report the occurrence of
different ploidy levels and related modes of reproduction and ecological adaptation, with
a particular focus on the most notable cases. Finally, we compare and discuss the two
major competing hypotheses that describe polyploidy as either a significant evolutionary
advantage or as an evolutionary dead end.

2. Classification and Mechanisms of Polyploidy

The two main pathways that may generate new polyploid lineages are known as
autopolyploidy and allopolyploidy. The two pathways are distinguished based on whether
the emergence of polyploidy occurs by means of the duplication of the chromosome set of
a single species via mitotic (somatic doubling) or meiotic errors (gametic non-reduction)
(autopolyploidy) or by means of the fusion of the chromosome sets of two different species
followed by a WGD (allopolyploidy) [16–18] (Figure 1).

Both mechanisms played a significant role in the diversification of different tetrapod
evolutionary lineages and indicate a wide range of different ecological and evolutionary
implications, including the evolution of unisexual reproduction and the occurrence of
speciation via hybridization [6,18].

In theory, autopolyploids may form within a single individual. However, the new
polyploid lineage would likely suffer from heavy inbreeding depression and, in fact, most
natural autopolyploids are generated after sexual reproduction [19,20].

As a result of their different origins, auto- and allopolyploidy can usually be detected
using several molecular and cytogenetic techniques. For example, in autopolyploids, the
chromosomes of a given quartet, sextet, or octet show complete sequence homology, indis-
tinguishable banding patterns, and form multivalents in meiosis [21]. In allopolyploids, the
two parental genomes may include sufficient differences to lead to the formation of highly
homologous chromosome pairs and meiotic bivalents [21]. Although this typically results in
the conservation of the two separate genomes, relatively higher levels of similarity between
them correspond to higher chances for their homoeologs to pair, thus promoting exchanges
of genetic material [22]. Furthermore, in allopolyploids, the mechanism of recombination
between chromosomes from different sets, known as homoeologous exchange (HE), mostly
involves regions of high similarity such as coding gene regions, thereby promoting the
formation of novel genes and transcripts (neo- and subfunctionalization) [22].
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Figure 1. Schematic representation of autopolyploidy and allopolyploidy.

An intermediate condition between auto- and allopolyploidy, known as segmental
allopolyploidy, is characterized by the presence of two partially differentiated genomes,
leading to the formation of either bivalents or multivalents [17,21]. For example, in al-
lopolyploids, homoeologous exchange may generate mixed chromosomal patterns, where
some regions maintain homoeologous regions while others appear homozygous by pref-
erentially retaining one of the two parental genomes and showing an autopolyploid-like
structure [23]. Over generations, populations with homoeologous exchange may present
highly variable individuals at the chromosomal level, which are differentially affected by
natural selection [24].

Regardless of how it originates, the emergence of polyploidy presents several chal-
lenges for cell processes, physiology, and genome stability [25,26]. The success of neopoly-
ploids is ultimately determined by survival and reproduction rates, competition with
parental lineages, and the complex, long-term ecological and evolutionary consequences of
polyploidy [27]. New polyploids that are incapable of overcoming the early phase of ge-
nomic instability are usually heavily penalized by selection, while those capable of adapting
to the initial genome shock may form a new polyploid population or species (neopoly-
ploids) [28]. In neopolyploids, renewed genomic stability may be achieved through a
process called diploidization, which involves the progressive differentiation (or loss) of
duplicate genetic material (repetitive DNA, genes, and whole chromosomes), which, ulti-
mately, restores a diploid genome structure [29]. In diploidization, the deletion of DNA
repeats is typically coupled with the neo- and subfunctionalization of duplicated genes
and chromosome rearrangements, eventually leading to the formation of a functionally
pseudodiploid genome [29].
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3. Amphibians

No other tetrapod group exhibits a comparable number of polyploid taxa or a simi-
lar variety of different polyploid genomic configurations and modes of reproduction as
the modern amphibians [6,11,30]. This is likely due to a combination of several factors,
including a high level of genomic plasticity and the occurrence of undifferentiated sex
chromosomes that do not require dosage compensation [11,31].

To date, polyploidy in amphibians is known to occur in more than 100 species dis-
tributed across 19 families of Urodela (4 families) and Anura (15 families), while it has not
yet been found in Gymnophiona, possibly as a result of the low number of caecilian species
that have been studied with cytogenetic methods [11,32,33] (Figure 2).
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Natural (not experimentally induced) polyploidy in amphibians ranges from 3n (in
10 different families) to 12n (only in the genus Xenopus, family Pipidae) [11,32,33] (Figure 2;
phylogenetic relationships redrawn from AmphibiaWeb [34] and based on the datasets by
Blackburn and Wake, Feng et al., Jetz and Pyron, Streicher et al., and Yuan et al.) [35–39].
Excluding diploids, tetraploidy (4n) is the most phylogenetically widespread ploidy level
in amphibians, occurring in 14 different families. Pentaploidy (5n) and hexaploidy (6n)
are known in two families, respectively, while octaploidy (8n) has been documented
in Pipidae, Ceratophryidae, and Ranidae [11,32,33], (Figure 2). In general, amphibian
triploids, tetraploids, and octaploids have all been hypothesized to occur either via auto-
or allopolyploidy, while hexaploids and dodecaploids are mostly known to occur via
allopolyploidy [6,30,40].

In amphibians, the genomic, ecological, and evolutionary innovations introduced by
polyploidy have often led to phylogenetic diversification and cladogenesis, and several
striking cases concern different genera that appear to be particularly prone to recurrent
WGDs [6,11].

In the North American mole salamanders of the genus Ambystoma, polyploidy is
associated with a peculiar evolutionary pathway that has led to the diversification of a
unique reproductive mechanism known as kleptogenesis. In particular, Ambystoma is
composed of several bisexual and unisexual species and populations (from 2n to 5n) [41].
Unisexual Ambystoma often live in association with one or more bisexual species, which act
as sperm donors [41]. Apparently, unisexuality follows a classic gynogenetic pathway in
Ambystoma, where male gametes activate embryonic development, but the paternal DNA is
not incorporated in the offspring [42]. However, in some cases, male gametes fuse with
eggs in a manner similar to sexual reproduction or they may substitute one of the haploid
genomes of the female [41,43]. This may lead to multiple paternity and/or the elevation of
the ploidy of the zygote [37,44]. These mechanisms may favor the genetic variability of this
bisexual/unisexual species complex and provide new adaptive advantages. For example, a
recent study highlighted the occurrence of a higher tissue regeneration rate in polyploid
mole salamanders compared to congeneric diploid species [45].

Among the other polyploid Urodela, many species (e.g., Eurycea bilineata, Cynops
pyrrhogaster, Lissotriton alpestris, and Notophthalmus viridescens) include naturally occurring
autopolyploid individuals found in mosaic populations along with normal diploids [46–49].

In the Eurasian toads of the genus Bufotes, diploid, triploid, and tetraploid pop-
ulations represent a complex of more than 10 distinct haplogroups with partial range
overlaps [50,51]. Molecular and cytogenetic analyses suggest that diploid species repro-
duce bisexually and that the 4n B. pewzowi likely represent an allopolyploid species [51].
Interestingly, triploids can originate via hybridization between 2n and 4n populations,
but the 3n B. baturae reproduce sexually through a unique system of differential meiosis,
leading to the fusion of haploid sperm and diploid eggs [51,52].

Another interesting example of polyploidy is the green frog Pelophylax kl. esculentus
(Ranidae), which represents a hybrid between P. lessonae (LL genome) and P. ridibundus
(RR genome) (two diploid bisexual species). In this complex, diploid (LR genome) and
polyploid hybrids (from 3n to 5n) may occur in sympatry [53]. However, the reproduction
of diploid (LR) hybrids relies on the parental species. In fact, in the lessonae-esculentus
system, LR hybrids produce only R gametes and must mate with P. lessonae in order to
generate new hybrids. Conversely, in the ridibundus-esculentus system, LR hybrids mostly
produce L gametes and must mate with P. ridibundus to generate new hybrids [53].

Two notable but different examples of recurrent polyploidy in Amphibia are repre-
sented by the genera Neobatrachus (Lymnodynastidae) and Xenopus (Pipidae). At least
five diploid and four tetraploid Neobatrachus species occur in Australia. The tetraploid
species are likely all autopolyploids, which can backcross with syntopic diploids, producing
triploid hybrids [54]. In Xenopus, there are at least 28 known species with different poly-
ploidy levels (3n, 4n, 8n, and 12n), thus representing the greatest intrageneric variability in
ploidy among vertebrates [11,55]. Polyploid Xenopus species likely originated via multiple,
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independent events of allopolyploidization. In particular, tetraploidy arose at least twice,
octaploidy at least three times, and dodecaploidy at least four times, independently [11,55].

Besides naturally occurring WGD, there are several physical conditions that can ex-
perimentally induce polyploidy (triploidy, tetraploidy, and pentaploidy) and aneuploidy
in both Urodela and Anura, including temperature shock and hydrostatic egg compres-
sion [11,33]. The cellular mechanisms that produce induced polyploids are still unclear, but
these findings further highlight the peculiar genomic plasticity of amphibians and their
predisposition to WGD.

4. Reptiles

Reptiles are emerging model organisms in the study of genomic diversification, chro-
mosome evolution, and sex determination [56–61] and represent an interesting group
whose study facilitates a better understanding of the particular evolutionary pathways
of polyploidy in amniotes. In reptiles, polyploidy is mostly present in squamates (par-
ticularly in lizards) in the form of triploids (Figure 3), which are usually associated with
hybridization and parthenogenesis. Furthermore, squamates represent the only verte-
brates with obligate or true (sperm-independent) parthenogenesis [12,62,63], which can
also be characterized by occasional backcrossing with one or more parental or related
species [64]. Nevertheless, unisexual reproduction is not restricted to polyploid squamates,
and facultative parthenogenesis is generally associated with diploid species [65,66].

In squamate phylogeny [67–70], polyploidy has been documented in eight lizard
families (Gekkonidae, Xantusidae, Lacertidae, Gymnophthalmidae, Teiidae, Agamidae,
Phrynosomatidae, and Liolaemidae) (Figure 3) (e.g., see [6,12]). However, the total number
of currently available karyotypes represent only about 5% of the currently described
lizard species [71], and true polyploidy might also be present in other cytogenetically
understudied taxonomic groups. In addition, polyploid and parthenogenetic lizard lineages
are not uniformly distributed among different taxa, and some families (e.g., Lacertidae and
Teidae) and genera (e.g., Darevskia and Aspidoscelis) show a relatively higher number of
clades with a polyploid genomic configuration and unisexual reproduction [12].

Squamate polyploidy is generally related to events of speciation through hybridiza-
tion that can generate allopolyploid lineages and mosaic populations (see e.g., [6,72]).
Furthermore, the phylogenetic and genetic complexity of some polyploid lizard clades is
increased by reticulate evolution and secondary hybridization [6]. For example, the rock
lizard Darevskia unisexualis (Lacertidae) is a diploid parthenogenetic species that originated
from hybridization between D. raddei nairensis and D. valentine [73]. The females of D.
unisexualis can mate with males of the parental D. valentini, giving rise to triploid and
tetraploid secondary hybrids, including sterile individuals, intersexes, and fertile males
and females [74].

Another striking example of reticulate evolution, and the first case of hybrid tetraploid
individuals in lizards, was reported in Aspidoscelis (Cnemidophorus) (Teidae), which likely
represents the result of a secondary hybridization between the sympatric A. inornatus (a
diploid species that reproduces sexually) and A. exanguis (an allotriploid, hybridogenetic,
parthenogenetic species) [42]. In recent years, hybridization between A. inornatus and A.
exanguis was performed in the laboratory, leading to the generation of a self-sustaining
lineage of clonal tetraploid females [75]. The existence of natural tetraploid hybrid popula-
tions in Aspidoscelis remains to be confirmed, but the evidence provided by [75] represents
the first documented case of a tetraploid parthenogenetic amniote.
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In snakes, true polyploidy is only known in two species. The brahminy blind snake In-
dotyphlops braminus (Typhlopidae) shows a triploid genomic configuration (3n = 42) [76–78]
with all-female populations and represents the only known snake species to reproduce via
obligate parthenogenesis.
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In the generally diploid Elaphe maculata (with a ZW sex chromosome system) (Colu-
bridae), the spontaneous occurrence of triploid male individuals has been reported by the
authors of [79]. Both ZZ and ZZW individuals of E. maculata develop male gonads, leading
to the hypothesis that in this species (and possibly in other squamates), the ratio between
the number of Z chromosomes and autosomes (not the presence of the W chromosome)
controls sex determination [79]. In fact, although most squamate species are characterized
by genetic sex determination with either male (XY) or female heterogamety (ZW), no single
sex-determining gene has been unambiguously isolated so far [71,80], and new insights
into squamate sex determination may stem from future studies of polyploid lineages.

In non-squamate reptiles, the only case reported so far, and a noteworthy example of
the plasticity of polyploidy in tetrapods, is represented by the twist-necked turtle Platemys
platycephala (Chelidae). In this species, a peculiar form of diploid–triploid mosaicism
was first recorded in natural populations [81], but while specimens of P. platycephala from
Suriname and French Guiana exhibit various levels of ploidy (including diploids, triploids,
diploid–triploid mosaic individuals, and triploid–tetraploid mosaic individuals) [81,82],
populations from Brazil and Bolivia show only diploid individuals [81,83]. It was also
hypothesized that a peculiar subsexual mode of reproduction occurs in this species, with
females reproducing parthenogenetically (or gynogenetically), while males are generated
by a temperature-dependent form of sex determination [84]. However, analyses of gonadal
tissues indicated that normal (haploid) gametes were produced in males irrespective of
the ploidy level of somatic tissues, thus supporting the occurrence of sexual reproduction
and discarding the notion of subsexual or unisexual reproduction in this species [82].
Furthermore, there are no known heteromorphic sex chromosomes in P. platycephala, and sex
determination has been hypothesized to be driven by temperature-dependent mechanisms
or ploidy levels [85]. In fact, different ploidy levels in P. platycephala are statistically
associated with sex, with triploidy being largely predominant in males [85]. Therefore, it
appears that the different ploidy levels do not constitute an evolutionary constraint toward
unisexual reproduction in P. platycephala but might represent a genomic driver for the
evolution of new mechanisms of sex determination.

5. Birds

Two different cases of true polyploidy are known in birds. In Gallus domesticus (Gal-
liformes), triploid and tetraploid individuals are known to appear with low frequency,
showing intersex characteristics [86,87]. Intersex polyploids in G. domesticus (usually
triploids) may develop either parthenogenetically or from fertilization between reduced
and unreduced gametes [86].

The other known case concerns the blue-and-yellow macaw, Ara ararauna (Psittaci-
formes), where triploidy was cytogenetically detected by Tiersch et al. [13] in one individual.
The occurrence of true polyploidy in birds is thus currently considered a genetic abnor-
mality, limited to individuals and mostly produced by meiotic errors [88]. As in the case
of mammals (see below), polyploidy has traditionally been considered to be suppressed
in birds mostly because of its negative effects on development and dosage compensa-
tion [6,89]. Nevertheless, the tolerance to genome doubling as well as the occurrence of
parthenogenetic individuals suggest the possibility of a wider presence of true polyploidy
in different bird clades, perhaps representing undetected evolutionary scenarios in poorly
studied taxonomic groups.

6. Mammals

Rare cases of polyploidy have been documented in mammals, and almost all of them
result in non-vital embryos or prenatal death [90]. For example, in humans, polyploidy
may occur as triploid (3n = 69) or tetraploid (4n = 92) embryos, which are generally formed
by polyspermy or abnormal chromosome segregation either via diandry (an extra haploid
set from the father) or digyny (an extra haploid set from the mother) and typically represent
non-vital conditions or lead to abnormal development [28,91].
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As a consequence of most empirical evidence gathered on several negative effects of
mammalian polyploidy on sex determination systems, development, and the mechanisms
of dosage compensation, true polyploidy was considered non-existent in mammals [6,89,92]
until the discovery of tetraploidy in the red viscacha rat (Tympanoctomys barrerae) (4n = 102)
(Octodontidae) [14]. This finding was later questioned by the localization of only one NOR-
bearing chromosome pair in the karyotype of the species and the occurrence of just two
clear hybridization signals using different chromosome-specific probes [93]. These results
were interpreted as proof of the occurrence of only two copies of each chromosome in the
genome of T. barrerae, which was consequently regarded as a diploid species [93]. However,
the occurrence of tetraploidy was eventually confirmed in T. barrerae by further analyses
with molecular cytogenetics, which produced differential results on diploid and tetraploid
octodontid species [94]. On the other hand, the localization of the loci of NORs on only two
homologous chromosomes in the karyotype of T. barrerae is likely due to nuclear dominance,
a quite well-known regulatory mechanism in allopolyploids and diploid hybrids [95,96].
In fact, the diploid-like meiotic behavior, heteromorphic G-bands, and the chromosomal
variances detected among different individuals of T. barrerae were all considered indicators
of allopolyploidy [14,94,97].

Interestingly, a second case of tetraploidy in Octodontidae was discovered in the
golden viscacha rat Pipanacoctomys aureus (4n = 96) [97]. Phylogenetic relationships among
Octodontidae support the sister clade relationship between T. barrerae and P. aureus, and
the current hypotheses suggest that hybridization between a common ancestor of the two
species and a species showing a similar karyotype to that of Octomys mimax (2n = 56), fol-
lowed by WGD, represents a likely scenario for the origin of tetraploidy in the group [94,98].
On the other hand, T. barrerae and P. aureus remain the only known polyploid mammal
species, and future research should further explore the possible contribution of WGD to
the evolutionary diversification of other mammalian clades.

7. Advantages and Disadvantages of Polyploidy

Two main opposite hypotheses have been traditionally invoked in the ongoing debate
on the evolutionary implications of polyploidy. In fact, the peculiar developmental and
genetic conditions arising with polyploidy can be either beneficial or deleterious for a
given lineage.

The first hypothesis perceives polyploidy as a significant evolutionary force, providing
neopolyploids with new characteristics that can offer several selective advantages over
parental and phylogenetically closely related lineages [18]. Overall, the widespread oc-
currence of polyploidy among animals and plants and the WGDs at the base of many
evolutionary lineages have been considered measures of its evolutionary success [99,100].

In general, most of the possible advantages of polyploidy are directly or indirectly
linked to the establishment of higher degrees of gene diversity and heterozygosity, the
potential loss of self-incompatibility, and the insurgence of asexual reproduction [18].
Hybrid and polyploid genomes may bring genetic (and phenotypic) novelties through neo-
or subfunctionalisation, leading to the acquisition of new adaptations [18,101]. Heterosis
(hybrid vigor) and gene doubling may also mitigate the effects of deleterious mutations and
genotoxicity, providing competitive advantages to new polyploid generations [102,103]. In
plants, allopolyploidy is frequently related to the appearance of invasive species and, in
different animal clades, WGD provides new ecological solutions in stressful environmental
conditions [104–106]. For example, a recent study on three animal clades (Amphibia,
Actinopterygii, and Insecta) showed a positive association between the occurrence of
polyploid lineages and latitude, with glaciations representing the strongest ecological
driver of polyploidy in animals [107].

The second, opposing hypothesis recognizes polyploidy mostly as an evolutionary
dead-end. This view was initially proposed by Stebbins [108,109] and Wagner [110], who
described polyploidy as an essentially detrimental condition with a marginal contribu-
tion in large-scale scenarios. In fact, even considering the WGDs at the base of different
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evolutionary lineages, true polyploid species are rare in animals [5,6] because most neopoly-
ploids are likely unable to overcome the initial bottleneck of genomic instability [20,111,112].
New polyploid lineages reportedly have lower rates of speciation and higher extinction
rates than diploids, and various studies indicate that most neopolyploid lineages might
disappear in a few generations [2,113].

Among the outcomes that have been associated with polyploidy, there are several
negative effects on the general cellular structure that are related to the increase in the
DNA content and cell dimensions, with possible disruptive consequences on intracellular
functions [114]. Cell division in polyploids can be negatively affected by mitotic and meiotic
instability, leading to the formation of aneuploid cells [115]. In meiosis, aneuploidy can
be a result of the formation of multivalents in autopolyploids [116] and the problematic
pairing of homeologs in allopolyploids, which are processes requiring specific mechanisms
to sort subgenomes [117].

Genome doubling may also negatively affect gene expression and generate epigenetic
instability [1,118]. The severity of such effects may vary in different lineages, but a new
equilibrium must be reached in neopolyploids through genome reorganization and the
regulation of gene expression (e.g., via diploidization and DNA methylation) [119,120].

The two major theories proposing polyploidy as either an evolutionary force or dead-
end present different strengths and weaknesses, and neither of them can be seen as univer-
sally correct or incorrect within a large taxonomic group. In fact, the evolutionary success
of polyploidy should be interpreted as a lineage-specific outcome, directly and indirectly
linked to multiple, complex factors. Among them, the particular genomic configuration, the
type of polyploidy (auto- or allopolyploidy), environmental conditions, and the possible
co-occurrence of different non-polyploid related species may all play a significant role in
determining the evolutionary success of a given neopolyploid lineage [27,104,121].

This view also seems to be supported by the recurrent polyploidy in some taxa
(e.g., in Xenopus, in Bufotes among Amphibia, and in Darevskia and Aspidoscelis among
squamates) [12], which might imply particular genomic predispositions to WGD and/or
ecological conditions favoring neopolyploids. Moreover, polyploids (with the same or
different ploidy levels) with different origins can be genetically and/or ecologically dis-
similar even in closely related lineages, as in the case of homoeologous exchange [23,122],
presenting distinct advantages or disadvantages in different environmental conditions.

8. Conclusions and Prospects

Polyploidy is a natural pathway of genomic evolution in most higher tetrapod taxa
with a considerable number of different chromosomal configurations and evolutionary
and ecological innovations. However, polyploidy is not evenly distributed in the major
tetrapod groups. It is widely represented in amphibians and reptiles, particularly in some
genera, where recurrent WGDs have led to multiple speciation events, diploid/polyploid
species complexes, and the appearance of unique modes of reproduction. Modern amphib-
ians present more than 100 auto- and allopolyploid species (from 3n to 12n) of Anura (in
15 familes) and Urodela (4 families), while WGD has not been reported yet in Gymnophiona.
In reptiles, polyploidy (triploidy and tetraploidy) has mostly been documented in squa-
mates (in eight families), where it is usually associated with speciation by hybridization,
parthenogenesis, and, in some cases, reticulate evolution and secondary hybridization. In
mammals, two tetraploid species have been reported in the family Octodontidae, while in
birds, WGD has been found in individuals of the Galliformes and Psittaciformes orders.

Overall, polyploidy has been considered as either a major force in evolution or as an
evolutionary dead-end. However, the evolutionary success of polyploidy should be treated
as a lineage-specific outcome linked to multiple factors, including the particular genomic
configuration, environmental conditions, and the possible co-occurrence of different, non-
polyploid, related species.

Although recent studies greatly improved the knowledge regarding the evolutionary
contribution of polyploidy in tetrapods, its occurrence is likely still underestimated. Future
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research should focus on understudied taxonomic groups in order to better describe the
diversity and the phylogenetic distribution of polyploidy in tetrapods. Furthermore, the
implementation of modern multidisciplinary approaches, including a combination of molec-
ular, cytogenetic, and bioinformatic techniques, will provide the opportunity to explain
still unclear genetic and developmental mechanisms of the formation of neopolyploids,
modes of reproduction, and sex determination.
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