111 research outputs found

    Stereophonic acoustic echo cancellation employing selective-tap adaptive algorithms

    No full text
    Published versio

    Corpus Based Reconstruction of Speech Degraded by Wind Noise

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Nice, France, 201

    Measuring, modelling and predicting perceived reverberation

    Get PDF
    This paper investigates the relationship between the perceived level of reverberation and parameters measured from the room impulse response (RIR), as well as the design of an instrumental measure that predicts this perceived level. We first present the results of an experimental listening test conducted to assess the level of perceived reverberation in speech captured by a single microphone, before analysing the gathered data to assess the influence of parameters such as the reverberation time (T60) or the direct-to-reverberant ratio (DRR). Secondly, we use the results of this analysis to improve the signal based reverberation decay tail (RDT) measure, previously proposed by the authors to predict the perceived level of reverberation. The accuracy of the proposed measure is evaluated in terms of correlation with the subjective scores and compared to the performance of predictors using parameters extracted from the RIR. Results show that the proposed modifications to the RDT does improve its accuracy. Though still slightly outperformed by measures based on parameters of the RIR, we believe the proposed measure to be useful in scenarios in which the RIR or its parameters are unknown

    Period derivative of the M15 X-ray Binary AC211/X2127+119

    Full text link
    We have combined Rossi X-ray Timing Explorer observations of X2127+119, the low-mass X-ray binary in the globular cluster M15, with archival X-ray lightcurves to study the stability of the 17.1 hr orbital period. We find that the data cannot be fit by the Ilovaisky (1993) ephemeris, and requires either a 7sigma change to the period or a period derivative Pdot/P~9x10e-7 per year. Given its remarkably low L_X/L_opt such a Pdot lends support to models that require super-Eddington mass transfer in a q~1 binary.Comment: 11 pages, 3 figures, to be published in New Astronom

    Finite-precision design and implementation of all-pass polyphase networks for echo cancellation in sub-bands

    Get PDF
    All-pass polyphase networks (APN) are particularly attractive for acoustical echo cancellation (AEC) arranged in sub-bands. They provide lower inter-band aliasing, delay and computational complexity than their FIR counterparts. Moreover, APNs achieve higher echo return loss enhancement (ERLE) performance and faster convergence than full-band processing. In the paper, the finite precision implementation of APNs is addressed. A procedure is presented for re-optimising the all-pass coefficients of the prototype low-pass filter for finite precision operation. Robust finite precision implementation of a prototype low-pass filter is discussed. The results of a set of AEC experiments are reported with full and 16-bit precision implementatio

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models

    Developing manufacturing control software: A survey and critique

    Full text link
    The complexity and diversity of manufacturing software and the need to adapt this software to the frequent changes in the production requirements necessitate the use of a systematic approach to developing this software. The software life-cycle model (Royce, 1970) that consists of specifying the requirements of a software system, designing, implementing, testing, and evolving this software can be followed when developing large portions of manufacturing software. However, the presence of hardware devices in these systems and the high costs of acquiring and operating hardware devices further complicate the manufacturing software development process and require that the functionality of this software be extended to incorporate simulation and prototyping.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45542/1/10696_2005_Article_BF01328739.pd
    corecore