595 research outputs found

    I\u27ve Brought Thee An Ivy Leaf

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2223/thumbnail.jp

    Esmeralda

    Get PDF
    Woman dancing with goat in househttps://scholarsjunction.msstate.edu/cht-sheet-music/13643/thumbnail.jp

    Return of Spring : Retour du Printemps

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1617/thumbnail.jp

    Evolution of Immune Systems From Viruses and Transposable Elements

    Get PDF
    Virus-derived sequences and transposable elements constitute a substantial portion of many cellular genomes. Recent insights reveal the intimate evolutionary relationship between these sequences and various cellular immune pathways. At the most basic level, superinfection exclusion may be considered a prototypical virus-mediated immune system that has been described in both prokaryotes and eukaryotes. More complex immune mechanisms fully or partially derived from mobile genetic elements include CRISPR-Cas of prokaryotes and the RAG1/2 system of vertebrates, which provide immunological memory of foreign genetic elements and generate antibody and T cell receptor diversity, respectively. In this review, we summarize the current knowledge on the contribution of mobile genetic elements to the evolution of cellular immune pathways. A picture is emerging in which the various cellular immune systems originate from and are spread by viruses and transposable elements. Immune systems likely evolved from simple superinfection exclusion to highly complex defense strategies

    Viruses and Evolution – Viruses First? A Personal Perspective

    Get PDF
    The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.

    Short hairpin-loop-structured oligodeoxynucleotides reduce HSV-1 replication

    Get PDF
    The Herpes simplex virus (HSV) is known as an infectious agent and widespread in the human population. The symptoms of HSV infections can range from mild to life threatening, especially in immune-compromised individuals. HSV infections are commonly treated with the guanosine analogue Aciclovir, but reports of resistance are increasing. Efforts are made to establish single-stranded antisense oligodeoxynucleotides (as) and small interfering ribonucleic acids (siRNAs) for antiviral treatment. Recently, another class of short interfering nucleic acids, partially double-stranded hairpin loop-structured 54 mer oligodeoxynucleotides (ODNs), was shown to allow hydrolysis of HIV RNA by binding to the viral RNA. This leads to a substrate for the viral RNase H. To assess the potential of such ODNs for inhibition of HSV-1 replication, five partially double-stranded ODNs were designed based on the sequences of known siRNAs against HSV-1 with antiviral activity. Three of them are directed against early and two against leaky late genes. Primary human lung fibroblasts, MRC-5, and African green monkey kidney cells, Vero, were transfected with ODNs and subsequently infected. The effect on HSV-1 replication was determined by analyzing the virus titer in cell culture supernatants by quantitative PCR and plaque assays. An inhibitory effect was observed with all five selected ODNs, with two cases showing statistical significance in both cell types. The observed effect was sequence-specific and dose dependent. In one case the ODN was more efficient than a previously described siRNA directed against the same target site in the mRNA of UL5, a component of the helicase/primase complex. HSV-1 virions and ODNs can be applied simultaneously without transfection reagent, but at a 50-fold higher concentration to Vero cells with similar efficiencies. The results underline the potential of partially double-stranded hairpin loop-structured ODNs as antiviral agents

    JM4 is a four-transmembrane protein binding to the CCR5 receptor

    Get PDF
    AbstractThe CC chemokine receptor 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV) and CCR5 mutants lacking the carboxy (C)-terminus interfere with HIV infection. Therefore, we analysed the C-terminus of CCR5 and here describe Jena-Muenchen 4 (JM4), a novel CCR5-interacting protein. JM4 is membrane-associated, co-precipitates with CCR5, and is ubiquitously expressed. It shares about 62% sequence similarity with JWA and glutamate transporter-associated protein 3-18 (GTRAP3-18), a regulator of an amino acid transporter. JWA, like JM4, is a four-transmembrane protein, which binds to the CCR5 receptor. Furthermore, JM4, JWA, and GTRAP3-18 co-localise and heterodimerise indicating a functional relationship. JM4 co-localises with calnexin in the endoplasmic reticulum and with the mannose 6-phosphate receptor in the Golgi. JM4 and GTRAP3-18 harbor a Rab-acceptor motif, indicating a function in vesicle formation at the Golgi complex. In conclusion, we describe a CCR5-interacting protein, which is suggested to function in trafficking and membrane localisation of the receptor, possibly also other receptors or amino acid transporters
    • …
    corecore