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1 Introduction

There is considerable evidence that the distribution of asset returns depends on an unobserved

state (or regime) of the market (see, e.g., Turner, Startz, and Nelson, 1989; Hamilton and

Susmel, 1994; Ramchand and Susmel, 1998; Perez–Quiros and Timmermann, 2001; Ang and

Bekaert, 2002, 2004; and Guidolin and Timmermann, 2005a,b, 2006). In particular, researchers

often identify a low– and a high–volatility regime, where the correlations between assets tend

to be higher in the adverse state of the market. These findings have important implications

for asset allocation and risk management purposes, because “it is in times of extreme market

conditions that the benefits from diversification ... are most urgently needed” (Campbell,

Koedijk, and Kofman, 2002). In addition, if the next period’s regime is not known with

certainty, investors will want to hedge against the possible occurrence of the high–volatility

regime.

Markov–switching (MS) models, as introduced by Hamilton (1989), have been found to

be useful for capturing regime–dependent return distributions. Even the most simple version

of such an MS model, where the time variability of the parameters is governed solely by

the unobserved regime variable, can generate rather flexible return distributions, including

skewness, excess kurtosis, volatility clustering, and regime–dependent correlation structures

(cf. Ryden, Teräsvirta, and Åsbrink, 1998; and Timmermann, 2000). However, for returns

sampled at a daily or weekly frequency, it has been observed that the volatility dynamics

are not adequately captured by the switching between constant regime–specific variances and

covariances (Pagan and Schwert, 1990; Gray, 1996; Timmermann, 2000; Marcucci, 2005), i.e., a

considerable part of the conditional heteroskedasticity is linked to within–regime ARCH–type

dynamics rather than to the discrete regime process. This has motivated the introduction of

the MS ARCH model in Cai (1994) and Hamilton and Susmel (1994), which was generalized to

MS GARCH by Gray (1996) and Dueker (1997) and further elaborated by Klaassen (2002). A

discussion of these models is provided in Haas, Mittnik, and Paolella (2004b). These authors

also propose a new MS GARCH process and argue that their version can be viewed as the

most natural specification of a multi–regime GARCH model. Their model has been further

investigated in Liu (2006, 2007) and Abramson and Cohen (2007).

In this paper, we develop a multivariate generalization of the MS GARCH process intro-

duced in Haas, Mittnik, and Paolella (2004b), derive a number of its dynamic properties which

are relevant for the analysis of the volatility dynamics, and provide an application to inter-

national stock market indices. The paper is organized as follows. In Section 2, we define the
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model, discuss special cases and estimation issues, and derive its dynamic properties. In Sec-

tion 3, we present an application to international stock market returns, including an evaluation

of out–of–sample fit in the context of portfolio selection and computation of Value–at–Risk.

Section 4 draws conclusions and indicates areas for further research.

2 The Model and its Properties

In this Section, we define the multivariate Markov–switching GARCH process and derive its

dynamic properties. The model studied in this paper represents a multi–regime version of

the vech form of a multivariate GARCH(p, q) model, as introduced by Bollerslev, Engle, and

Wooldridge (1988). As detailed in Section 2.2, this specification nests several more parsimo-

nious parametrizations, but any other, nonnested variant of a multivariate GARCH process

could as well be engaged.

2.1 Definition of the Model

Let the M–dimensional time series {εt} satisfy

εt = H
1/2
Δt,t

ξt, (1)

where ξt
iid∼ N(0M×1, IM ), In denotes the identity matrix of dimension n, and {Δt} is a Markov

chain with finite state space S = {1, 2, . . . , k} and a primitive (i.e., irreducible and aperiodic)

k × k transition matrix P ,

P =

⎡⎢⎢⎢⎣
p11 · · · pk1

... · · · ...

p1k · · · pkk

⎤⎥⎥⎥⎦ , (2)

where pij = p(Δt = j|Δt−1 = i), i, j = 1, . . . , k. Moreover, it is assumed that {ξt} and

{Δt} are independent. We will denote by πt = [π1t, . . . , πkt]
′ and π∞ = [π1,∞, . . . , πk,∞]′ the

distribution at time t and the stationary distribution of the Markov chain, respectively.

Stack the N := M(M + 1)/2 independent elements of the regime–dependent conditional

covariance matrices, Hjt, and the “squared” εt (i.e., εtε
′

t) in hjt := vech(Hjt), j = 1, . . . , k,

and ηt := vech(εtε
′

t), respectively. Then the regime–dependent covariance matrices evolve

according to a multivariate GARCH(p, q) equation in vech form,

hjt = A0j +

q∑
i=1

Aijηt−i +

p∑
i=1

Bijhj,t−i, j = 1, . . . , k, (3)

2



where Aij , i = 0, . . . , q, and Bij , i = 1, . . . , p, are parameter matrices of appropriate dimension,

j = 1, . . . , k. We will refer to the model defined by (1)–(3) as a multivariate Markov–switching

GARCH(p, q; k) process, or, in short, MMSG(p, q; k).

To compactify the notation and facilitate the analysis of the model, let ht := [h′

1t, . . . , h
′

kt]
′,

Ai = [A′

i1, . . . , A
′

ik]
′, i = 0, . . . , q, and Bi =

⊕k
j=1 Bij , i = 1, . . . , p, where

⊕
denotes the

matrix direct sum. Using these definitions, we have

ht = A0 +

q∑
i=1

Aiηt−i +

p∑
i=1

Biht−i. (4)

In the univariate framework, it is argued in Haas, Mittnik, and Paolella (2004b) that the

model (1)–(3) is the “most natural” extension of the GARCH approach to the multi–regime

setting, and their reasoning directly carries over to the multivariate situation. Briefly, in the

single–regime case, the most general conditional heteroskedastic specification is an ARCH(∞),

i.e., ht = ν+Φ(L)ηt, where Φ(L) =
∑

∞

i=1 ΦiL
i, and L is the lag operator, Liyt = yt−i. To make

this applicable, one usually specifies Φ(L) = (IN − B(L))−1A(L), where B(L) =
∑p

i=1 BiL
i

and A(L) =
∑q

i=1 AiL
i are lag polynomials of order p and q, respectively. This leads to a

GARCH(p, q) process, i.e., ht = A0+A(L)ηt+B(L)ht, where A0 = (IN −B(1))v. Specification

(1)–(3) is based on the same logic applied to each regime. Thus there is no problem of path

dependence in MS GARCH models, because there is no reason to replace hj,t−i with hΔt−i,t−i

in (3).

A special case of model (1)–(3) arises when the transition matrix P in (2) has rank 1, i.e.,

P = π∞1′

k, where 1k is a k–dimensional column of ones. This results in a multivariate normal

mixture GARCH(p, q; k) model, or, in short, MNMG(p, q; k), with a constant vector of mixing

weights given by π∞. As discussed in Haas, Mittnik, and Paolella (2004b), we can then, in

contrast to (1), allow for different (nonzero) regime means, and thus for conditional and un-

conditional skewness, without abandoning a central property of GARCH processes, namely,

lack of serial correlation in connection with pronounced dependencies in power–transformed

absolute returns, e.g., squared returns. If μj is the mean of component j’s density, (1) gen-

eralizes to εt = μΔt + H
1/2
Δt,t

ξt, and we impose μk = −∑k−1
j=1(πj,∞/πk,∞)μj in order to make

sure that {εt} is a zero mean process. The normal mixture GARCH model was introduced in

the univariate setting by Haas, Mittnik, and Paolella (2004a) and Alexander and Lazar (2006)

and further considered, for example, by Alexander and Lazar (2005), Bauwens, Preminger,

and Rombouts (2006), Haas, Mittnik, and Mizrach (2006), Bauwens and Rombouts (2007),

and Wu and Lee (2007). Multivariate extensions of the model are investigated in Bauwens,
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Hafner, and Rombouts (2007), and Haas, Mittnik, and Paolella (2006).

2.2 Estimation Issues

For estimation purposes, the general vech representation as given by (3) is not directly ap-

plicable, and parameter constraints are required in order to guarantee positive definiteness of

all conditional covariance matrices. Such a parametrization is provided by the BEKK model

of Engle and Kroner (1995) which specifies the covariance matrices as

Hjt = A�
0jA

�′

0j +
L∑

�=1

q∑
i=1

A�
ij,�εt−iε

′

t−iA
�′

ij,� +
L∑

�=1

p∑
i=1

B�
ij,�Hj,t−iB

�′

ij,�, j = 1, . . . , k, (5)

where A�
0j , j = 1, . . . , k, are lower triangular matrices. As shown by Engle and Kroner (1995),

each BEKK model implies a unique vech representation (the converse is not true), and, once

a BEKK representation (5) has been estimated, the matrices Aij and Bij of the vech model

(3) can be recovered via

Aij =
L∑

�=1

D+
M (A�

ij,� ⊗ A�
ij,�)DM , i = 1, . . . , q, j = 1, . . . , k, (6)

and similarly for the Bij , where DM and D+
M denote the duplication matrix and its Moore–

Penrose inverse, respectively, both of which we briefly review in Appendix A. Thus, all results

derived for the vech model are also applicable to the BEKK model.

In addition, while, for L = 1 in (5), which is the standard choice in practice, the BEKK

model already involves fewer parameters than the unrestricted vech form, further simplifica-

tions can be obtained by assuming that the A�
ij and B�

ij in (5) are diagonal matrices, and

we will do so below in Section 3. As noted by Ding and Engle (2001), the diagonal BEKK

model is equivalent to a restricted diagonal vech model, where, if L = p = q = 1 in (5), the

conditional covariance matrices can be written as

Hjt = A�
0jA

�′

0j + (a1ja
′

1j) � (εt−1ε
′

t−1) + (b1jb
′

1j) � Hj,t−1, j = 1, . . . , k, (7)

where a1j = A�
1j1M and b1j = B�

1j1M are M × 1 vectors, j = 1, . . . , k, and 1M is an M–

dimensional column of ones. Representation (7) follows from the identity D(A � B)E =

(DAE) � B for conformable matrices A, B, D, and E, with D and E diagonal (cf. Horn

and Johnson, 1991, Lemma 5.1.2), and the fact that 1M1′

M is an M × M matrix of ones.

Clearly specification (7) imposes some strong restrictions on the cross–dynamics. However, as

noted by Bauwens, Laurent, and Rombouts (2006), although diagonal BEKK models are, due
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to these restrictions, not suitable if volatility transmission is the object under study, “they

usually do a good job in representing the dynamics of variances and covariances”. A recent

application of the parametrization (7) in the context of dynamic correlations is provided by

Cappiello, Engle, and Sheppard (2006).

In the following discussion of the vech specification we will always assume that positive

definite covariances matrices are guaranteed, without further specifying the constraints em-

ployed for achieving this. In our application in Section 3, we will use the diagonal BEKK

representation as given by (7).

2.3 Dynamic Properties

In this section, we derive conditions for the existence of and develop expressions for the un-

conditional overall and regime–specific covariance matrices, the unconditional fourth moment

matrix (and hence kurtosis), and the dynamic correlation structure of the squares of an

MMSG(p, q; k) process. The moment conditions are investigated in Section 2.3.1 and sum-

marized in Proposition 3, and the autocorrelation structure will be studied in Section 2.3.2.

However, we first introduce some further notation.

We will have to calculate conditional expectations of the vector ht, given in (4), based

on different information sets. In general, the information at time t consists of the values of

the process up to time t, Ψt := {ηs : s ≤ t}, and hence ht+1, and a probability distribution

πt = [π1t, . . . , πkt]
′ over S. In addition, the regime history up to time t will be denoted by

Δt := {Δs : s ≤ t}.
Furthermore, we denote as ρ(A) the spectral radius of a square matrix A, i.e.,

ρ(A) := max{|z| : z is an eigenvalue of A}, (8)

and we use the notation mei to denote the ith unit vector in R
m.

2.3.1 Moment Conditions

To derive the moment conditions for the model defined by (1)–(3), we write the model in

GARCH(1,1) form. To this end, we define Xt = [h′

t, . . . , h
′

t−p+1, η
′

t−1, . . . , η
′

t−r+1]
′, where

r = max{q, 2}. Thus, Xt is of dimension N(kp + r − 1) =: Nm, where m := (kp + r − 1).
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Furthermore, let

Ã0 =

⎡⎣ A0

0N(m−k)×1

⎤⎦ , Ã1 =

⎡⎢⎢⎢⎢⎢⎣
A1

0Nk(p−1)×N

IN

0N(r−2)×N

⎤⎥⎥⎥⎥⎥⎦ , B̃1 =

⎡⎣ B̃11 B̃12

B̃21 B̃22

⎤⎦ , (9)

where

B̃11 =

⎡⎣ B1 · · · Bp−1 Bp

INk(p−1) 0Nk(p−1)×Nk

⎤⎦ , B̃12 =

⎡⎣ A2 · · · Ar

0Nk(p−1)×N(r−1)

⎤⎦ ,

B̃21 = 0N(r−1)×Nkp, B̃22 =

⎡⎣ 0N×N(r−2) 0N×N

IN(r−2) 0N(r−2)×N ,

⎤⎦ , (10)

and A2 = 0Nk×N if q = 1. Therefore, we can write

Xt = Ã0 + Ã1ηt−1 + B̃1Xt−1. (11)

We term (11) a “GARCH(1,1)” representation because Xt, just as ht, is deterministic with

respect to the information set at time t − 1; thus, the formal structure of (11) resembles that

of a GARCH(1,1), and methods similar to those developed for the basic GARCH(1,1) model

can be employed to investigate the dynamic properties of equation (11).1 We may also note

that we could as well let r = q, so that, if q = 1, Xt = [h′

t, . . . , h
′

t−p+1]
′. However, in the

MS GARCH framework, it will turn out that inclusion of ηt−1 in the state vector Xt greatly

simplifies the computation of the unconditional moments of the process, although this blows

up the state equation somewhat.

In the following analysis, we will make use of results of Francq and Zaköıan (2005) and

Hafner (2003), which we state as Lemmas 1 and 2, respectively. To state Lemma 1, define the

τ–step transition probabilities p
(τ)
ij := p(Δt = j|Δt−τ = i), i, j ∈ S, as given by the elements

of P τ . Consider the matrix

P
(τ)
f =

⎡⎢⎢⎢⎢⎢⎢⎣
p
(τ)
11 f(1) p

(τ)
21 f(1) · · · p

(τ)
k1 f(1)

p
(τ)
12 f(2) p

(τ)
22 f(2) · · · p

(τ)
k2 f(2)

...
...

...

p
(τ)
1k f(k) p

(τ)
2k f(k) · · · p

(τ)
kk f(k)

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

1 Comte and Lieberman (2000) obtain a fourth–moment condition for the standard multivariate GARCH(p, q)
model using a state–space representation which they also term a “GARCH(1,1)” representation. It is,
however, actually an ARMA(1,1) representation, as it is based on the innovations ut = ηt − ht rather
than the squared process ηt directly. ARMA representations, which are frequently adopted for the analysis
of standard GARCH processes (e.g., Hafner, 2003; Zadrozny, 2005; Karanasos and Kim, 2006; and Haas,
Mittnik, and Paolella, 2006), are not suitable for GARCH models subject to Markov switching.

6



for any function f : S �→ Mn×n′(R), where Mn×n′(R) denotes the space of real n×n′ matrices,

and positive integers τ , n, and n′. When τ = 1, we drop the superscript and define Pf := P
(1)
f .

Lemma 1 (Francq and Zaköıan, 2005, Lemma 1) Let f : S �→ Mn×n(R), and g : S �→
Mn×n′(R). Then, for τ > 0, and h > τ ,

E[f(Δt)f(Δt−1) · · · f(Δt−τ+1)g(Δt−τ )|Δt−h] = (1′

k ⊗ In)Pτ
fP

(h−τ)
g (keΔt−h

⊗ In′),

where 1k is a k–dimensional column of ones, and kej, j ∈ S, is the jth unit vector in R
k.

If g does not depend on the prevailing regime, i.e., g(1) = · · · = g(k), we have

E[f(Δt)f(Δt−1) · · · f(Δt−τ+1)g|Δt−h] = (1′

k ⊗ In)Pτ
f (P h−τ ⊗ g)(keΔt−h

⊗ In′)

= (1′

k ⊗ In)Pτ
f [(P h−τ

keΔt−h
) ⊗ g]

= (1′

k ⊗ In)Pτ
f (πt−τ ⊗ g). (13)

Lemma 2 (Hafner, 2003, Theorem 1) For an M–dimensional normally distributed random

vector x with zero mean and covariance matrix H,2 we have

vec{E[vech(xx′)vech(xx′)′]} = GMvec(hh′), (14)

where h = vech(H),

GM = 2(LM ⊗ D+
M )(IM ⊗ KMM ⊗ IM )(DM ⊗ DM ) + IN2 , (15)

and N := M(M + 1)/2 is the number of independent elements in H. Matrices LM , DM , D+
M ,

and KMM are defined in Appendix A.

Now we have, from (11),

E(Xt|Ψt−2, Δt−1) = Ã0 + [Ã1(me′Δt−1
⊗ IN ) + B̃1]Xt−1

= Ã0 + [(me′Δt−1
⊗ Ã1) + B̃1]Xt−1, (16)

2 Actually, Hafner (2003) considered the more general class of spherical distributions which includes the normal
as a special case. Hafner’s (2003) result for the normal distribution is based on earlier work of Magnus and
Neudecker (1979).
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where mej is the jth unit vector in R
m, and m = kp + r − 1.3 Similarly,

E[vec(XtX
′

t)|Ψt−2, Δt−1] = Ã0 ⊗ Ã0 + 2ÑNm[(B̃1 ⊗ Ã0) + (me′Δt−1
⊗ Ã1 ⊗ Ã0)]Xt−1

+(Ã1 ⊗ Ã1)E[vec(ηt−1η
′

t−1)|Ψt−2, Δt−1]

+2ÑNmE[vec(Ã1ηt−1X
′

t−1B̃1
′

)|Ψt−2, Δt−1]

+(B̃1 ⊗ B̃1)vec(Xt−1Xt−1), (17)

where we used the identity (A.1) in Appendix A to compactify this expression. The expecta-

tions involved in (17) can be evaluated as

E[vec(Ã1ηt−1X
′

t−1B̃1
′

)|Ψt−2, Δt−1] = vec[Ã1E(ηt−1|Ψt−2, Δt−1)X
′

t−1B̃1
′

]

= vec[Ã1(me′Δt−1
⊗ IN )Xt−1X

′

t−1B̃1
′

]

= (B̃1 ⊗m e′Δt−1
⊗ Ã1)vec(Xt−1X

′

t−1),

and, applying Lemma 2,

E[vec(ηt−1η
′

t−1)|Ψt−2, Δt−1] = GMvec[(me′Δt−1
⊗ IN )Xt−1X

′

t−1(meΔt−1
⊗ IN )]

= GM (me′Δt−1
⊗ IN ⊗m e′Δt−1

⊗ IN )vec(Xt−1X
′

t−1).

We define

Yt =

⎡⎣ Xt

vec(XtX
′

t)

⎤⎦ , d =

⎡⎣ Ã0

Ã0 ⊗ Ã0

⎤⎦ , C(j) =

⎡⎣ C11(j) 0Nm×(Nm)2

C21(j) C22(j)

⎤⎦ , j ∈ S,

where

C11(j) = me′j ⊗ Ã1 + B̃1, (18)

C21(j) = 2ÑNm(me′j ⊗ Ã1 ⊗ Ã0 + B̃1 ⊗ Ã0),

C22(j) = (Ã1 ⊗ Ã1)GM (me′j ⊗ IN ⊗m e′j ⊗ IN ) (19)

+2ÑNm(B̃1 ⊗m e′j ⊗ Ã1) + B̃1 ⊗ B̃1, j = 1, . . . , k.

Using these definitions, we can state Proposition 3. As in the classic papers of Engle (1982)

and Bollerslev (1986), we assume for simplicity that the process starts indefinitely far in the

past with finite fourth moments.

Proposition 3 The MMSG(p, q; k) process defined by (1)–(3) is covariance stationary if and

only if ρ(PC11
) < 1, where PC11

is defined by (12) and (18). Moreover, the unconditional fourth

3 Note that Ã1(me′Δt−1
⊗ IN ) = (1 ⊗ Ã1)(me′Δt−1

⊗ IN ) =m e′Δt−1
⊗ Ã1.
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moment matrix E(ηtη
′

t) exists if and only if, in addition, ρ(PC22
) < 1, where PC22

is defined

by (12) and (19). Expressions for the unconditional second and fourth moments are given in

Equations (26) and (28), respectively.

To derive this result, we note that we can write (16) and (17) as

E(Yt|Ψt−2, Δt−1) = d + C(Δt−1)Yt−1. (20)

Iterating (20) gives

E(Yt|Ψt−τ−1, Δt−1) =
τ−1∑
i=0

⎛⎝ i∏
j=1

C(Δt−j)

⎞⎠ d +

(
τ∏

i=1

C(Δt−i)

)
Yt−τ ,

where
∏0

j=1 C(Δt−j) := INm+(Nm)2 . Now we apply Lemma 1 and (13) to obtain

E(Yt|Ψt−τ−1, πt−τ−1) =
τ−1∑
i=0

(1′

k ⊗ INm+(Nm)2)P
i
C(πt−i−1 ⊗ d) (21)

+(1′

k ⊗ INm+(Nm)2)P
τ
C(πt−τ−1 ⊗ Yt−τ ).

It will be convenient to write (21) in a slightly different form. To this end, let Q be the

k(Nm + N2m2) × k(Nm + N2m2) permutation matrix such that

Q(πt−τ−1 ⊗ Yt−τ ) =

⎡⎣ πt−τ−1 ⊗ Xt−τ

πt−τ−1 ⊗ vec(Xt−τX
′

t−τ )

⎤⎦ ,

so that (21) can be written as

E(Yt|Ψt−τ−1, πt−τ−1) =
τ−1∑
i=0

(1′

k ⊗ INm+(Nm)2)Q
′(QPCQ′)iQ(πt−i−1 ⊗ d)

+(1′

k ⊗ INm+(Nm)2)Q
′(QPCQ′)τQ(πt−τ−1 ⊗ Yt−τ )

=
τ−1∑
i=0

IP̃
i
CMt−i−1 + IP̃

τ
CΠ, (22)

where

I =

⎡⎣ 1′

k ⊗ INm 0Nm×k(Nm)2

0(Nm)2×kNm 1′

k ⊗ I(Nm)2

⎤⎦ , P̃C =

⎡⎣ PC11
0kNm×k(Nm)2

PC21
PC22

⎤⎦ ,

Mt =

⎡⎣ M1t

M2t

⎤⎦ =

⎡⎣ πt ⊗ Ã0

πt ⊗ Ã0 ⊗ Ã0

⎤⎦ , Π =

⎡⎣ Π1

Π2

⎤⎦ =

⎡⎣ πt−τ−1 ⊗ Xt−τ

πt−τ−1 ⊗ vec(Xt−τX
′

t−τ )

⎤⎦ .
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From the block–triangular structure of P̃C , we have

E(Xt|Ψt−τ−1, πt−τ−1) = (1′

k ⊗ INm)Pτ
C11

Π1 + (1′

k ⊗ INm)

τ−1∑
i=0

P
i
C11

M1,t−i−1. (23)

The first term on the right–hand side of (23) tends to zero as τ → ∞, provided that ρ(PC11
) < 1.

We can write the second term on the right–hand side of (23) as

τ−1∑
i=0

P
i
C11

(πt−i−1 ⊗ Ã0) =
τ−1∑
i=0

P
i
C11

(π∞ ⊗ Ã0) +
τ−1∑
i=0

P
i
C11

((πt−i−1 − π∞) ⊗ Ã0)

=
τ−1∑
i=0

P
i
C11

M1,∞ +
τ−1∑
i=0

P
i
C11

((P τ−i − P∞) ⊗ INm)(πt−τ−1 ⊗ Ã0),

where P∞ := limτ→∞ P τ = π∞1′

k. We have P τ−i−P∞ = (P −P∞)τ−i, and, as P is irreducible

and aperiodic (primitive), the matrix P − P∞ has all its roots strictly inside the unit circle

(Moustakides, 1999).4 Moreover, it is well–known that, if A is a square matrix, then for any

ε > 0 there is a nonsingular matrix Q such that ||QAQ−1||2 ≤ ρ(A)+ε, where ‖·‖2 denotes the

spectral norm, and we can write ||Ai||2 = ||Q−1(QAQ−1)iQ||2 ≤ ||Q−1||2||QAQ−1||i2||Q||2. We

also observe that, for any τ , ||πt−τ−1⊗Ã0||2 = ‖πt−τ−1‖2‖Ã0‖2 ≤ ‖Ã0‖2. Thus, if ρ(PC11
) < 1,

we can find a ζ satisfying ρ(PC11
) < ζ < 1, and an η satisfying ρ(P −P∞) < η < 1, and η �= ζ,

such that, for an appropriately defined constant R, we can write∥∥∥∥∥
τ−1∑
i=0

P
i
C11

((P τ−i − P∞) ⊗ INm)(πt−τ−1 ⊗ Ã0)

∥∥∥∥∥
2

(24)

≤
τ−1∑
i=0

||PC11
||i2 · ||((P − P∞) ⊗ INm)||τ−i

2 · ||πt−τ−1 ⊗ Ã0||2

≤ R
τ−1∑
i=0

ζiητ−i =
Rη

η − ζ
(ητ − ζτ )

τ→∞−→ 0.

Therefore, if ρ(PC11
) < 1,

lim
τ→∞

τ−1∑
i=0

P
i
C11

M1,t−i−1 =

∞∑
i=0

P
i
C11

M1,∞ = (IkNm − PC11
)−1M1,∞,

which does not depend on the initial conditions. On the other hand, if ρ(PC11
) ≥ 1, P

τ
C11

will

not tend to a zero matrix as τ → ∞, and the first term on the right–hand side of (23) will

4 Also note that, for square matrices A and B, An ⊗ Bn = (A ⊗ B)n, and ρ(A ⊗ B) = ρ(A)ρ(B). Therefore,
(P τ−i −P∞)⊗ INm = (P −P∞)τ−i ⊗ INm = ((P −P∞)⊗ INm)τ−i, and ρ((P −P∞)⊗ INm) = ρ(P −P∞).
Alternatively, we can use the result that ‖A ⊗ B‖2 = ‖A‖2‖B‖2, and ‖INm‖2 = 1 (Langville and Stewart,
2004).
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not converge to a finite limit that is independent of the initial conditions. Consequently, a

necessary and sufficient condition for {εt} being covariance stationary is ρ(PC11
) < 1, and, in

this case,

E(Xt) = lim
τ→∞

E(Xt|Ψt−τ−1, πt−τ−1) = (1′

k ⊗ INm)(IkNm − PC11
)−1M1,∞. (25)

The unconditional covariance matrix of εt can then be extracted from

E(ηt) = (me′kp+1 ⊗ IN )E(Xt). (26)

By a similar analysis, it follows from (22) that E(XtX
′

t) is finite and does not depend on the

initial conditions if and only if, in addition, ρ(PC22
) < 1. In this case,

E[vec(XtX
′

t)] = (1′

k ⊗ I(Nm)2)(Ik(Nm)2 − PC22
)−1[M2,∞ + PC21

(IkNm − PC11
)−1M1,∞], (27)

and the unconditional fourth moment matrix of εt can be extracted from

E(ηtη
′

t) = (me′kp+1 ⊗ IN )E(XtX
′

t)(mekp+1 ⊗ IN ). (28)

Alternatively, in case of existence, the unconditional moments can be calculated using a

more direct approach, which will be useful in Section 2.3.2 when computing the autocorrelation

matrices of the squared process. This method has been used, for example, by Timmermann

(2000) and Francq and Zaköıan (2001) for MS ARMA models. We observe, from (11), that

πj,∞E(Xt|Δt−1 = j) = πj,∞Ã0 + Ã1πj,∞E(ηt−1|Δt−1 = j) + B̃1πj,∞E(Xt−1|Δt−1 = j),

where

E(ηt−1|Δt−1 = j) = E[E(ηt−1|Ψt−2, Δt−1 = j)|Δt−1 = j]

= (me′j ⊗ IN )E(Xt−1|Δt−1 = j),

and, using πj,∞p(Δt−2 = i|Δt−1 = j) = πi,∞p(Δt−1 = j|Δt−2 = i) = πi,∞pij ,

πj,∞E(Xt−1|Δt−1 = j) =
k∑

i=1

πj,∞p(Δt−2 = i|Δt−1 = j)E(Xt−1|Δt−1 = j ∩ Δt−2 = i)

=
k∑

i=1

pijπi,∞E(Xt−1|Δt−2 = i),

where the second equation uses that the expectation of Xt−1 is independent of Δt−1 once Δt−2

is given (cf. Francq and Zaköıan, 2005, Lemma 3). Thus,

πj,∞E(Xt|Δt−1 = j) = πj,∞Ã0 +

k∑
i=1

pij(me′j ⊗ Ã1 + B̃1)πi,∞E(Xt−1|Δt−2 = i), (29)

j = 1, . . . , k.
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Define the kNm × 1 vector U = [π1,∞E(Xt|Δt−1 = 1)′, . . . , πk,∞E(Xt|Δt−1 = k)′]′. Equation

(29) implies

U = π∞ ⊗ Ã0 + PC11
U, (30)

from which we recover (25). We can use Equation (30) to compute the unconditional covariance

matrix of εt in regime j, j = 1, . . . , k, as

E(ηt|Δt = j) = π−1
j,∞(kme′pk+1+(j−1)m ⊗ IN )(IkNm − PC11

)−1(π∞ ⊗ Ã0). (31)

Now define, similar to U , V to be the k(Nm)2×1 vector with elements πj,∞E[vec(XtX
′

t)|Δt−1 =

j], j = 1, . . . , k. An argument similar to the one leading to (30) shows that

V = π∞ ⊗ Ã0 ⊗ Ã0 + PC21
U + PC22

V, (32)

from which we recover (27).

It may be worth pointing out that the covariance stationarity condition ρ(PC11
) < 1 allows

some regimes to be nonstationary, in the sense that the covariance stationarity condition for

the single–component GARCH(p, q) process, i.e., det[znIN − ∑n
i=1(Aij + Bij)z

n−i] �= 0 for

|z| ≥ 1, where n = max{p, q}, Aij = 0N×N for i > q, and Bij = 0N×N for i > p, is not

satisfied for some regimes.5 Nevertheless, the overall process can still be stationary, as long

as the persistencies (the “staying probabilities” pjj) and unconditional probabilities of the

corresponding regimes are sufficiently small. This parallels the situation in the univariate case

(Francq, Roussignol, and Zaköıan, 2001; Wong and Li, 2001; Haas, Mittnik, and Paolella,

2004a,b; Alexander and Lazar, 2006; Liu, 2006; and Abramson and Cohen, 2007) and will

be empirically illustrated in Section 3. Note that, for a given set of regime–specific GARCH

parameters, ρ(PC11
) depends on both the unconditional regime probabilities as well as the

persistence of the regimes. To illustrate, consider the simplest case of a univariate MSG(0,1;2)

process, where, in obvious notation, σ2
jt = α0j + α1jε

2
t−1, α0j > 0, α1j ≥ 0, j = 1, 2. The

elements of the transition matrix (12) can be written in terms of the stationary probability of

Regime 1, π1,∞ = 1− π2,∞, and the degree of regime–persistence, δ = p11 + p22 − 1, i.e., p11 =

π1,∞+δ(1−π1,∞), and p22 = 1−π1,∞+δπ1,∞. Using the notation s := π1,∞α11+(1−π1,∞)α12,

and s′ := π1,∞α12 + (1 − π1,∞)α11, we have ρ(PC11
) = (s + δs′ +

√
(s + δs′)2 − 4δα11α12)/2,

so that
dρ(PC11

)

dδ

∣∣∣∣
dπ1,∞=0

=
1

2

(
s′ +

(s + δs′)s′ − 2α11α12√
(s + δs′)2 − 4δα11α12

)
. (33)

5 For this condition, see Bollerslev and Engle (1993), and Engle and Kroner (1995).
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The sign of (33) is not immediately obvious, because (s + δs′)s′ − 2α11α12 may be negative.

However, straightforward calculations show that, if this is the case, positivity of (33) is equiva-

lent to ss′−α11α12 = π1,∞(1−π1,∞)(α11−α12)
2 > 0, which, by the irreducibility assumption,

i.e., π1,∞ ∈ (0, 1), holds as long as α11 �= α12. The intuition behind this result is that, the larger

δ, relative to the (fixed) unconditional regime probabilities, the longer the chain tends to stay

in the high–volatility regime, so that large shocks can accumulate. On the other hand, given

the transition matrix, we can work out those combinations of parameters α11 and α12 giving

rise to (covariance) stationary and nonstationary processes. Figure 1 shows the stationarity

regions for three transition matrices, given by

P1 =

⎡⎣ 0.75 0.25

0.25 0.75

⎤⎦ , P2 =

⎡⎣ 0.5 0.5

0.5 0.5

⎤⎦ , and P3 =

⎡⎣ 0.25 0.75

0.75 0.25

⎤⎦ , (34)

respectively. In all three processes, both regimes have a stationary probability of 0.5, but

δ > 0, δ = 0 (normal mixture GARCH), and δ < 0 for P1, P2, and P3, respectively. It is also

easily confirmed that, as in Figure 1, the stationarity border is concave if δ > 0, linear if δ = 0,

and convex if δ < 0.

2.3.2 Autocorrelation Function of the Squared Process

Now we turn to the computation of the sequence of autocorrelation matrices of the squared

process. The approach used by Francq and Zaköıan (2001) for the MS ARMA process turns

out to be convenient for our model too. We have, for τ ≥ 1,

πj,∞E(XtX
′

t−τ |Δt−1 = j) = Ã0πj,∞E(X ′

t−τ |Δt−1 = j) + Ã1πj,∞E(ηt−1X
′

t−τ |Δt−1 = j)

+B̃1πj,∞E(Xt−1X
′

t−τ |Δt−1 = j),

where

πj,∞E(X ′

t−τ |Δt−1 = j) =
k∑

i=1

πj,∞p(Δt−τ−1 = i|Δt−1 = j)E(X ′

t−τ |Δt−1 = j ∩ Δt−τ−1 = i)

=
k∑

i=1

p
(τ)
ij πi,∞E(X ′

t−τ |Δt−τ−1 = i),

πj,∞E(ηt−1X
′

t−τ |Δt−1 = j) = πj,∞E[E(ηt−1|Ψt−2, Δt−1 = j)X ′

t−τ |Δt−1 = j]

= πj,∞(me′j ⊗ IN )E(Xt−1X
′

t−τ |Δt−1 = j)

=
k∑

i=1

pij(me′j ⊗ IN )πi,∞E(Xt−1X
′

t−τ |Δt−2 = i),
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and

πj,∞E(Xt−1X
′

t−τ |Δt−1 = j) =
k∑

i=1

pijπi,∞E(Xt−1X
′

t−τ |Δt−2 = i).

Therefore,

πj,∞E(XtX
′

t−τ |Δt−1 = j) = Ã0

k∑
i=1

p
(τ)
ij πi,∞E(X ′

t−τ |Δt−τ−1 = i) (35)

+

k∑
i=1

pij(me′j ⊗ Ã1 + B̃1)πi,∞E(Xt−1X
′

t−τ |Δt−2 = i),

j = 1, . . . , k.

Now let W (τ) be the kNm × Nm matrix obtained by replacing πj,∞E[vec(XtX
′

t)|Δt−1 = j]

with πj,∞E(XtX
′

t−τ |Δt−1 = j) in V (Equation (32)), and let Ũ be the k × Nm matrix where

πj,∞E(Xt|Δt−1 = j) is replaced with πj,∞E(X ′

t|Δt−1 = j) in U (Equation (30)). Then we can

write (35) as

W (τ) = (P ⊗ Ã0)P
τ−1Ũ + PC11

W (τ − 1), τ ≥ 1, (36)

W (0) is obtained by reshaping V , defined in (32),

E(XtX
′

t−τ ) = (1′

k ⊗ INm)W (τ),

and

E(ηtη
′

t−τ ) = (me′kp+1 ⊗ IN )E(XtX
′

t−τ )(mekp+1 ⊗ IN )

= (1′

k ⊗m e′kp+1 ⊗ IN )W (τ)(mekp+1 ⊗ IN ). (37)

The autocovariance function at lag τ , Γ(τ), is then given by

Γ(τ) = E(ηtη
′

t−τ ) − E(ηt)E(η′t), (38)

and the autocorrelation matrices, R(τ), can be calculated via

R(τ) = D−1/2Γ(τ)D−1/2, (39)

where D = IN � Γ(0), and Γ(0) = E(ηtη
′

t) − E(ηt)E(η′t).

The solution of (36) is

W (τ) =

τ−1∑
i=0

P
i
C11

(P ⊗ Ã0)P
τ−1−iŨ + P

τ
C11

W (0) (40)

=
τ−1∑
i=0

P
i
C11

(P ⊗ Ã0)P∞Ũ +
τ−1∑
i=0

P
i
C11

(Ik ⊗ Ã0)(P
τ−i − P∞)Ũ + P

τ
C11

W (0)

=
τ−1∑
i=0

P
i
C11

(π∞ ⊗ Ã0)E(X ′

t) +
τ−1∑
i=0

P
i
C11

(Ik ⊗ Ã0)(P − P∞)τ−iŨ + P
τ
C11

W (0),
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where the last line follows from (P ⊗ Ã0)P∞Ũ = (P ⊗ Ã0)π∞E(X ′

t) = (π∞ ⊗ Ã0)E(X ′

t).

Therefore, from the analysis in (24), limτ→∞ W (τ) = UE(X ′

t), and limτ→∞ E(XtX
′

t−τ ) =

(1′

k ⊗ INm) limτ→∞ W (τ) = E(Xt)E(X ′

t), so that limτ→∞ Γ(τ) = 0N×N . Equation (40) can

also be used to obtain a closed-from solution for Γ(τ) in the case of two regimes, i.e., k = 2,

which is of particular relevance for the applications. In this case, P τ = F1 + δτF2, where

−1 < δ = p11 + p22 − 1 < 1,

F1 = P∞ =

⎡⎣ π1,∞ π1,∞

π2,∞ π2,∞

⎤⎦ , F2 =

⎡⎣ π2,∞ −π1,∞

−π2,∞ π1,∞

⎤⎦ ,

π1,∞ = (1− p22)/(2− p11 − p22), and π2,∞ = 1− π1,∞. If det(δIkNm − PC11
) �= 0, then we get,

after a few computations,

W (τ) = (IkNm − P
τ
C11

)(IkNm − PC11
)−1(P ⊗ Ã0)F1Ũ

+(δτIkNm − P
τ
C11

)(δIkNm − PC11
)−1(P ⊗ Ã0)F2Ũ + P

τ
C11

W (0),

and our final expression for the autocovariance function in the case of two regimes, provided

that det(δIkNm − PC11
) �= 0, is

Γ(τ) = E(ηtη
′

t−τ ) − E(ηt)E(η′t)

= (1′

k ⊗m e′kp+1 ⊗ IN )
{
P

τ
C11

[W (0) − UE(Xt)
′]

+(δτIkNm − P
τ
C11

)(δIkNm − PC11
)−1(P ⊗ Ã0)F2Ũ

}
(mekp+1 ⊗ IN ). (41)

We finally show how the GARCH(1,1) representation (11) can be used to obtain the fourth–

moment structure of the classic univariate GARCH(p, q) model, giving rise to expressions which

are simpler and easier to implement than the ingenious but complicated formulas derived by He

and Teräsvirta (1999) and Karanasos (1999). In this case, and assuming normally distributed

innovations, the condition for the existence of E(ε4
t ) is ρ(C22) < 1, where

C22 = 3(Ã1e
′

1 ⊗ Ã1e
′

1) + 2Ñp+r−1(B̃1 ⊗ Ã1e
′

1) + B̃1 ⊗ B̃1,

e1 is the first unit vector in R
p+r−1, and Ñn is defined in Appendix A. This requirement

bears a striking resemblance to the classic condition 3α2
1 + 2α1β1 + β2

1 < 1 for the fourth mo-

ment of the univariate GARCH(1,1) model (under conditional normality) to exist (Bollerslev,

1986). This similarity provides a further rationale for referring to (11) as the GARCH(1,1)

representation of a GARCH(p, q) process. For the autocorrelation structure, recursive sub-

stitution in E(Xt|Ψt−2) = Ã0 + C11Xt−1, where C11 = Ã1e
′

1 + B̃1, gives E(Xt|Ψt−τ−1) =

15



∑τ−1
i=0 Ci

11Ã0 + Cτ
11Xt−τ = E(Xt) + Cτ

11[Xt−τ − E(Xt)], where E(Xt) = (Ip+r−1 − C11)
−1Ã0.

Substituting in E(XtX
′

t−τ ) = E[E(Xt|Ψt−τ−1)X
′

t−τ ] and subtracting E(Xt)E(X ′

t) shows that

an expression for the autocovariance function is

cov(ε2
t , ε

2
t−τ ) = e′p+1C

τ
11[E(XtX

′

t) − E(Xt)E(X ′

t)]ep+1,

where ep+1 is the (p + 1)th unit vector in R
p+r−1, and E(XtX

′

t) is easily deduced from the

development in Section 2.3.1.

3 Application to International Stock Market Returns

We now provide an application of the model developed in Section 2 to international stock mar-

kets. We consider discrete6 dollar–denominated weekly (Thursday to Thursday) percentage

returns of the S&P500, FTSE, and DAX indices over the period from January 1984 to August

2005, a sample of T = 1127 observations.7 We thus assume the perspective of an US–investor

not hedging currency risk. We denote the return vector at time t by rt = [r1t, r2t, r3t]
′, where

r1t, r2t, and r3t are the time–t returns of the S&P500, the FTSE, and the DAX, respectively.

A few descriptive statistics of the three series, along with the Jarque–Bera test for normality

and Engle’s (1982) Lagrange multiplier test for ARCH, are summarized in Table 1. As the

latter test has been derived under conditional normality and may not be robust to “outliers”,

the values reported in the last three columns of Table 1 are calculated by excluding the return

observation from October 15 to October 22, 1987.8 All three series display considerable excess

kurtosis, and the Jarque–Bera test strongly rejects normality in all cases. Likewise, the ARCH

test rejects the null of no ARCH effects for all three indices. We also note that the stock return

series display a considerable degree of comovement, with pairwise correlations ranging from

approximately 0.525 to 0.6.

Although not reported, graphical identification tools as well as Ljung–Box statistics do not

suggest the presence of noteworthy autocorrelation. Thus, we model the return series as

rt = ν + εt, (42)

6 Due to limited liability, it is clear that (mixed) normality of discrete returns can only be an approximation to
the return distribution. However, use of continuously compounded returns would complicate the derivation
of optimal portfolios in Section 3.2.

7 All data have been obtained from Datastream.

8 While this does not affect qualitatively the results for the S&P500 and the DAX, the ARCH–LM test does
not reject homoskedasticity of the FTSE returns in case this observation is not excluded from the sample.
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where ν is a constant mean vector, and {εt} follows a multivariate (diagonal BEKK) GARCH

process.

3.1 Estimation Results and Regime–Evidence

Four different versions of the general GARCH model developed in Section 2 with p = q =

1 are considered, assuming a diagonal BEKK structure as given by (5) and (7). Namely,

this includes a single–component model, which corresponds to k = 1 in (1)–(3), and which

is just the standard multivariate Normal–GARCH process, which we denote by MNG(1,1).

Additionally, we estimate three two–component models (k = 2). The first of these is the

MMSG(1, 1; 2) process (1)–(3) without a priori restrictions on the transition matrix P , while

the second and third are the symmetric and asymmetric multivariate normal mixture GARCH

processes discussed in the last paragraph of Section 2.1, which we denote by MNMGs(1,1;2)

and MNMG(1,1;2), respectively.9

Table 2 reports likelihood–based goodness–of–fit measures for the models and their rankings

with respect to these criteria, i.e., the value of the maximized log–likelihood function, and the

BIC criterion of Schwarz (1978). To provide evidence for the presence of both regime–switching

and GARCH effects in the data, Table 2 also reports the results for the corresponding models

with constant (within–regime) covariance matrices, that is, with A1 = 0N×N (02N×N ) and

B1 = 0N×N (02N×2N ) in (4), i.e., for models MNG(0,0), MMSG(0,0;2), MNMGs(0,0;2), and

MNMG(0,0;2). In particular, it is well–known that even the basic Markov–switching model

with constant within–regime parameters generates volatility clustering (Ryden, Teräsvirta,

and Åsbrink, 1998; and Timmermann, 2000), and it may be the case that the conditional het-

eroskedasticity accommodated by the switching of regimes is sufficient to capture the second–

order dependencies observed in the data, thus rendering the GARCH structures superfluous.10

However, the results reported in Table 2 point in the opposite direction. A noteworthy im-

plication of Table 2 is that all the (within–regime) homoskedastic models are inferior to all

the GARCH models; in particular, even the standard single–component MNG(1,1) specifica-

tion dominates the basic two–component Markov–switching process MMSG(0,0;2) according

to both log–likelihood and BIC, although it has less parameters.

Within the class of GARCH models, the single–regime MNG(1,1) ranks lowest according

9 The models are estimated by conditional maximum likelihood with all the (component) covariance matrices
being initialized by the sample covariance matrix.

10 Positive evidence for this conjecture is presented in Ang and Bekaert (2002) for monthly returns.
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to the BIC, while the MMSG(1,1;2) ranks best.11 While MMSG(1,1;2) dominates both the

symmetric and asymmetric independent switching (normal mixture) models, the comparison

between MNMGs(1, 1; 2) and MNMG(1, 1; 2) produces less definite results. Although the for-

mer performs better according to the BIC, two times the difference in log–likelihood between

the models is 2×(7131.7−7127.8) = 7.8, so that a likelihood ratio test for symmetry with three

degrees of freedom gives rise to a p–value of 0.050, which makes the discrimination between

the models on the basis of their likelihood values somewhat vague.

Summarizing the evidence presented in Table 2, we conclude that both persistent regimes

as well as regime–specific GARCH structures appear to be important features of the joint

distribution of the international stock returns under study.

The parameter estimates for models MMSG(1,1;2), MNMGs(1,1;2), and MNMG(1,1;2) are

reported, in this order, in Tables 3–5, with the regimes being ordered with respect to a declining

(stationary) regime probability, i.e., π1,∞ > π2,∞. The equations driving the dynamics of the

covariance matrices are reported in the form (7), which is the representation most amenable

to interpretation.12 In addition, we report the regime–specific measures for persistence in

volatility, i.e., the largest eigenvalues of the matrices A1j + B1j , j = 1, 2, where these matrices

have been recovered from the BEKK representation using (6), as well as, in the last row of the

tables, the largest eigenvalues of the matrices PC11
and PC22

defined in Proposition 3, which

provide information about the existence of the unconditional second and fourth moments,

respectively. Furthermore, the implied unconditional overall and regime–specific covariance

and correlation matrices are shown in Table 6, where, for purpose of comparison, the single–

component MNG(1,1) model is also included.13

In discussing the parameter estimates reported in Tables 3–5, we first draw attention to

a pattern common to all three specifications. All the mixture models identify two compo-

nents with distinctly different covariance processes. More precisely, the first regime, i.e., the

component with the larger (unconditional) regime probability, is stationary in the sense that

ρ(A1j + B1j) < 1, and it can be characterized as the low–volatility regime. The latter state-

11 With regard to the comparison between single–regime and multi–regime models, it may be worthwhile to
mention that, in the literature on mixture models, there is some evidence that the BIC does a good job
in discriminating between models with a different number of components (see McLachlan and Peel, 2000,
Chap. 6, for a survey and references).

12 Standard errors of functions of estimated quantities are obtained via the delta method.

13 The term “unconditional correlation matrix” refers to the correlations calculated from the unconditional
covariance matrices, which are given by (31). Due to the nonlinearity involved in the calculation of correlation
coefficients, this is not identical to the unconditional expectation of the conditional correlation matrix, the
expression for which is unknown.
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ment can be inferred from Table 6, but this is also reflected in the fact that, in Tables 3–5,

A�
01A

�′
01 < A�

02A
�′
02 holds elementwise for all three models. The second regime is nonstationary

in the sense that ρ(A2j+B2j) > 1, and it represents the high–volatility regime which occurs less

frequently (approximately 10% of the weeks). However, all estimated models are stationary

and have finite fourth moments, because, for all models, both ρ(PC11
) and ρ(PC22

) are below

unity.14 Furthermore, Table 6 shows that, in the multi–regime models, correlations are higher

in turbulent markets, a phenomenon which has been extensively discussed in the literature

on international portfolio diversification (see, e.g., Longin and Solnik, 1995; Ramchand and

Susmel, 1998; Ang and Bekaert, 2002, 2004; Butler and Joaquin, 2002; Forbes and Rigobon,

2002; Guidolin and Timmermann, 2005b; Baur, 2006; and Cappiello, Engle, and Sheppard,

2006). Most of the differences are moderate, however, and may not be significant statistically

(see Ang and Bekaert, 2002, for similar results). An informal comparison of Table 6 with

columns 3–5 of Table 1 also shows that all models fit the unconditional covariance/correlation

structure reasonably well.

Comparing the general Markov–switching process MMSG(1,1;2) in Table 3 with the in-

dependent switching models in Tables 4 and 5 reveals the reason for the superior fit of the

former, as reported in Table 2. Namely, it appears that the regimes are persistent in the sense

that δ = p11 + p22 − 1 > 0, or, equivalently, pjj > πj,∞, j = 1, 2, which cannot be captured

by the normal mixture models. Although the persistence is relatively weak,15 it is statistically

significant, and it implies that, if we are in the low– (high–) variance regime currently, the

probability of being in the low– (high–) variance regime in the following week will be larger

than if the current regime were the high– (low–) variance regime. If regimes are persistent, it

is clear that this persistence should be incorporated into the model, because this means that

regimes are predictable, and such predictability can be exploited for asset allocation and risk

management purposes.

With regard to the asymmetric MNMG model, as reported in Table 5, we note that the

low–volatility regime is associated with positive mean returns, while the means of the high–

volatility regime are negative, which is in line with the results reported in Ang and Bekaert

(2002) for monthly returns on international stock indices. This implies that the regimes can

14 The same is true for model MNG(1,1), where ρ(PC11
) = 0.995, and ρ(PC22

) = 0.991.

15 For purpose of comparison, in model MMSG(0,0;2), i.e., the Markov–switching model with constant covari-
ance matrices, we have p11 = 0.958 and p22 = 0.927, so that δ = 0.885. Clearly part of the persistence
captured by the GARCH effects in model MMSG(1,1;2) is accommodated by the persistence of the regimes
in this case.
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be characterized as bull and bear markets, respectively. However, and this also conforms

to the findings of Ang and Bekaert (2002), given the relatively large standard errors of the

regime–specific mean vectors, the economic significance of this classification is unclear. This is

in accordance with the ambiguous results emerging from the likelihood–based comparison of

models MNMGs(1,1;2) and MNMG(1,1;2), as discussed earlier in this section. Consequently,

restricting the means across regimes to be equal, as in the MMSG model, is not likely to be a

serious constraint in the present application.

Finally, Figures 2 and 3 show the empirical autocorrelations of the squared residuals for the

three series, along with their theoretical counterparts implied by the four estimated GARCH

models. Note, however, that, just as the ARCH–LM test statistics in Table 1, the empirical

quantities have been computed by excluding the return from October 15 to October 22, 1987.

With the exception of model MMSG(1,1;2), the theoretical autocorrelations of the fitted mod-

els, when compared to their empirical counterparts, tend to be too low at the beginning. An

inspection of Equation (41) for the theoretical autocovariance function of two–regime MMSG

process shows that, compared to the case where δ = 0, it offers a greater degree of flexibil-

ity due to an additional component which decays at rate δ. In the present situation, with

δ = 0.479, this component accounts for the fast decay of the autocorrelation function at the

first lags observed in Figure 2, thus capturing the large low–order autocorrelations of the FTSE

and the DAX.

3.2 Application to Portfolio Selection

3.2.1 Volatility Regimes and Portfolio Selection

In the MMSG(p, q; k) process, the one–period–ahead distribution of the M–dimensional return

vector at time t, rt, is a k–component multivariate mixture of normals with vector of mixing

weights πt = [π1t, . . . , πkt]
′, i.e., its density is given by

f(rt|Ψt−1) =
k∑

j=1

πjtφ(rt; μj , Hjt), (43)

where φ(·; μ, H) denotes the normal density with mean μ and covariance matrix H, and μj and

Hjt, j = 1, . . . , k, are the component means and (conditional) component covariance matrices,

respectively. In (43), we allow for regime–specific means in order to include the asymmetric

MNMG(p, q; k) process discussed at the end of Section 2.1. The mean and the covariance

matrix of (43) can easily be deduced from the properties of the normal distribution and are
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given by

E(rt|Ψt−1) =

k∑
j=1

πjtμj , (44)

and

cov(rt|Ψt−1) =
k∑

j=1

πjt(Hjt + μjμ
′

j) −
⎛⎝ k∑

j=1

πjtμj

⎞⎠⎛⎝ k∑
j=1

πjtμj

⎞⎠′

, (45)

respectively. If rt has a k–component multivariate normal mixture distribution as given by

(43), then the return on a portfolio formed from these assets, rp,t, i.e., rp,t = w′rt, where w is an

M × 1 vector of portfolio weights, has a k–component univariate normal mixture distribution,

i.e., it has density

f(rp,t|Ψt−1) =
k∑

j=1

πjt√
2πσ̃jt

exp

{
−(rp,t − μ̃j)

2

2σ̃2
jt

}
, (46)

where μ̃j = w′μj , and σ̃jt =
√

w′Hjtw, j = 1, . . . , k.

When applied to financial return data, it is usually found that the market regimes differ

mainly in their variances and covariances, while the component means are rather close in

value, and often their differences are not significant statistically. This reflects the observation

that excess kurtosis is a much more pronounced (and ubiquitous) property of asset returns

than skewness, and was, for the data under study, also reported in Section 3.1. Thus, in the

following discussion, and in order to concentrate on the impact of volatility regimes, we shall

assume that, in (43), μ1 = · · · = μk =: μ, which implies a symmetric return distribution and

is referred to as a scale mixture. This in turn implies that, in (46), for a given portfolio weight

vector, w, μ̃1 = · · · = μ̃k = w′μ =: μp, and, by (45), var(rp) =: σ2
p =

∑
j πj σ̃

2
j , where, for

simplicity of notation, we temporarily drop the time index of the variables.

Do investors dislike the uncertainty with respect to the next period’s volatility regime which

is reflected in (43), and what are the consequences for optimal portfolio choice? To provide a

partial answer to this question, we compare an investment under (43) with the same investment

under a single Gaussian distribution with the same mean and covariance matrix, as given by

(44) and (45). For normally distributed wealth, W , we can define a μ−σ2 preference function,

V (μ, σ2) := E[U(W )] =
∫
∞

−∞
U(W )φ(W, μ, σ2)dW =

∫
∞

−∞
U(σW +μ)φ(W )dW, where U is the

investor’s expected utility function, and φ(W ) := φ(W ; 0, 1) is the standard normal’s density.

Using the fact that V (μ, σ2) satisfies the differential equation ∂2V/∂μ2 = 2(∂V/∂σ2), Chipman

(1973) inferred that Vσ2σ2 = ∂2V/(∂σ2)2 = (∂4V/∂μ4)/4 = E[U ′′′′(σW + μ)]/4. Therefore, if
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U ′′′′ < 0, V (μ, σ2) is concave in σ2, and

k∑
j=1

πjV (μp, σ̃
2
j ) < V

⎛⎝μp,
k∑

j=1

πj σ̃
2
j

⎞⎠ = V (μp, σ
2
p), (47)

so that the investor dislikes regime uncertainty, or, in decision–theoretic terms, the normal

distribution fourth–order stochastically dominates any μ − σ2 equivalent scale mixture. Is

U ′′′′ < 0 reasonable economically? The answer is in the affirmative. A negative fourth deriv-

ative is known to be a necessary condition for decreasing absolute prudence, which is usually

deemed plausible (Kimball, 1990; Gollier, 2001). If we take this for granted, then the interpre-

tation of (47) is that investors prefer a certain state of the world, with a given variance, over

the “veil of ignorance” with respect to the prevailing volatility regime, i.e., investors would like

to rule out the possibility of the high–variance states of the world with their above–average

volatility. When it comes to portfolio selection, we expect that, when confronted with mixed

normally distributed asset returns, investors will, compared to a Gaussian distribution with

the same mean and covariance matrix, allocate a larger fraction of wealth to those assets with

relatively favorable diversification properties in the adverse states of the world, i.e., they want

to hedge against the occurrence of the adverse states of the market. At the same time, reduc-

ing the variance in the high–volatility states means that the conditional mixture distribution

becomes less fat–tailed, because for |rp,t| → ∞ the difference between any two mixture den-

sities of the form (46) with μ̃1 = · · · = μ̃k is dominated by the mixture component with the

greatest variance.

To construct out–of–sample portfolios for the models under consideration, we first rees-

timate all of them using roughly the first ten years of data, i.e., the first 500 observations.

The parameter vectors thus obtained are then used to predict the return density of the next

four weeks and to derive optimal portfolios, where we restrict our analysis to the simplest case

of one–period–ahead all–equity portfolios as, for example, in Jondeau and Rockinger (2005,

2006). Subsequently, the model parameters are updated (approximately) every month (i.e.,

four weeks) using the most recent information in the sample and employing an expanding win-

dow of data. In this manner, we obtain, for each model, and given our sample size T = 1127,

627 realized one–week–ahead out–of–sample portfolio returns.

To select portfolios, we assume that the expected utility function, U , with initial wealth
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fixed at 100,16 can reasonably be approximated by

U(rp,t) = − exp{−crp,t}, c > 0, (48)

where c is the coefficient of constant absolute risk aversion (CARA), and we consider (48) for

different values of c.17 Using (48), a (conditional) Gaussian investor will solve

max
wt

w′

tμt − c

2
w′

tHtwt s.t. 1′

3wt = 1 and wt ≥ 0, t = 501, . . . , 1127, (49)

where wt = [wUS,t, wUK,t, wGer,t]
′ is the vector of portfolio weights, whereas, in view of (46), an

investor assuming that returns follow a (conditional) normal mixture distribution will maximize

E[U(rp,t)|Ψt−1] = −
k∑

j=1

πjt exp

{
−cw′

tμjt +
c2

2
w′

tHjtwt

}
s.t. 1′

3wt = 1 and wt ≥ 0, (50)

t = 501, . . . , 1127, where, in (49) and (50), the mean vectors depend on t, because the parame-

ter estimates are updated every month, and the πjt’s to be used in (50) are the one–step–ahead

regime forecasts originating from Hamilton’s (1989, 1994) filter algorithm.18

It must be stressed that the portfolio choice experiment conducted herein is necessarily of

an illustrative nature. For example, in practice, the forecasts of the mean returns would not

be based on a model as simple as (42) (see, for example, Ang and Bekaert, 2002; and Guidolin

and Timmermann, 2005a,b, for a discussion of useful predictor variables), nor would they be

based solely on statistical methods in all cases. Also, from a practical viewpoint, investigation

of problems more general than the construction of single–period all–equity portfolios deserves

attention. A more detailed study of portfolio selection under switching volatility regimes is

beyond the scope of this paper, and, consequently, we will pay particular attention to the

model’s capability of providing accurate portfolio return predictive densities rather than to

genuine portfolio performance measures.

16 This is because percentage returns are used, i.e., rit = 100 × (Pit − Pi,t−1)/Pi,t−1, i = 1, 2, 3, where Pit is
the ith index level at time t (denominated in dollars).

17 CARA may be an undesirable property of an expected utility function, as it is often argued since Arrow
(1971) that risk aversion is decreasing in wealth. In this case, we can use mixtures of CARA utility functions
of the form U(W ) = − n

j=1
aje

−cjW , where aj , cj > 0, j = 1, . . . , n, and ci �= cj for i �= j. By Theorem 5
of Pratt (1964), such functions exhibit strictly decreasing risk aversion, and they still admit a closed–form
expression for expected utility under (mixed) normality, leading to numerically rather tractable optimization
problems. We will not pursue this here, however.

18 The functions quadprog and fmincon in Matlab 6.5 are used to carry out the optimizations in (49) and (50),
respectively. To choose the starting values for the mixture investors, we evaluate (50) over a fine grid of
portfolio weights and pick the weight vector which gives the highest expected utility.

23



3.2.2 An Illustrative Example

Before we investigate the distributional properties of the out–of–sample portfolio returns aris-

ing from the various GARCH models under consideration, we single out a characteristic exam-

ple to illustrate the impact of volatility regimes on portfolio choice in line with our reasoning

surrounding Equation (47).19 Namely, on August 4, 2005, i.e., at the beginning of the last week

of our out–of–sample period, the (conditional) Gaussian investor, relying on model MNG(1,1),

maximizes expected utility with respect to the predictive density rt|Ψt−1 ∼ N(μN
t , Ht), where

μN
t = [0.22, 0.19, 0.28]′, and

vech(Ht) = [σ2
US , σUS,UK , σUS,Ger, σ

2
UK , σUK,Ger, σ

2
Ger]

′

= [2.15, 1.40, 1.90, 2.97, 2.77, 5.11]′, (51)

whereas the predictive density of the Markov–switching (MS) investor, employing model

MMSG(1,1;2), is given by rt|Ψt−1 ∼ π1tN(μMS
t , H1t)+(1−π1t)N(μMS

t , H2t), where π1t = 0.88,

μMS
t = [0.24, 0.21, 0.33]′, and

vech(H1t) = [1.73, 0.94, 1.22, 2.09, 1.80, 3.52]′,

vech(H2t) = [6.02, 5.56, 8.59, 10.6, 10.9, 20.8]′, (52)

implying, by (45), an overall conditional covariance matrix of

vech(π1tH1t + (1 − π1t)H2t) = [2.23, 1.48, 2.08, 3.10, 2.86, 5.54]′, (53)

which is similar to (51).

The optimal portfolios for the Gaussian and the MS investors under CARA utility, as

shown in the left and right plot of Figure 4, respectively, display some considerable differences.

While the differences for the lower degrees of risk aversion, c, are negligible, the presence of

volatility regimes becomes more important as c increases. Namely, inspection of (52) reveals

that, in model MMSG(1,1;2), the lower variance of US equity, relative to the UK market,

as observed in (53), is mainly due to its considerably smaller variance in the high–volatility

regime, while both variances are more similar in Regime 1. However, as c grows, the desire

to hedge against the high–volatility regime becomes more and more important for the MS

investor, and so, in accordance with the discussion in Section 3.2.1, her portfolio converges

to the global minimum variance portfolio (GMVP) of Regime 2, given by wMS
GMV P (Δ2) =

19 Note, however, that we abstain from accounting for estimation risk, i.e., we do not test for statistical
significance of the differences in the optimal portfolio weights.
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[0.917, 0.083, 0.000]′. The Gaussian investor, ignoring the presence of market regimes, only

cares about the overall portfolio variance, and thus overestimates the benefits from holding

UK equity. As c increases, her optimal portfolio converges to the GMVP associated with (51),

i.e., wN
GMV P = [0.676, 0.324, 0.000]′.

Although the similarity of (51) and (53) suggests that the differences between the optimal

portfolios of both investors can mainly be attributed to the presence of volatility regimes,

rather than to the differences in the overall conditional covariance matrices implied by models

MNG(1,1) and MMSG(1,1;2), we have also considered an MS investor characterized by a μ−σ2

preference function of the form V (μp, σ
2
p) = μp − (c/2)σ2

p. This cannot be derived from an

expected utility framework, but it helps in disentangling the two aforementioned sources of

discrepancy between the optimal portfolio weights of the Gaussian and the MS investors under

CARA utility. It turns out that the optimal portfolios for the MS investor with mean–variance

preferences essentially reproduce those of the Gaussian investor, confirming that the differences

between the left and right panels of Figure 4 are mainly due to the regime–uncertainty inherent

in the MS framework.

The example presented in this Section is typical for our application insofar as, on average,

and in line with the results of Ang and Bekaert (2002), US equity has relatively favorable

distributional properties in the high–volatility regime, as compared to UK and German stocks.

Thus, the MS and mixture investors with higher risk aversion tend to hold a larger fraction

of wealth in US equity than their Gaussian counterparts. Whether this can explain part of

the home bias of US investors (see, e.g., Lewis, 1999) is an interesting question but requires a

broader framework than that employed in the current investigation.

3.2.3 Out–of–sample Portfolio Results

In this section, we consider the distributional properties of the out–of–sample portfolio returns

originating from the single– and multi–regime GARCH models and an investor characterized

by the utility function (48). To better appreciate the performance of the models, Table 7,

which is similar to Table 1, reports descriptive statistics of the joint return distribution over

the out–of–sample period. A comparison of Tables 1 and 7 reveals some noteworthy differences.

In particular, compared to the entire sample, the mean returns are somewhat smaller in the

out–of–sample period, as are, with the exception of the DAX, the magnitudes of the skewness

and kurtosis coefficients. However, normality is still strongly rejected for all indices, and

the ARCH–LM test detects highly significant heteroskedasticity. Moreover, the correlations
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between the stock markets under study have been somewhat higher during the last years of

our sample.

For selected values of c in (48), ranging from 0.01 to 1, summary statistics for the respective

sequences of portfolio returns, rp,t, t = 501 . . . , 1127, are documented in Tables 8 and 9.

Further increasing c did not result in any notable differences compared to c = 1. Two types

of statistics are reported. The first set of summary statistics, which is reported in Table 8,

directly refers to properties of the rp,t–series. Next to the usual moment–based summary

measures, we follow de Goeij and Marquering (2004) and calculate the average realized utility,

i.e.,

U(rp,t) =
1

627

1127∑
t=501

U(rp,t) =
1

627

1127∑
t=501

− exp{−crp,t}, (54)

where, in Table 7, we scale (54) by e−3c for convenience of reporting.

For the second type of summary statistics, as motivated by the discussion in the last

paragraph of Section 3.2.1 and presented in Table 9, we employ the technique proposed by

Berkowitz (2001) to assess the quality of the predictive portfolio return distributions implied

by the respective models, which is of great interest for risk management purposes. That is, we

calculate the sequence of “realized” portfolio return distribution functions, ut := F̂ (rp,t|Ψt−1),

t = 501, . . . , 1127, where F̂ (·|Ψt−1) is the conditional cumulative distribution function (cdf)

of the portfolio return implied by the model under consideration. Subsequently, we apply a

second transformation, namely,

{zt} = Φ−1({ut}), (55)

where Φ is the standard normal cdf. The sequence {zt} is iid N(0,1) if the underlying model

is correct, and Berkowitz (2001) shows that inaccuracies in the predictive density will be

preserved in the transformed data. Thus this transformation allows the use of moment–based

normality tests for checking features such as correct specification of skewness and kurtosis.

In addition, we apply the ARCH–LM test to (55) in order to judge whether the volatility

dynamics are successfully captured by the fitted models.

Finally, we evaluate each model’s performance in measuring the portfolio Value–at–Risk

(VaR), a widely employed tool in risk management (see, e.g., Christoffersen and Pelletier,

2004). Briefly, for a given model, the VaR at level α for period t, denoted by VaRt(α), is defined

by F̂ (VaRt(α)|Ψt−1) = α. A violation or hit is said to occur at time t if rp,t < VaRt(α). The

empirical shortfall probability is α̂ = x/T , where x is the empirical shortfall frequency, and

T is the number of forecasts evaluated. From both the risk management and the regulatory
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perspective, the main interest is whether the model’s actual shortfall probability is greater

than α. Therefore, the check whether α̂ is significantly larger than α is conducted using a

one–sided binomial test, where the p–values are calculated by p =
∑T

i=x

(
T
i

)
αi(1 − α)T−i. In

our application, we consider the VaR levels α = 0.005, 0.01, and 0.05.

We begin our discussion with the first set of summary statistics, as reported in Table 8. In

agreement with intuition, for all models, investors with a higher degree of risk aversion realize

a lower mean return and a smaller variance than the less risk–averse investors. For each c,

the Markov–switching (MS) investor achieves the highest mean return, and particularly so

when compared to the Gaussian investor. Given the caveats indicated in the last paragraph

of Section 3.2.1, this observation should be interpreted with utmost care. Nevertheless, it may

very well be the case that, in the presence of leptokurtic distributions, use of a (scale) mixture

instead of a single normal distribution can help in estimating mean returns more accurately

(cf. Aitkin and Tunnicliffe–Wilson, 1980). Note, however, that the MS investors with the

lowest risk aversion, i.e., c = 0.01 or 0.025, who realize a particularly high mean return, also

have to pay a price in form of a relatively large variance. The higher moments for the other

investors (with c > 0.025) are not exceedingly different across the four models, although the MS

investors exhibit a somewhat lower (negative) skewness. Interestingly, the realized skewness of

the MS investors is uniformly lower than that of those using the asymmetric normal mixture

GARCH model, although the latter explicitly allows for possible asymmetries in the return

distribution. Comparing the average realized utilities, as defined in (54), we observe that, for

each c, the MS investor is better off than her corresponding Gaussian and normal mixture

look–alikes, which points to the existence of economic gains from accounting for persistent

volatility regimes. Note that neither the absolute differences nor the percentage improvements

between the realized utilities can be interpreted, because expected utility functions are unique

only up to affine transformations (cf. Takayama, 1994, p. 267).

Next, we consider the portfolio density forecasts of the models, as summarized in Table 9.

While the series {zt} defined in (55) of model MNG(1,1) display highly significant skewness

and excess kurtosis for each coefficient of risk aversion, those of the MMSG(1,1;2) process do

not show any significant deviations from normality for c ≤ 0.1. For the larger c–values, there

is still no excess kurtosis, but the zero skewness hypothesis is rejected at either the 5% or 10%

level. The asymmetric MNMG(1,1;2) is the only model for which the transformed series (55)

consistently do not exhibit any significant nonnormalities, while the symmetric MNMG(1,1;2)

variant fails to pass the skewness test for all c except the lowest.
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With respect to the conditional heteroskedasticity, the ARCH–LM test detects significant

ARCH effects in the {zt} of the MNG(1,1) model for all c–values, while model MMSG(1,1;2)

passes the test for all degrees of risk aversion with the exception of c = 0.025, where the

ARCH–LM(5) test rejects at the 10% level. For the normal mixture GARCH models, and in

particular the symmetric version, the null of a correctly specified volatility process is rejected

more often than for the MS model, but they still do better than the single–regime specification.

Finally, turning to the evaluation of the portfolio VaR measures, we first note the out-

standing performance of the asymmetric MNMG(1,1;2) process. For each c–value, this model

accurately measures the VaR at the practically most important level α = 0.01, and does also

well for the other two VaR levels. The symmetric MNMG(1,1;2) model is less adequate, while

model MMSG(1,1;2) provides reasonably accurate VaR measures for the lower levels α = 0.005

and 0.01, but not for α = 0.05. Lastly, and not surprisingly, the single–regime MNG(1,1) model

apparently fails to capture the portfolio risk at the lower VaR levels but, interestingly, not so

for α = 0.05.

In summary, model MMSG(1,1;2) and the asymmetric MNMG(1,1;2) process are accept-

able with respect to the predictive density evaluations in Table 9, with MNMG(1,1;2) delivering

superior VaR measures. At first glance, it may seem difficult to reconcile the favorable per-

formance of the predictive densities generated by the asymmetric normal mixture GARCH

model with the results of the utility–based comparison of Table (8), but, in this regard, it is

convenient to recall the point made by West, Edison, and Cho (1993), that “utility and statis-

tical measures may be dramatically different”. Clearly Table 9 suggests that, in applications

to VaR, asymmetries may be important to assess the risk in the lower tail.

4 Conclusions

Several extensions and modifications of the analysis conducted in this paper are worth explor-

ing. While the diagonal BEKK structure, which is used in the present paper to specify the

dynamics of variances and covariances, is parsimonious enough to be applicable to a moder-

ately large number of assets, different specifications will be preferable for high–dimensional

problems, such as the constant conditional correlation model of Bollerslev (1990). As noted

by Pelletier (2006), an appealing feature of this model when enriched with a multi–regime

structure is that, although the within–regime correlations are constant, the overall correlation

matrix will be time–varying. In particular, if the return vector to be modeled is of very high

dimension, considerable simplification can be achieved by resorting to common correlation–
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type models for the within–regime correlation matrices (e.g., Elton, Gruber, and Padberg,

1976; and Kwan, 2006), which, in a static framework, have been found to exhibit favorable

performance in predicting asset return correlations (e.g., Eun and Resnick, 1984). Clearly such

extensions require the development of appropriate estimation techniques.

Appendix

A The Commutation, Elimination, and Duplication Matrices

To conveniently write down the unconditional moments of the multivariate regime–switching

GARCH model developed herein, use of several patterned matrices is rather advantageous,

and we define them here. A detailed discussion of (as well as explicit expressions for) these

matrices can be found in Magnus (1988). The first of these matrices is the commutation

matrix, Kmn, which is the mn × mn matrix with the property that Kmnvec(A) = vec(A′) for

every m × n matrix A. The elimination matrix, Ln, is the n(n + 1)/2 × n2 matrix that takes

away the redundant elements of a symmetric n × n matrix, i.e., for every n × n matrix A, we

have Lnvec(A) = vech(A). In contrast, the duplication matrix, Dn, is the n2 × n(n + 1)/2

matrix with the property that Dnvech(A) = vec(A) for every symmetric n × n matrix A. Its

Moore–Penrose inverse, D+
n , is given by D+

n = (D′

nDn)−1D′

n (Magnus, 1988, Theorem 4.1).

To compactify the expressions for the moments of our model, we will also make use of the

matrix Ñn = (In2 + Knn)/2, which is discussed in Section 3.10 of Magnus (1988), and which

has the property that, for every n × n matrix A,

2Ñnvec(A) = vec(A + A′), (A.1)

which follows directly from its definition.
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Table 1: Distributional properties of international stock market returns.

covariance/
mean correlation matrix skew kurt JB ARCH–LM(q)

S&P500 FTSE DAX q = 1 q = 5 q = 10

S&P500 0.200 4.540 0.543 0.524 –0.686 7.625 1093
(0.000)

16.70
(0.000)

55.44
(0.000)

76.85
(0.000)

FTSE 0.200 2.848 6.070 0.595 –0.589 8.156 1314
(0.000)

18.71
(0.000)

33.98
(0.000)

40.59
(0.000)

DAX 0.258 3.324 4.366 8.882 –0.241 5.119 221.8
(0.000)

27.73
(0.000)

69.66
(0.000)

80.91
(0.000)

p–values are given in parentheses. “skew” denotes the moment–based coefficient of skewness, γ = m3/m
3/2

2
,

and “kurt” the moment–based coefficient of kurtosis, κ = m4/m2
2, where mi = T−1

t(rt − r̄)i, i = 2, 3, 4,
and r̄ = T−1

t rt. JB is the Jarque–Bera test for normality, based on the result that, under normality,

JB = Tγ2/6+T (κ−3)2/24
asy
∼ χ2(2) (see, e.g., Alexander, 2001, p. 286). ARCH–LM(q) refers to Engle’s (1982)

Lagrange multiplier test for ARCH effects, which is obtained by running the regression ε2t = α0 + q
i=1

ε2t−i +ut,
where {εt} is the demeaned return series. Then, under the null of no ARCH, the quantity TR2 is approximately
distributed as χ2(q), where T is the number of observations, and R2 is the coefficient of determination obtained
for the regression. As explained in the text, the ARCH tests reported in the table are calculated by excluding
the return from October 15 to October 22, 1987.

Table 2: Likelihood–based goodness–of–fit.

Models with constant (within–regime) covariances
MNG(0,0) MMSG(0,0;2) MNMGs(0,0;2) MNMG(0,0;2)

K 9 17 16 19

Log–likelihood
Value (Rank) –7400.7 (8) –7234.9 (5) –7295.4 (7) –7293.8 (6)

BIC
Value (Rank) 14865 (8) 14589 (5) 14703 (6) 14721 (7)

GARCH models
MNG(1,1) MMSG(1, 1; 2) MNMGs(1, 1; 2) MNMG(1, 1; 2)

K 15 29 28 31

Log–likelihood
Value (Rank) –7203.6 (4) –7124.9 (1) –7131.7 (3) –7127.8 (2)

BIC
Value (Rank) 14513 (4) 14454 (1) 14460 (2) 14473 (3)

The table shows likelihood–based goodness–of–fit measures for models fitted to the international
stock market return series. K refers to the number of parameters of a model, “Log–likelihood” is
the value of the maximized log–likelihood function, and BIC is the Bayesian information criterion
of Schwarz (1978), i.e., BIC = −2 × Log–likelihood + K log T , where T is the sample size. Smaller
values of BIC are preferred. For both criteria, the criterion value and the ranking of the models
are shown. Boldface entries indicate the best model for the particular criterion.
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Table 6: Unconditional (regime–dependent) covariance matrices and implied correlations.

Model E(εtε
′

t) E(εtε
′

t|Δt = 1) E(εtε
′

t|Δt = 2)
& implied corr. & implied corr. & implied corr.

MNG(1,1)

⎡⎣ 4.59 0.49 0.52
2.54 5.79 0.63
3.51 4.83 10.2

⎤⎦ – –

MMSG(1,1;2)

⎡⎣ 4.78 0.55 0.55
3.08 6.52 0.63
4.05 5.38 11.2

⎤⎦ ⎡⎣ 3.53 0.52 0.51
2.14 4.91 0.60
2.75 3.80 8.13

⎤⎦ ⎡⎣ 13.3 0.62 0.62
9.55 17.6 0.68
12.9 16.2 32.2

⎤⎦
MNMGs(1,1;2)

⎡⎣ 4.24 0.52 0.50
2.74 6.50 0.60
3.12 4.63 9.15

⎤⎦ ⎡⎣ 3.33 0.49 0.48
2.04 5.23 0.59
2.34 3.64 7.27

⎤⎦ ⎡⎣ 12.9 0.61 0.56
9.37 18.5 0.63
10.5 14.1 27.0

⎤⎦
MNMG(1,1;2)

⎡⎣ 4.29 0.51 0.50
2.71 6.51 0.60
3.10 4.58 8.91

⎤⎦ ⎡⎣ 3.30 0.48 0.47
1.99 5.25 0.59
2.29 3.61 7.11

⎤⎦ ⎡⎣ 11.7 0.57 0.54
8.03 16.7 0.61
8.89 12.0 23.3

⎤⎦
The table shows the unconditional overall and regime–dependent covariance matrices, as implied by the
estimated multivariate GARCH models, along with the associated correlation structures in the upper
triangular parts of the matrices. The return vector is rt = [r1t, r2t, r3t]

′, where r1t, r2t, and r3t are the
time–t returns of the S&P500, the FTSE, and the DAX, respectively.

Table 7: Distributional properties of stock market returns over the out–of–sample period.

covariance/
mean correlation matrix skew kurt JB ARCH–LM(q)

S&P500 FTSE DAX q = 1 q = 5 q = 10

S&P500 0.186 4.701 0.647 0.659 –0.233 4.635 75.50
(0.000)

6.333
(0.012)

32.09
(0.000)

40.53
(0.000)

FTSE 0.150 3.063 4.775 0.720 –0.117 4.127 34.64
(0.000)

24.77
(0.000)

30.29
(0.000)

43.36
(0.000)

DAX 0.216 4.340 4.775 9.219 –0.228 5.496 168.2
(0.000)

17.19
(0.000)

42.52
(0.000)

51.15
(0.000)

p–values are given in parentheses. See Table 1 for explanations.
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Table 8: Properties of realized portfolio returns.

Risk aversion, c 0.01 0.025 0.05 0.1 0.5 1

Multivariate Normal GARCH(1,1) (MNG(1,1))
mean(rp,t) 0.191 0.171 0.153 0.149 0.156 0.157
var(rp,t) 6.012 4.958 4.374 4.101 3.933 3.920
skew(rp,t) –0.356 –0.383 –0.439 –0.374 –0.320 –0.313
kurt(rp,t) 5.057 5.043 5.292 5.145 5.138 5.137

e−3cU(rp,t) –0.9689 –0.9252 –0.8589 –0.7455 –0.3938 –1.4596

Multivariate Markov–switching GARCH(1,1;2) (MMSG(1,1;2))
mean(rp,t) 0.223 0.207 0.176 0.163 0.170 0.173
var(rp,t) 7.398 5.656 4.576 4.137 3.971 4.099
skew(rp,t) –0.312 –0.275 –0.321 –0.309 –0.275 –0.253
kurt(rp,t) 4.803 4.566 4.796 4.966 5.020 5.085

e−3cU(rp,t) –0.9686 –0.9246 –0.8581 –0.7445 –0.3853 –1.3006

Multivariate symmetric normal mixture GARCH(1,1;2) (MNMGs(1,1;2))
mean 0.209 0.192 0.165 0.160 0.162 0.158
variance 7.135 5.506 4.534 4.154 4.021 4.177
skewness –0.433 –0.376 –0.415 –0.369 –0.311 –0.287
kurtosis 5.394 5.045 5.235 5.168 5.165 5.307

e−3cU(rp,t) –0.9688 –0.9249 –0.8586 –0.7449 –0.3960 –1.5238

Multivariate asymmetric normal mixture GARCH(1,1;2) (MNMG(1,1;2))
mean 0.198 0.179 0.162 0.158 0.159 0.154
variance 6.590 5.253 4.468 4.144 4.081 4.323
skewness –0.431 –0.372 –0.412 –0.367 –0.311 –0.284
kurtosis 5.336 5.115 5.344 5.245 5.232 5.369

e−3cU(rp,t) –0.9688 –0.9251 –0.8586 –0.7449 –0.4018 –1.7230

Shown are summary statistics for the out–of–sample portfolio returns, rp,t, t = 501, . . . , 1127.
“skew(rp,t)” and “kurt(rp,t)” denote the moment–based coefficients of skewness and kurtosis,
respectively, of the rp,t–series; see the legend of Table 1 for the definition of these measures.
U(rp,t) is the average realized utility, as given by (54).
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Table 9: Evaluation of portfolio return predictive densities.

Risk aversion, c 0.01 0.025 0.05 0.1 0.5 1

Multivariate Normal GARCH(1,1) (MNG(1,1))
skew(zt) −0.389∗∗∗ −0.375∗∗∗ −0.398∗∗∗ −0.370∗∗∗ −0.348∗∗∗ −0.345∗∗∗

kurt(zt) 4.535∗∗∗ 4.130∗∗∗ 4.004∗∗∗ 3.844∗∗∗ 3.760∗∗∗ 3.755∗∗∗

ARCH–LM(1) 3.303∗ 4.474∗∗ 5.822∗∗ 6.481∗∗ 7.693∗∗∗ 7.926∗∗∗

ARCH–LM(5) 7.118 9.442∗ 10.47∗ 11.55∗∗ 12.62∗∗ 12.75∗∗

ARCH–LM(10) 10.64 13.54 14.80 16.39∗ 18.20∗ 18.43∗∗

VaR(0.005) 0.011∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.013∗∗ 0.013∗∗

VaR(0.01) 0.014 0.018∗ 0.024∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.024∗∗∗

VaR(0.05) 0.053 0.049 0.056 0.064∗ 0.061 0.061

Multivariate Markov–switching GARCH(1,1;2) (MMSG(1,1;2))
skew(zt) −0.102 −0.130 −0.150 −0.159 −0.188∗ −0.202∗∗

kurt(zt) 2.949 2.828 2.731 2.687 2.761 2.847
ARCH–LM(1) 1.803 2.195 1.846 1.608 0.771 0.644
ARCH–LM(5) 7.814 10.05∗ 7.624 6.594 4.469 4.557
ARCH–LM(10) 9.660 12.93 10.31 10.58 10.95 11.48
VaR(0.005) 0.011∗∗ 0.010∗ 0.010∗ 0.006 0.006 0.010∗

VaR(0.01) 0.016 0.014 0.016 0.018∗ 0.019∗∗ 0.018∗

VaR(0.05) 0.070∗∗ 0.070∗∗ 0.067∗∗ 0.078∗∗∗ 0.072∗∗ 0.072∗∗

Multivariate symmetric normal mixture GARCH(1,1;2) (MNMGs(1,1;2))
skew(zt) −0.149 −0.174∗ −0.187∗ −0.198∗∗ −0.228∗∗ −0.246∗∗

kurt(zt) 3.057 2.925 2.833 2.796 2.881 2.999
ARCH–LM(1) 4.278∗∗ 5.813∗∗ 5.361∗∗ 4.749∗∗ 3.003∗ 2.379
ARCH–LM(5) 8.864 11.81∗∗ 10.96∗ 10.07∗ 7.242 7.072
ARCH–LM(10) 11.31 15.15 14.34 15.02 13.68 12.70
VaR(0.005) 0.011∗∗ 0.013∗∗ 0.011∗∗ 0.011∗∗ 0.010∗ 0.011∗∗

VaR(0.01) 0.018∗ 0.016 0.018∗ 0.022∗∗∗ 0.022∗∗∗ 0.021∗∗

VaR(0.05) 0.065∗ 0.069∗∗ 0.065∗ 0.073∗∗∗ 0.070∗∗ 0.070∗∗

Multivariate asymmetric normal mixture GARCH(1,1;2) (MNMG(1,1;2))
skew(zt) −0.049 −0.049 −0.065 −0.072 −0.086 −0.095
kurt(zt) 3.124 2.928 2.832 2.790 2.897 3.019
ARCH–LM(1) 3.540∗ 4.391∗∗ 3.483∗ 3.247∗ 2.281 2.431
ARCH–LM(5) 7.914 9.050 7.124 6.242 4.888 6.052
ARCH–LM(10) 11.52 13.89 11.51 11.68 10.64 10.55
VaR(0.005) 0.010∗ 0.008 0.008 0.008 0.008 0.008
VaR(0.01) 0.013 0.014 0.013 0.013 0.013 0.014
VaR(0.05) 0.062∗ 0.059 0.056 0.064∗ 0.059 0.062∗

Shown are summary statistics for the transformed portfolio return series (55). “skew(zt)” and “kurt(zt)”
denote the moment–based coefficients of skewness, γ, and kurtosis, κ, as are defined in the legend of Table
1, of the {zt} defined in (55). Under normality, Tγ2/6

asy
∼ χ2(1) and T (κ − 3)2/24

asy
∼ χ2(1). ARCH–LM

is the Lagrange multiplier test for ARCH effects applied to (55), the details of which are also provided in
the legend of Table 1. “VaR(α)” refers to the Value–at–Risk (VaR) measures implied by the respective
models. Reported are the empirical shortfall probabilities, x/T , observed for a nominal VaR level α, α =
0.005, 0.01, 0.05, where x is the shortfall frequency, and T is the number of forecasts evaluated. Asterisks
∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively, as obtained from a one–sided
binomial test.
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Figure 1: Stationarity regions for the univariate two–regime Markov–switching ARCH(1)

processes characterized by the transition matrices given in (34).
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Figure 4: Shown are the optimal one-week-ahead portfolio weights of two groups of investors

on August 4, 2005. The left plot shows, as a function of risk aversion, c, the optimal weights

of investors employing a single–regime GARCH(1,1) process, i.e., model MNG(1,1). The right

plot repeats this, but for investors using the Markov–switching GARCH model, i.e., model

MMSG(1,1;2).
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