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Abstract: 
We show that the use of correlations for modeling dependencies may lead to counterintuitive 
behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when 
the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is 
demonstrated for mixture models adapted from credit risk analysis as well as for common 
Poisson-shock models used in reliability theory. 
An obvious implication of this finding pertains to the analysis of operational risk. The alleged 
incentive suggested by the New Basel Capital Accord (Basel II), namely decreasing minimum 
capital requirements by allowing for less than perfect correlation, may not necessarily be 
attainable. 
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1. Introduction

Since the initiation of the New Basel Capital Accord (Basel II ) in 1999 when operational

risk was introduced to the regulatory landscape, the attention to this risk type has risen

substantially. The Committee (Basel Committee on Banking Supervision (2006)) defines

operational risk as “risk of loss resulting from inadequate or failed internal processes, people

and systems or from external events.” The fact that events like bookkeeping errors and

terrorist attacks are both contained in this characterization illustrates the broad range of

risks, especially when compared to credit or market risk. Taking this heterogeneity of loss

events into account, the Basel Committee categorizes losses into seven event types and eight

business lines. Banks are supposed to calculate risk measures for each of these 8 × 7 = 56

“cells”. Examples are “Internal Fraud” in “Trading and Sales” or “Damage to Physical

Assets” in “Commercial Banking”.

The risk measure specified by the Committee is the Unexpected Loss at a confidence level of

99.9%. Generally speaking, this refers to the 99.9% quantile of the loss distribution (possi-

bly reduced by the Expected Loss, referring to the mean of the distribution). This quantity

is also known as Value-at-Risk (VaR), which measures the maximum loss that will not be

exceeded with a given confidence level and is widely used in financial institutions since the

1990s.

The total risk capital under the Advanced Measurement Approaches (AMA) is obtained by

summing over all 56 event-type/business-line VaRs, a strategy implicitly expecting the joint

occurrence of all loss types involved or, in other words, perfect positive correlation between

all loss processes. The Committee takes this into account by allowing a bank “. . . to use

internally determined correlations [...] provided it can demonstrate to the satisfaction of the

national supervisor that its systems for determining correlations are sound, implemented

with integrity, and take into account the uncertainty surrounding any such correlation esti-

mates (particularly in periods of stress).” (Basel Committee on Banking Supervision (2006)).

As moving from the highly unrealistic assumption of perfect dependence (summing the Un-

expected Losses of all cells) to an approach relying on estimated correlations should lead to a

decrease in risk capital, banks have a strong interest in developing and establishing adequate

approaches.

This expected decrease in estimated risk capital caused by a lower correlation of loss

processes is the focus of our study. We want to find out if a general statement can be made

about how risk capital estimates might be altered by such consideration of less than perfect

correlation. Secondly, we want to analyze the impact of the concrete model setup on our

findings.

In the following, we concentrate on rare event losses, such as natural catastrophes or

terrorist attacks, rather than “everyday losses” such as typical bookkeeping errors. Fur-

thermore, we focus on models well-known from credit risk and reliability theory, but with
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broader parameter ranges than those typically considered. We confine ourselves to analyzing

the frequency part of operational losses to check for the impact of dependent occurrences

and disregard the severity dimension. Therefore, in our notion, “risk” measures the number

of event occurrences rather than monetary units.

Since the work of Artzner et al. (1999) it is well-known that Value-at-Risk (VaR) is not a

coherent risk measure. To be precise, it lacks the subadditivity property, which would imply

in the context of aggregation of operational risk capital that the joint risk measured for

two event-type/business-line cells should not be higher than the sum of the individual risks

measured for the two cells. This appears to be a reasonable requirement. Unfortunately, the

widely used VaR in general does not fulfil the subadditivity criterion. One recommendation

is to calculate the marginal contributions of each business line to the overall risk using

conditional expectations and Expected Shortfall (ES), i.e, the expected loss given that VaR

is exceeded (Glasserman (2005)). However, despite its deficiencies, VaR remains to be the

dominant risk measure in practice. Therefore, we consider the two risk measures VaR and

ES.

The paper is organized as follows. Section 2 defines latent-variable models and describes

the relationship between latent and observed correlation. Mixture models as an alterna-

tive representation which offers greater flexibility are presented in Section 3. We introduce

a simple common Poisson-shock model in Section 4 and present the results from simulat-

ing dependent event occurrences in the aforementioned modeling frameworks in Section 5.

Conclusions are presented in Section 6.

2. Event Occurrences in Latent-Variable Models

2.1. Latent-variable models. The idea common to all latent-variable specifications is that

there exists a second layer of – possibly observable – latent variables which drive the discrete

counting process for the observed loss occurrences. Formally, a latent-variable model (LVM)

can be defined as follows, cf. Embrechts et al. (2005).

Definition (Latent-Variable Model) Let X = (X1, . . . , Xn)′, i = 1, . . . , n, be a random

vector and D ∈ Rn×m a deterministic matrix. Suppose that

Si = j ⇔ dij < Xi < di,j+1 , i ∈ {1, . . . , n}, j ∈ {0, . . . , m},
where di0 = −∞, di,m+1 = ∞. Then, (X, D) is a latent-variable model for the state vector

S = (S1, . . . , Sm)′, where Xi are the latent variables and dij the appertaining thresholds of

the latent-variable model.

For our applications, we introduce a new variable Yi defined by

Yi = 1 ⇔ Si = 0 and Yi = 0 ⇔ Si > 0 ,

to indicate event occurrence, as we only need to distinguish between the two states of “event

occurrence” and “non-occurrence”. The probability of occurrence for individual/process i is
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defined by

P (Yi = 1) = P (Xi ≤ di1) = πi .

In the credit risk literature, Yi = 1 indicates “default” of counterparty i, meaning that

obligor i cannot make his payments. In structural credit risk models, the latent variable

is interpreted as the obligor’s assets; if their value falls below some threshold (the default

boundary), the obligor defaults.

This approach can be adapted to suit operational risk settings, but with Yi ∈ {0, 1, 2, . . .}
the number of loss events rather than the two outcomes “default” or “no default”. As a

consequence, the Poisson distribution instead of the Bernoulli distribution is appropriate.

The Poisson distribution is a natural candidate since it is an approximation for sums of

Bernoulli random variables with low success probabilities. This will be realized below in the

mixture model representation.

2.2. Latent versus observed correlation. We want to construct a setup in which the

probability of the occurrence of an event can depend on events in other processes. Clearly,

the probability of a flood damaging equipment will increase when that same event hits a

nearby building. Similarly, a system breakdown in one corporate division may propagate to

another inducing a failure there. In latent-variable models, this is modeled by allowing for

dependence among the latent variables. Thus, dependencies are introduced in an indirect

fashion through – typically unobservable – latent variables, Xi, which affect the observed

variables, Yi.

Restricting ourselves to linear dependence, we distinguish between latent correlation among

the Xi and observed correlation among the Yi, the latter being given by

(1) ρY =
Cov[Yi, Yj]√

Var[Yi] · Var[Yj]
=

E[YiYj]− πiπj√
πi(1− πi)πj(1− πj)

,

where E[YiYj] = P (Yi = 1, Yj = 1) = P (Xi ≤ di1, Xj ≤ dj1) denotes the joint cumulative

distribution function of the latent variables associated with processes i and j. The observed

correlation, ρY , is often called “default correlation” in the credit risk literature, as opposed to

(latent) “asset correlation”, ρX , that refers to the linear dependence between latent variables.

From (1) it follows that observed correlations depend on marginal occurrence probabilities,

πi and πj, and on latent correlation, ρX , the latter entering via E[YiYj].

2.3. The distribution of latent variables. Normal variance mixtures are obvious and

widely used candidates for the distribution of latent variables. In normal variance mixtures

latent variables can be written as

X = µ +
√

WZ ,
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where Z ∼ Nn(0, Σ), W is a scalar random variable independent of Z and µ is a constant.

An event occurs in process i when Xi ≤ di1, or

Zi ≤ di1 − µ√
W

.

The case of multivariate normally distributed latent variables is achieved by setting µ = 0 and

W = 1. Alternatively, a joint Student-t distribution can be obtained by letting ν/W ∼ χ2
ν ,

where ν is the degrees of freedom parameter of the t distribution and χ2 denotes the chi-

square distribution with ν degrees of freedom. This latter model is often cited in the credit

risk literature, e.g. Frey et al. (2001), because it has the appealing feature of treating the

KMV and the CreditMetrics model as special cases for which ν →∞, but admits lower tail

dependence and greater flexibility due to the additional parameter. Other types of latent-

variable distributions will be discussed below after having introduced the mixture model

representation.

3. Event Occurrences in Mixture Models

3.1. Mixture models. Mixture models can arise when distributional parameters do not

remain constant. For example, it appears to be natural that in times of tectonic plate

movements, the probability of an earthquake occurrence rises, that storms are more likely

to happen in one season than in others, or that a management change in a global company

can affect the probability of fraud. Therefore, in an operational risk context, it seems to be

a realistic assumption that the parameters of the assumed distributions might be subject to

changes, i.e., be random variables themselves.

A formal definition of a special mixture model in the spirit of Embrechts et al. (2005) is

as follows.

Definition (Bernoulli Mixture Model) Let Y = (Y1, . . . , Yn)′, i = 1, . . . , n, be a random

vector in {0, 1}n and Ψ = (Ψ1, . . . , Ψp)
′, p < n, be a factor vector. Then, Y follows a

Bernoulli mixture model with factor vector Ψ if there exist functions pi : Rp → [0, 1] such

that conditional on Ψ the elements of Y are independent Bernoulli random variables with

P (Yi = 1|Ψ = ψ) = pi(ψ).

It is also possible to define Y as being conditionally Poisson distributed. Then, Y is

a count variable rather than a binary variable, and we obtain a Poisson mixture model.

Both models can be mapped into each other by setting Y = IỸ >0 where Ỹ ∼ Poi(λ). The

parameters are related via pi = 1−e−λi , a property we will use to simulate from both models

in a comparable way.

To keep the setup simple, we examine only exchangeable mixture models, where condi-

tional probabilities of event occurrence are identical, i.e., pi(ψ) = p(ψ). Defining the new

random variable Q = p(Ψ), the observed correlation between indicator variables can then be
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obtained from

ρY =
π2 − π2

π − π2
,

where π = E[Q] and πk = E
[
Qk

]
.

3.2. Latent-variable models as mixture models. In fact, latent-variable models and

Bernoulli mixture models can be viewed as two different representations of the same under-

lying mechanism. The following lemma is based on Frey and McNeil (2003).

Lemma 1. Let (X,D) be a latent-variable model with n-dimensional random vector X.

If X has a p-dimensional conditional independence structure with conditioning variable Ψ,

the default indicators Yi = IXi≤di1
follow a Bernoulli mixture model with conditional event

probabilities pi(ψ) = P (Xi ≤ di1|Ψ = ψ).

In case of the latent-variable model (X, D) where X is a normal variance mixture and we

assume a one-factor structure for Z, we can write

X = µ +
√

WZ ,

Zi =
√

ρX Ψ +
√

1− ρX εi ,

where ρX is the latent correlation, εi ∼ iid N(0, 1), and Ψ ∼ N(0, 1) is the only factor and

conditioning variable. We thus obtain a conditional independence structure for X, which

allows us to proceed using the equivalent mixture model representation. For multivariate

normal latent variables with µ = 0 and W = 1, the observed conditional default probability

is

p(ψ) = P (Xi ≤ di1|Ψ = ψ) = Φ

(
Φ−1(π)−√ρX ψ√

1− ρX

)
.

For a multivariate Student-t distribution the analogous result is

p(ψ) = P (Xi ≤ di1|Ψ = ψ) = Φ

(
t−1
ν (π)W−1/2 −√ρX ψ√

1− ρX

)
.

We see that we can easily map the latent-variable models of Section 2.3 into the mixture

model setup; at the same time, simulation is much easier, because we do not have to draw

from the multivariate normal or multivariate Student-t probability density function.

3.3. The mixing distribution. Within the mixture model framework, one can easily allow

for different distributional assumptions with respect to latent variables. In our analyses,

we consider several examples which are often suggested in risk-management and actuarial

applications. In each case the model was calibrated to the multivariate normal latent-variable

model, to assess to what extent the choice of mixing distribution affects the number of event

occurrences, with the multivariate normal model serving as benchmark.
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3.3.1. Beta Mixing Distribution. In case of a Beta mixing distribution we assume a mixing

variable Q = p(Ψ) ∼ Beta(a, b). As the moments of a Beta distribution can be directly

calculated from the distributional parameters, a and b, we can easily derive unconditional

occurrence probabilities from

πk =
β(a + k, b)

β(a, b)
=

k−1∏
j=0

a + j

a + b + j
,

from which we obtain the observed correlation

ρY =
1

a + b + 1
.

3.3.2. Probit Model. We assume a standard normally distributed factor Ψ ∼ N(0, 1). Condi-

tional event probabilities have to be determined using the fact that Q = Φ(µ+σΨ). Marginal

occurrence probabilities are not as easily obtained as in the Beta case, since this involves the

integration

πk = E
[
Qk

]
=

∫ ∞

−∞
(Φ(µ + σz))kφ(z)dz ,

making simulations of event occurrences rather complicated. Matters become much easier

when recalling that the Probit model is equivalent to a latent-variable model with multi-

variate normally distributed latent variables. Hence, this model is already covered by the

benchmark model described in Section 3.2.

3.3.3. Latent Variables with Clayton Copula. The Clayton Copula is a subtype of an Archi-

medean Copula

C(u1, . . . , ud) = φ−1(φ(u1) + · · ·+ φ(ud))

with generator φ(t) = t−θ − 1 being the inverse of the Laplace transform of cumulative

distribution function G on R.

Using Ψ ∼ Ga(1/θ, 1), conditional occurrence probabilities can be calculated from Q = p(Ψ)

with

Q = p(ψ) = P (Ui ≤ π|Ψ = ψ) = exp(−ψφ(π)) ,

where Ui ∼ Unif(0, 1). The bivariate occurrence probability is

π2 = φ−1(φ(π) + φ(π)) = (2π−θ − 1)−1/θ .

4. Event Occurrences in Common Poisson-Shock Models

4.1. A simple common Poisson-shock model. Adapting the frameworks of Powojowski

et al. (2002) and Lindskog and McNeil (2003), one can assume the presence of both idio-

syncratic and common Poisson processes. Altogether we assume m = n + nc underlying
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processes. The number of loss events for the observed loss process i can be written as

Yi =
m∑

j=1

δijMj i = 1, . . . , n, j = 1, . . . , m,

where δij is an indicator variable which is equal to one if underlying process j can lead to

loss events of observed process i, and Mj represents the number of occurrences of underlying

process j with intensity λj. Among the m underlying processes there are nc common ones,

which affect more than one observed process and are characterized by equal intensities, λc.

The remaining n underlying processes with intensities λ∗i are idiosyncratic in the sense that

they only affect the observed process i.

The correlation between two observed loss event processes, k and l, can be written as

(2) ρkl =

∑m
j=1 δjkλjδjl√∑m

j=1 δjkλj

∑m
j=1 δjlλj

.

We use a simplified setup comparable to the exchangeable mixture model where idiosyncratic

intensities λ∗i = λ∗ are identical as well and where all nc common processes cause events in

all n observed loss processes. Equation (2) can then be written as

ρkl =
ncλc

λ∗ + ncλc

.

For a given λ = λ∗ + ncλc and observed correlation ρkl = ρ, we can calculate idiosyncratic

and common parts from

λ∗ = λ(1− ρ) ,

ncλc = λ− λ∗ .

5. Simulation Results

For each of the models discussed above, we simulated event occurrences and estimated risk

capital for different levels of latent correlation, ρX . In doing this, we used the multivariate

normal latent-variable model as benchmark model to which we calibrated the other models.

Throughout the simulations, we assumed n = 1 000 loss processes, to match with the studies

in Frey et al. (2001) and Frey and McNeil (2001). For the mixture models, we simulated

a factor realization ψ and calculated conditional occurrence probabilities p(ψ) which were

then used to conduct n Bernoulli or Poisson trials. After summing up the number of event

occurrences, we repeated 100 000 times and calculated VaR and ES of the resulting empirical

distribution. For the common Poisson-shock model, we assumed nc = 1 and calculated λ,

λ∗ and λc
j from π and ρY . These quantities were then used to conduct Poisson trials and

proceed further as in the mixture model setup.

For all models and low occurrence probabilities (π ≤ 0.01), we observe a counterintu-

itive behavior of VaR: it decreases for increasing correlations, this effect being the more
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pronounced the lower the confidence level. An illustration of this phenomenon is given in

Figure 1, which plots the logarithm of the 99% VaR depending on the level of latent correla-

tion and occurrence probability π. While for π = 0.01, VaR behaves as intuitively expected,

i.e., increasing in ρX over the entire range of latent correlations, it clearly declines for lower

levels of latent correlation beyond a certain threshold of ρX , with lower thresholds for lower

values of π.
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Figure 1: Simulated 99%-VaR (in logs) in the multivariate normal LVM, π ∈ [0.0001, 0.01]

This effect is the more pronounced, the fatter the tails of the distribution of latent vari-

ables, as is shown in Figure 2. For ν = 100, we observe an increase in VaR up to a latent

correlation of ρX ≈ 0.5 and a decrease for higher levels; the lower ν, the broader the range

of ρX for which this peculiar behavior occurs. For ν = 4, VaR decreases over the entire

range of latent correlations. The results for Poisson mixture models are qualitatively the

same, as was to be expected from the low level of occurrence probabilities involved. Also,

scenarios for the common Poisson-shock model setup can be established which lead to this

counterintuitive behavior.

For ES, using 100 000 replications leads to ambiguous results. For very low occurrence prob-

ability levels (π ≤ 0.00001), decreases in ES can be observed for increasing ρX . But in

contrast to the risk capital estimates based on VaR, this effect vanishes when the num-

ber of replications increases to up to 10 million. Figure 3 illustrates that ES behaves as

intuitively expected, i.e., it rises over the entire range as ρX grows. Therefore, the counter-

intuitive behavior has to be taken into account when designing the Monte-Carlo simulation.
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Figure 2: Simulated 99%-VaR (in logs) in the multivariate Student-t LVM, π = 0.001, ν ∈
[4, 100]
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Figure 3: Simulated 99%-ES (in logs) in the multivariate normal LVM, π ∈ [0.0001, 0.01]

10



Otherwise, simulated ES figures may seem to decrease as ρX rises – just as is in the VaR case.
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(i) ρX = 0.1 (ii) ρX = 0.9

Figure 4: Scatterplots for a bivariate normal distribution

The explanation of this effect is illustrated in Figure 4. It shows 10 000 draws from a bivari-

ate normal distribution for two different correlation assumptions. The solid line represents

the thresholds implied by an occurrence probability of π = 0.01. In the left plot, where the

latent correlation is ρX = 0.1, this threshold leads to 4 joint “occurrences” (in the southwest-

ern quadrant) and 9,798 joint “non-occurrences”. In the right plot with a higher correlation

of ρX = 0.9, the concentration on extremes leads to 94 joint “occurrences” and 9,854 joint

“non-occurrences”. As it turns out, high correlation not only leads to more events, but also

to more joint “non-events”. It is this phenomenon which moves Value-at-Risk towards zero

as correlation levels rise.

6. Conclusion

Introducing less than perfect dependencies should lead to a more realistic description

of loss event occurrences. Our results show that it is very important to assess the im-

pact of correlations within the chosen modeling framework. Be it mixture models, common

Poisson-shock models or a different setup, in the case of rare events, simulated values for

risk measures, such as Value-at-Risk and Expected Shortfall, can decrease as the level of

correlation increases. The parameter ranges for which this phenomenon occurs may not be

so relevant for credit risk applications, but may arise in operational risk applications where

several business lines at close locations could, for example, be affected by some catastrophic

event.
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While this effect can be eliminated in the case of Expected Shortfall by an appropriate de-

sign of the Monte-Carlo setup, this is unfortunately not so for the widely used Value-at-Risk

which systematically declines above certain levels of latent correlations. The extent to which

this arises depends on the observed occurrence probabilities, the confidence level and the

fat-tailedness of the distribution of the latent variables.

If the clustering of realizations at zero (“joint non-occurrences”) that causes this behavior

is a misleading feature of the model which contradicts the true risk-generation mechanisms,

risk capital can severely be underestimated, and other dependence concepts should be con-

sidered for calculating risk capital.

A practical implication of our analysis is that the inclusion of non-perfect correlations in

models used for assessing minimum capital requirements for operational risk may, in fact,

lead to an increase of the assessed amount.

References

Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent Measures of

Risk. Mathematical Finance 9, 203–228.

Basel Committee on Banking Supervision (2006). International Convergence of Capital

Measurement and Capital Standards: A Revised Framework. Technical Report, Bank for

International Settlements. Comprehensive Version.

Embrechts, P., Frey, R. and McNeil, A. (2005). Quantitative Risk Management: Con-

cepts, Techniques and Tools . Princeton Series in Finance. Princeton University Press.

Frey, R. and McNeil, A. J. (2001). Modelling Dependent Defaults. ETH E-Collection,

Department of Mathematics, ETH Zurich. http://e-collection.ethbib.ethz.ch/

show?type=bericht&nr=273.

Frey, R. and McNeil, A. J. (2003). Dependent Defaults In Models of Portfolio Credit

Risk. Journal of Risk 6, 59–92.

Frey, R., McNeil, A. J. and Nyfelder, M. A. (2001). Modelling Dependent Defaults:

Asset Correlations Are Not Enough! Working Paper, Department of Mathematics, ETH

Zurich.

Glasserman, P. (2005). Measuring Marginal Risk Contributions in Credit Portfolios. Jour-

nal of Computational Finance 9, 1–41.

Lindskog, F. and McNeil, A. (2003). Common Poisson Shock Models: Applications to

Insurance and Credit Risk Modelling. ASTIN Bulletin 33, 209–238.

Powojowski, M. R., Reynolds, D. and Tuenter, H. J. (2002). Dependent Events and

Operational Risk. Internal Journal, Algorithmics Inc.

12



CFS Working Paper Series: 
 

No. Author(s) Title 

2008/13 Serena Lamartina 
Andrea Zaghini 

Increasing Public Expenditures: Wagner’s Law in 
OECD Countries 

2008/12 Jürgen Gaul 
Erik Theissen 

A Partially Linear Approach to Modelling the 
Dynamics of Spot and Futures Prices 

2008/11 Roman Kräussl 
Niels van Elsland 

Constructing the True Art Market Index - A Novel 
2-Step Hedonic Approach and its Application to 
the German Art Market 

2008/10 Alan Muller 
Roman Kräussl 

Do Markets Love Misery? Stock Prices and 
Corporate Philanthropic Disaster Response 

2008/09 Christopher D.Carroll 
Jirka Slacalek 
Martin Sommer 

International Evidence on Sticky Consumption 
Growth 

2008/08 Markus Haas 
Stefan Mittnik 

Multivariate Regime–Switching GARCH with an 
Application to International Stock Markets 

2008/07 Markus Haas 
Stefan Mittnik 
Mark S. Paolella 

Asymmetric Multivariate Normal Mixture GARCH

2008/06 Charles Grant 
Christos Koulovatianos 
Alexander Michaelides 
Mario Padula 

Evidence on the Insurance Effect of Marginal 
Income Taxes 

2008/05 Dimitris Christelis 
Dimitris Georgarakos 
Michael Haliassos 

Economic Integration and Mature Portfolios 

2008/04 Elena Carletti 
Philipp Hartmann 
Steven Onega 

The Economic Impact of Merger Control 
Legislation 

 
Copies of working papers can be downloaded at http://www.ifk-cfs.de  




