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Abstract 

Ecosystem service maps are increasingly being used to prioritize management and 

conservation decisions. Most of these maps rely on estimates of ecosystem services 

estimated for individual land cover classes rather than incorporating field data. We 

developed combined field models (CFM) using regression analysis to estimate ecosystem 

services based on the observed relationship between environmental and land cover data and 

field measurements of ecosystem services. Local ecosystem service supply was estimated 

from vegetation data measured at fifty sites covering the widest range of environmental 

conditions across a watershed in Mexico. We compared the accuracy of the CFM approach 

for forage, timber, firewood and carbon storage over a more commonly “look up table” 

method relying on a uniform estimate of ecosystem service supply by land cover type.  The 

CFM revealed higher accuracy when compared to the “look up table” approach. The 

resulting CFM models explained a large fraction of the variance (42%-89 %) using a 

combination of land cover, remote sensing data, hydrology and distance from developed 

areas. In addition, mapping residuals from Geographically Weighted Regressions provided 

an estimate of uncertainty across the CFM model results. This approach provides better 

estimates of ecosystem service delivery and uncertainty for land managers and decision-

makers. 

 

Keywords: forage, timber, firewood, carbon storage, land cover, residuals. 
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1. Introduction 

The Ecosystem Services (ES) concept has become widely used because it connects 

ecosystem benefits to human wellbeing (Bürgi et al. 2014). International policy is now 

embracing and incorporating the conservation and management of ES along with 

biodiversity. For example the Convention on Biological Diversity (CBD) explicitly 

included ecosystem services conservation in the Aichi Targets (CBD 2010) and the creation 

of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(Perrings et al. 2011). Still a major endeavor for the effective integration of ES in decision-

making is to develop solid methods for mapping and assessing ES useful for the multiple 

objectives assessed by these policies (Maes et al. 2013).   

 Ecosystem Services (ES) maps are increasingly used to highlight key areas of ES 

supply, to assess spatial trade-offs and synergies among multiple ES and biodiversity and to 

improve land use planning tools for biodiversity and ES conservation and management 

(Seppelt et al. 2011; Martinez-Harms & Balvanera 2012; Sousa et al. 2016 ). Maps of ES 

now play a key role in policy and decision-making; in fact, the European Union’s 

Biodiversity Strategy, explicitly requires Member States to map ES (Maes et al. 2013). The 

value of ES maps depends on their accuracy and adoption rate by decision makers for use 

in land use planning (Martinez-Harms et al. 2015; Atkinson et al. 2016).  

A range of modeling techniques have been used to map ES (Martinez-harms et al. 

2012; Crossman et al. 2013; Wolff et al. 2015) and the resulting spatial patterns observed 

are highly dependent on the methods used (Anderson et al. 2009; Eigenbrod et al. 2010a). 

The choice of an ES spatial model will depend on the level of accuracy needed for the 

decision making application and this will determine how complex the spatial models need 

to be (Schröter et al. 2014). It will also depend on data availability and the associated costs 
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on building the desired maps. Many policy applications often involve large spatial scales 

(e.g. national, regional, provincial) for which gathering primary data would involve 

significant investment beyond what is generally available, especially in developing 

countries (Wong et al. 2015). 

The most common technique used to address this data gap is to model ES relying on 

secondary data, information readily available from external sources like land cover, 

geographical databases, remote sensed data among others (Martinez-Harms & Balvanera, 

2012). Land cover data is the most common used due to the widespread availability of this 

information. Examples include benefit transfer approaches using the economic value of 

ecosystem services from one location to estimate ecosystem service values at other 

locations with similar environmental conditions (Wong et al. 2015) and Look Up Tables 

(LUT) that rely on constant or average values of ecosystem services by land cover type to 

target important areas for ecosystem services (e.g. Lautenbach et al. 2011; Burkhard et al. 

2012; Schröter et al. 2014). However, assigning a single value of ES to each land cover 

category is susceptible to uniformity errors, resulting in a poor fit of modeled ES values 

with observed conditions (Plummer 2009, Eigenbrod et al.2010b, Brown et al. 2016).  

Eigenbrod et al. (2010a) and Lavorel et al. (2011) have shown that maps based 

purely on broad land cover types have high levels of error compared to maps based on 

primary data. ES supply varies within and across land cover classes in real landscapes due 

to biophysical (e.g. topographic, climate fluctuations) and management (e.g. grazing or 

logging regimes) heterogeneity (Grêt-Regamey et al. 2014), and their addition provides 

better models. The improvement that may result from modeling ecosystems services based 

on field data, environmental data and land cover variables as a way of estimating ES levels 
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has not been examined in most regions of the world (Plummer 2009, Eigenbrod et al. 

2010a). 

 Some policy applications, as is the case of the design and application of financial 

mechanisms for ES (Wendland et al. 2010; Venter et al. 2013), require higher levels of 

accuracy (Schröter et al. 2014; Wong et al. 2015), and have led to the use of primary data 

to model ES across space. To develop more accurate estimates of ES spatially explicit 

models based on field data collections from the area of interest are in demand.  An 

approach that relies primarily on regression models to assess the relationship between 

biophysical and management explanatory variables and representative field measures of ES 

as response variables (Lavorel et al. 2011, Martínez-Harms & Balvanera 2012) is presented 

in this study. The application of these models hereafter called Combined Field Models 

(CFM) explain the variation of modeled ES and can lead to more accurate ES models. 

CFM have been used to model carbon sequestration (Bowker et al. 2008) and 

storage (Krishnomaswamy et al. 2009, Timilsina et al. 2013), forage production 

(Malmstrom et al. 2009; Lavorel et al. 2011), water quality (Uriarte et al. 2011), biological 

control (Garcia et al. 2012), pollination and soil fertility (Lavorel et al. 2011). Given the 

diversity of landscapes and ecosystem services being investigated, we need to explore the 

relationship between readily available independent Geographic Information System (GIS) 

variables and field measurements for estimating ES values. Equally important, such 

methods have seldom been applied simultaneously to various ecosystem services (but see 

Lavorel et al. 2011). Here we test whether the addition of local field data and a range of 

GIS variables improves the accuracy of ES maps compared to LUT approaches and explore 

the spatial heterogeneity in model accuracy.  
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2. Methods 

2.1  Study Area  

The study was undertaken at the Cuixmala watershed, located along the Mexican 

Pacific Coast at latitude between 19°21’ and 19°51’ N and 104°59’ and 104°37’W with a 

total area of 1080 km², with an elevation gradient ranging from 0 to 1730 meters (see Fig. 

1). The lower part of the watershed hosts a tropical dry forest system well known for its 

high biodiversity, which is protected under a Federal level Biosphere Reserve status 

(Chamela-Cuixmala Biosphere Reserve). The structure and functioning of these ecosystems 

have been studied for the last 20 years and already synthesized from the ES perspective 

(Maass et al. 2005). The rest of the watershed is largely managed for cattle ranching, wood 

extraction and biofuel extraction, while the whole area is eligible for payments for ES. 

Agriculture is only sparsely found in a few areas with deep soils and access to ground 

water. Local associations of decision makers (including individuals working for the 

government and those organized into an NGO) have been interested in designing 

management strategies that would better align with sustainability. Also comparable 

watersheds maybe found along most of the Pacific Coast of Mexico. 

Fig. 1. Land cover map of the Cuixmala Watershed. 

 

2.2  Field Sampling 

Field sites were stratified across the existing biophysical gradient resulting from 

differences in physiography and management history based on elevation, soil, and land 

cover data. Fifty sites were distributed to proportionally represent the elevation gradients, 

soil and land cover classes (see Fig. 1). In each site we surveyed the vegetation in 400m² 

nested plots, in which individuals of smaller sizes were measured in smaller plots of 100m² 
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and 25m²; the plots were divided into four quadrats to assess the variability of the 

vegetation components inside the sites.  We used the average value of these quadrats to 

develop our CFM models.  

DBH and height of the individuals were measured as follows: (i) 25m² quadrats 

were used to measure woody individuals with a DBH greater than 1cm; (ii) 100m² quadrats 

for those with DBH ≥ 2.5cm and (iii) 400m² for those with DBH ≥ 5cm. Herbaceous and 

shrub components were measured in 1m² plot nested within each 25m² quadrats, in two of 

these 1m² plots the above-ground biomass was harvested and the samples oven dried at 

70°C (48 hours) and weighted. We only considered herbaceous and shrub individuals 

between 20cm and 1m height. 

 

2.3  ES definition and local quantification 

Forage supply was defined as the total above-ground biomass available for livestock 

fodder expressed as dry weight (kg) per unit area (ha) (Jaramillo et al. 2003). Forage was 

calculated as the sum of above-ground biomass of all the 1m² plots considering the 

understory cover (herbaceous and shrub individuals). Timber delivery was defined as the 

volume of wood found in individual trees of commercial size (DBH> 30 cm) (Balvanera et 

al. 2005) expressed in volume (m³) per unit area (ha). Timber delivery was calculated by 

multiplying basal area (m2) of the individuals with a DBH larger than 30 cm by the height 

of individuals (m) to obtain volume (m³) per unit area (ha). Firewood was defined as all 

above-ground woody biomass with DBH <30cm expressed in tons per hectare. Firewood 

supply was calculated with the allometric equation proposed to quantify the biomass of the 

tropical dry forest found in the lower part of the watershed (Martínez-Yrizar et al. 1992). 
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This equation uses basal area to obtain the logarithm of biomass in tons per hectare 

(Martínez-Yrizar et al. 1992): 

Log (Y) = -0.5352+0.996(BA) 

Where: 

Y: above-ground biomass (ton) 

BA: Basal area. 

The use of Martínez-Yrizar allometric model was preferred over habitat specific 

allometric regressions due to limited availability of equivalent models for other types of 

land cover types and to maximize comparability among sites throughout the watershed. We 

did not take into account the differential palatability of the species by cattle, or data on 

local preference for particular timber of firewood species by local inhabitants which are 

regional markets, hindered more detailed assessments. Above ground carbon storage was 

defined as the total content of carbon in above-ground biomass from both herbaceous and 

woody elements expressed in tons per hectare. Above-ground carbon storage was 

calculated as the sum of the biomass of the forage, timber and firewood. To convert 

biomass into carbon content we used the carbon contained in the biomass (50% of carbon 

in total biomass) reported in the literature (Aalde et al. 2006).  

2.4  Explanatory variables  

We used GIS and remote sensed variables with largest potential to explain spatial 

patterns of ES at the watershed scale. Explanatory variables were divided into five different 

categories: topographical, disturbance, hydrological, remote sensed and land cover 

variables (Chan et al. 2006; Egoh et al. 2008; Nelson et al. 2009) (see Table 1). 

Topography influence patterns of rainfall, resulting in biomass production differences, both 

locally and regionally (Chen et al. 2007; Deng et al. 2007). Disturbance variables assess the 
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management history of ecosystems (Reyers et al. 2013). Hydrological variables predict 

water availability that is the main limiting factor for biomass production in tropical dry 

forests (Balvanera et al. 2011). Remote sensed variables including the Normalized 

Vegetation Index (NDVI) and canopy cover are good indicators of photosynthetically 

active biomass, the water contained in vegetation and the presence of forest cover 

respectively (Deng et al. 2007). Land cover information were derived from a recent 

interpretation of satellite images (Larrazábal et al. 2008), were incorporated as well (Egoh 

et al. 2008; Tallis et al. 2008; Nelson et al. 2009).  

Table 1. List of explanatory variables  

 

2.5  Modeling ES 

The field sites were stratified by elevation and then 20 sites were randomly selected 

across the elevation strata as a test data set and the remaining 30 sites were used to build the 

CFM model. A set of independent variables were selected that did not show 

multicolinearity using a two-step approach. To start we applied a correlation analysis to the 

31 explanatory variables. The variables that were highly correlated were excluded before 

building the model; we used an arbitrary threshold of | r |> 0.76 between pairs of 

explanatory variables and a total of 21 variables were finally included in the analysis (see 

Table 1).  Second, we calculated the Variation Inflation Factor (VIF). A VIF of 5 or 10 and 

above indicates that high multicollinearity hinders the use of those variables together in 

multiple regression models according to O’Brien and Robert (2007). We found VIF values 

lower than 5 for all our explanatory variables, except for the case of land cover variables. 

To reduce VIF values, we excluded two of the land cover variables to obtain adequate VIF 

values for all our variables (the maximum VIF value was 3.6). Multiple regressions models 
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were built from all possible combinations of independent variables (a total of 412 models); 

no interactions or non-linear relationships were included. Model selection followed 

standard protocols (Burnham & Anderson 2002; Diniz-Filho, Rangel, & Bini 2008).  

Model selection consisted of three steps (Burnham & Anderson 2002; Diniz-Filho, 

Rangel, & Bini 2008). For the first we used the second order Akaike Information Criterion, 

corrected for small sample size (AICc) for model selection (n /K < ~40) where n is the 

sample size and K is the number of parameters included in the model plus two: 

AICc = -2(log-likelihood) + 2K + 2K(K+1)/(n-K-1) 

We chose the 10 models with the lowest AICc. In the second step, we used the 

AICc of each model i to calculate the i value, which is the difference between AICci of 

each model i and the minimum AICc found for the set of models compared; we selected 

only those models with i < 2. For the third step we chose a single best model among them, 

by maximizing both explanatory power and inclusion of the independent variables with the 

highest contribution to the explanatory power. This was done by using the Akaike weight 

of each model (wi), which assess the explanatory power, 

Wi=Exp(-i/2)/ΣExp(-i/2) 

The individual contribution of each explanatory variable to the explanatory power of the 

models was obtained by adding up wi values across all models that include the explanatory 

variable (Burnham & Anderson 2002).  

A LUT was developed for all four vegetation land cover variables mapped in the 

area following the approach suggested by Eigenbrod et al. (2010b). We assigned a constant 

value to each of the four land cover categories based on the average value of ES obtained in 
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the field quantification for such condition (Table 2). We did not use estimates for each land 

cover class from the literature because there aren’t available for our study area. 

The results of the CFM model were extrapolated across the study area at a 30x30 m 

resolution. This minimum mapping unit was selected to reduce the ratio between the size of 

the pixel and the field sampling plot (Cayuela et al. 2006). The frequency distributions of 

the data limit options for controlling spatial autocorrelation in residuals. Because of this and 

because we lack information regarding spatial processes we present non spatial statistics. 

To validate our results we compared the test data set with the estimated values from both 

modelling methods using linear regression to examine the relationship between observed 

and modelled values (Bowker et al. 2008).  

To assess the spatial heterogeneity of the predicted values of ecosystem services we 

applied Geographically Weighted Regressions (GWR). GWR allow analysis of spatial 

patterns of change among the variables by generating a series of local regression models 

that give greater weight to nearer observations and less weight to those that are more distant 

(Fotheringham et al. 1998, Zhang et al. 2004). Using outputs of the GWR we obtained 

residual maps showing where the regression fits well (non-significant residuals) and where 

the model is causing problems, by consistently under or over predicting ecosystem service 

values (Fotheringham et al. 1998).  We applied in ArcGIS (ESRI 2011) standard Ordinary 

Least Squared Regression using the predicted ecosystem services values and their 

respective explanatory variables.  

3. Results 

Combined field models explained a large to moderate amount of variance (Table 3). 

The amount of variance explained by CFM models was highest for forage (89%), followed 

by timber (77%) and carbon (71%), and lower for firewood (42%). Explanatory variables 
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for CFM models varied greatly among types of ES. Forage was best explained by presence 

of pastures, and distance to streams. Timber was best explained by NDVI during the dry 

season and firewood was best explained by NDVI for the rainy season and the presence of 

pastures. However, NDVI based on imagery from the rainy season contributed most to 

explaining above-ground carbon storage.  

 

Table 3. Multiple regression models 

 

CFM maps tended to adequately represent the range of values of ES delivery 

observed in the field (0 to 5.8 kg/ha for forage; 0 to 580 m³/ha for timber; 0 to 83 Ton/ha 

for firewood; 0 to 74 Ton/ha for above-ground carbon storage). Instead, LUT maps 

consistently underestimated the range of ES values, except for above-ground carbon storage 

(Fig.2). In general, the spatial patterns of ES delivery obtained from CFM models were 

similar to those obtained from the LUT approach (Fig. 2). Higher forage supply was present 

in the northern middle section of the watershed, an area dominated by pastures. Timber 

supply was higher at higher elevations and in the northern part of the watershed where oak 

forests are found. A higher supply of firewood was present in the southern lower part of the 

watershed where tropical dry and semi evergreen forests can be found. Above-ground 

carbon storage was higher in the lower part of the watershed in the area covered by tropical 

dry forests. All these patterns were consistent with those observed in the field (see Table 2). 

The maps based on the LUT approach results in a coarser resolution map than that 

generated from the CFM models. 

 

Fig. 2. Maps of ES produced by the CFM and LUT approach. 
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The firewood services model using the CFM approach explained nearly 60% of the 

variance in the observed values (F=25.94, P<0.0001, R² = 0.59) (Fig. 3c). Whereas the 

CFM models for carbon storage and forage only explained 11 and 12% of the observed 

variance among the test data (Fig. 3a and 3b).  

Fig. 3. Validation modeled versus observed values. 

The GWR residual maps revealed that for firewood, carbon storage, forage and 

timber the area of the watershed showing an adequate model fit (non-significant residuals 

between -0.5 and 0.5 Fig.4) represented 45%, 50%, 75% and 39% respectively. Significant 

over- and under-predictions were found for firewood, carbon storage, forage and timber 

only in 22%, 13%, 4% and 16% of the area of the watershed respectively (Fig. 4). 

Fig. 4. Residual maps for ecosystem services. 

 

 

4. Discussion 

The CFM approach provided a finer scale understanding of where different services 

are delivered across the landscape and thus towards understanding the mechanisms behind 

ES (Schroter et al. 2014). Our findings place an increased importance on local field 

measurements of ecosystem services to build combined models to map ecosystem services 

rather than using ecosystem services estimates from other regions with similar biophysical 

conditions.  The field data used here is straightforward to collect compare to other methods 

based on trait measurements of vegetation (see Lavorel et al. 2011).  

In this study a large amount of variance in ES supply was explained by variables 

derived from GIS and remote sensing.  Remote sense variables explained a large fraction of 
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the variance for timber, firewood and above-ground carbon storage. Seasonal differences in 

remote sensed data were relevant for our study area, where both evergreen and deciduous 

forests were found. NDVI during the dry season allowed separating temperate oak and pine 

forests that keep their foliage as deciduous forests. NDVI during the dry season reflects the 

total amount of biomass when foliage is present and is a good predictor of above-ground 

carbon storage. These indices have been widely used as a surrogate of biomass production 

and the results confirm what has been reported in other ES assessments in forested 

landscapes (Zheng et al. 2007, Krishnaswamy et al. 2009, Ramachandra 2010).  

This study also highlights the relevance of explanatory variables that are not often 

incorporated into ES models but are easily available. Distance to streams, a predictor of 

water availability, was found related to forage. This positive relationship where more 

pastures can be found farther from streams reflects the fact that areas closer to streams are 

used by local people for intensive agriculture rather than pasture (Burgos & Maass 2004).  

The variable distance to towns explained an important amount of variance for 

timber supply. A negative relationship between timber and distance to towns is most 

certainly due to the fact that nearby wood supplies have been depleted and it’s more 

difficult to convert far off temperate forests with more rugged topography. Similarly, a 

negative relationship between firewood and pasture highlighted management decisions to 

convert tropical dry forests into pastures.  

The ES predictors used in this study are practical as these are widely accessible and 

are helpful towards developing tools with improved accuracy compared to LUT models 

even under time, data or budget reduced availability. This data can be obtained from open 

access databases like global roads data (gROADS 2009), carbon databases (Gibbs et al. 

2006), the gridded population of the world (GPW 2010), global river hydrography (Lehner 
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and Grill 2013) among other data sources. Open access databases offer great promise to the 

application of combined field models over large spatial scales.  

Ecosystem services maps can be a useful tool for informing decision makers about 

the spatial distribution of service values but it’s also important to note where and to what 

extent models may be more and less reliable at predicting service delivery. The residual 

maps that we developed were particularly helpful on highlighting where spatial 

heterogeneity is occurring showing where the model fits well and where decision makers 

need to be cautious because there are prediction problems. The carbon storage and firewood 

present similar residual patterns with problems of under prediction in the upper and middle 

sections of the watershed where there are no sampling sites. The timber residual map 

(Fig.4) reveals the largest prevalence of prediction problems across the watershed and 

should be tested further prior to extrapolating the results any further.  

The CFM models shown here could be improved with finer scale data and 

incorporation of missing environmental controls (e.g. high resolution climate data, soil 

depth, and water availability). For example, studies performed at the lower part of the 

watershed highlight the importance of groundwater table flows at different soil depths for 

forest productivity (Maass and Burgos 2011). Variables associated to land use intensity and 

past land uses that reflect management regimes could also be driving spatial heterogeneity 

(Maass et al. 2005).  

Other limitations of this study is that ES were defined based on their potential 

biophysical supply (Tallis et al. 2012). We did not distinguish the commercial species used 

for timber or consider other woody material in addition to basal area and height for 

firewood and above-ground carbon storage. Another limitation of our approach is that we 

used the same allometric regression for all land cover types to estimate firewood and 
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carbon storage, despite large differences in plant structure and wood allocations among 

them. If locally tested regressions developed for each land cover class were available, ES 

quantification could have improved.  

The model estimates from the CFM approach reflect a single best model selected 

according to the lowest AIC value and highest variance explained by the model. 

Differences were observed among the unselected models with higher but similar AIC 

values, leading to uncertainty that Bayesian model averaging can address in part (Raftery et 

al. 1997). However, forecasting using model averaging is in debate (Hendy & Reade 2005). 

The amount of variance explained by the relationship between modeled and observed 

values tended to be low and was only significant explaining a large amount of variance for 

firewood under the CFM approach. This probably occurred because of the high level of 

uncertainty involved in working at plot level and extrapolating these values to a regional 

watershed scale (Wu et al. 2006). The watershed heterogeneity makes it difficult to predict 

ES delivery across spatial scales with high levels of confidence or certainty (Peters et al. 

2006). Nevertheless, the ranges predicted by our models were quite similar to those 

observed in the field.  

The choice to adopt a spatial model approach within a particular decision-making 

context will be relative to the accuracy needed for the specific policy purpose (Schröter et 

al. 2014). We found that a higher level of accuracy can be achieved with CFM models.  

The use of CFM models, can provide finer resolution maps and be helpful for monitoring 

ES (Schröter et al. 2014), setting priorities for the application of ES conservation and 

management strategies (Kovacs et al. 2013) or could help the design of policy instruments 

for ES such as payment schemes for ES (Wendland et al. 2010). 
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5. Conclusion 

In this study we compared CFM models with traditional LUT approaches to map 

and explore ecosystems services supply. The CFM approach used enhanced our ability to 

predict spatial patterns of ES. The CFM models allowed us to understand the spatial 

distribution of ecosystem services provision and the spatial heterogeneity of the predicted 

values (where the model fits well and where there are problems) at the watershed level 

enhancing utility for land managers and decision-makers. 
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8. Tables 

Table 1. List of explanatory variables with source of data applied in the ES modeling 

approach 

Categories Explanatory variables Source of data 

Topography Radiation 10x10 meters, DEM 

 Elevation 10x10 meters, DEM  

Disturbance Distance to roads (Euclidean and path distance) 10x10 meters, DEM 

 Distance to towns (path distance to small and large towns) 10x10 meters, DEM  

Hydrology Distance to streams (to streams and to main river) 10x10 meters, DEM  

Remote sensed Normalized  vegetation index (NDVI) for rainy season  

20x20 meters, SPOT 

image (sept.2007) 

 

Normalized  vegetation index (NDVI) for dry season  

 

10x10 meters, SPOT 

image (march 2007) 

 

Canopy cover  50 meter circle  

  

10x10 meters, SPOT 

image (march 2007) 

Land cover 

Oak Forest (OF), Pasture (P), Tropical dry forest (TDF) and 

Semi-evergreen forest (SEF) 

10x10 meters, land 

cover map (Larrazábal 

et al. 2008) 
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Table 2. Average value (±Standard Error) of the ecosystem services obtained in the field 

by land cover category that were used in the LUT approach. 

Ecosystem Services / 

Land cover categories 

Oak Forest 

(average) 

Tropical Dry 

Forest 

(average) 

Semi-evergreen 

Forest 

(average) 

Pasture 

(average) 

Forage (kg/ha) 0.6±0.2 0.5±0.2 0.7±0.2 4±0.5 

Timber (m3/ha) 308±112 86±100 427±89 0±193 

Firewood (Ton/ha) 56±9  59±8 67±7 0.9±16 

Above-ground Carbon 

Storage (Ton/ha) 

28±4 30±4 33±4 0.4±8 
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Table 3. Combined field models for four ecosystem services using field data (response variable) and cartographic and remote sensed data 1 

(independent variables). AICc: Akaike Information Criterion corrected for small sample size, Wi: Akaike Weight. 2 

Ecosystem 

Service 

AICc Wi F- R² P Variables Coefficients P R² Wi 

Forage 66 0.50 73.2 0.89 <0.001      

      Intercept 1.18 1   

      Pasture 4.56 **** 0.82 1 

      Distance to stream 0.0004 **** 0.21 1 

      Elevation -0.0021 *** 0.00 1 

Timber 220 0.13 10.50 0.77 <0.001      

      Intercept 31.14    

      NDVI dry  474.33 **** 0.44 1.00 

      Distance to large towns -0.002 * 0.16 0.60 

      NDII rainy  -527.31 * 0.16 0.30 

      TRMI -3.15 * 0.08 0.80 

      NDVI rainy  420.61 ** 0.01 0.30 
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Ecosystem 

Service 

AICc Wi F- R² P Variables Coefficients P R² Wi 

Firewood 690 0.37 9.9 0.42 <0.001      

      Intercept 624.85 1   

      NDVI rainy  128836.38 *** 0.25 1 

      Pasture -36918.92 ** 0.21 1 

Above-ground 

carbon storage 

670 0.43 7.7 0.71 <0.001      

      Intercept -3200.30 1   

      Pasture -37450.67 **** 0.25 1 

      NDVI rainy  134236.26 **** 0.10 1 

      NDII dry 57231.33 *** 0.04 1 

      

Town distance (large 

towns) 

-0.94 *** 0.01 1 

      Town distance 1.33 ** 0.01 0.43 

      Stream distance 3.83 *** 0.00 1 
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Ecosystem 

Service 

AICc Wi F- R² P Variables Coefficients P R² Wi 

      Road distance -3.92 ** 0.00 1 

Statistical probability values (P) for: *<0.05, **<0.01, ***<0.005, ****<0.001. 3 



 

9. Figures 

 

 

 

Fig. 1. Land cover map of the Cuixmala Watershed and location of field sites.  



 

 

Fig. 2. Maps of ES delivery in a watershed of western Mexico using the CFM and LUT 

approach. (a) Above-ground carbon storage in tons per hectare, (b) Forage supply in 

kilograms per hectare (c) Firewood supply in tons per hectare and (d) Timber supply in m³ 

per hectare.  

 

 



 

 

Fig. 3. Results of validation for the Combined Field Models (CFM) and Look Up Table 

(LUT) approach comparing observed values (test data set) versus modeled values for: (a) 

above-ground carbon storage (b) forage, (c) firewood and (d) timber. 

 

 

 

 

 

 

 

 

 



 

 

Fig. 4. Residual maps generated by the Geographically Weighted Regression through a series 

of local ecosystem service regression models. 

 


