research

Local approximation of a metapopulation's equilibrium

Abstract

We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset Ω\Omega of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at zz being occupied is shown to be close to q1(z)q_1(z), the equilibrium occupation probability in Levins's model, at any point z∈Ωz \in \Omega not too close to the boundary, if the local colonization pressure and extinction rates appropriate to zz are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously

    Similar works

    Full text

    thumbnail-image