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ABSTRACT.

We construct a stochastic patch occupancy metapopulation model that incorporates

variation in habitat quality and an Allee-like effect. Using some basic results from sto-

chastic ordering, we investigate the effect of habitat degradation on the persistence of the

metapopulation. In particular, we show that for a metapopulation with Allee-like effect

habitat degradation can cause a dramatic decrease in the level of persistence while in the

absence of an Allee-like effect this decrease is more gradual.
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1. Introduction

Many species exist as a collection of local populations occupying spatially distinct habi-

tat patches. Such a collection of local populations is called a metapopulation. Metapop-

ulations are constantly changing due to the processes of local extinction and colonisation

occurring at each habitat patch. The primary focus in the study of metapopulations is

to determine conditions under which the metapopulation may persist. The persistence

of a metapopulation is determined by various factors associated with the landscape and

the dynamics of the population.

One important factor of the landscape is habitat quality. Following Hall et al. [7] and

Mortelliti et al. [17], we consider habitat quality to be the ability of the environment

to provide conditions appropriate for individual and population persistence. We might

therefore view the rate or probability of local extinction as reflecting the habitat quality

of a patch. In this sense, the classical Levins metapopulation model assumes the habitat
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quality is homogeneous across the landscape. However, real metapopulations tend to

display variation in the habitat quality. The study of the Glanville fritillary (Melitaea

cinxia) by Hanski et al. [10] provides one example. Mortelliti et al. [17] gives an overview

of the role of habitat quality in metapopulations.

A number of mathematical metapopulation models have been proposed that are able to

incorporate heterogeneity in the habitat quality of patches. The incidence function model

[8] and the spatially realistic Levins model [9] are both able to closely reflect the ecological

reality by incorporating information concerning the distance between habitat patches and

patch area as well as variation in habitat quality. However, these models are complex to

analyse; their behaviour being determined by the leading eigenvalue of n × n matrices

where n is the number of patches in the metapopulation [19, 11]. Gyllenberg and Hanski

[6] proposed a simpler partial differential equation model that incorporates variation in

habitat quality and a ‘rescue effect’, an effect which decreases the rate of extinction for

well connected patches, and derived simple conditions for persistence. McVinish and

Pollett [15] consider a discrete time Markov chain model that incorporates variation in

habitat quality through patch dependent local extinction probabilities but ignores the

locations of the patches in the landscape. Models such as these are especially important

when considering habitat degradation and destruction since such changes are unlikely to

occur uniformly across the landscape.

In addition to habitat quality, the persistence of a metapopulation is affected by its

dynamical properties. In this paper we are concerned with one such property called an

Allee-like effect. This term is borrowed from population biology where the Allee effect

refers to populations exhibiting an increasing per capita growth rate at low population

density levels. If the per capita growth rate is initially negative the population will

exhibit a critical threshold below which the population goes extinct. Courchamp et al.

[4] provide a detailed discussion of the Allee effect in ecology. For metapopulations, an

Allee-like effect refers to a metapopulation exhibiting a similar behaviour. Amarasekare

[1] summarises some of the evidence supporting the operation of an Allee-like effect in

real metapopulations and proposes a modification of the Levins model which exhibits

this phenomenon (see also Courchamp et al. [4] pages 103-105). Note that, as in the

Levins model, Amarasekare’s model assumes homogeneous habitat quality. Hui and Li

[13] extended this model to incorporate both a ‘rescue effect’ and an ‘overcrowding effect’
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while Zhou et al. [22] considered a two species version of the model. Although each of these

three papers consider the effect of habitat destruction, the assumption of homogeneous

patch characteristics limited their analyses to considering either complete destruction of

certain patches or a common reduction in the survival rates for all patches.

In this paper, we examine the effect of habitat degradation on a metapopulation ex-

hibiting an Allee-like effect using the metapopulation model introduced in McVinish and

Pollett [15]. As stated earlier, this is a discrete time Markov chain and although it difficult

to analyse directly, it can be well approximated by a simpler deterministic process when

the number of habitat patches is large. In Section 2 of this paper we review this model and

provide some new results on the behaviour of the approximating deterministic process.

In Section 3 we show how this model can by modified to incorporate an Allee-like effect

by imposing certain conditions on the colonisation process. In Section 4 the deterministic

approximation is used to study the effect that habitat degradation has on the persistence

the metapopulation. It is demonstrated that even a small amount of habitat degradation

in a metapopulation exhibiting an Allee-like effect can cause it to go extinct regardless of

the original level of persistence. This can be contrasted with a metapopulation that does

not exhibit an Allee-like effect where a small change to the habitat quality will result

in only a small change to the level of persistence of the metapopulation. Therefore, we

believe that metapopulations exhibiting an Allee-like effect are in much greater need of

protection from habitat degradation and destruction. Some discussion of possible exten-

sions to this work is given in Section 5. The proofs of the new results in this paper are

given in A.

2. A metapopulation model

In this section, we summarise the model studied in [15]. This model is an example of a

stochastic patch occupancy model (SPOM) as only the presence or absence of the species

of interest is noted for each habitat patch and not the size or structure of the population

at the habitat patch. Consider a metapopulation comprised of n habitat patches and let

X
(n)
t indicate the state of this metapopulation at time t where X

(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t )

with

X
(n)
i,t =

 1, if habitat patch i is occupied at time t,

0, otherwise.
(2.1)
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Between observations, the metapopulation undergoes a series of colonisation and extinc-

tion events. In this model, these events are separated into distinct phases as in [12] and

[3]. First, a colonisation phase occurs during which unoccupied patches are colonised

by individuals from the occupied patches. The colonisation events are assumed to be

independent of one another and the probability of an unoccupied patch being success-

fully colonised during this phase is given by a function, f , of the proportion of occupied

patches in the metapopulation. The function f is called the colonisation function and

satisfies the following assumption;

(A) The colonisation function f : [0, 1] 7→ [0, 1] is an increasing, concave function such

that f(0) = 0 and f ′(0) > 0.

The assumption that f(0) = 0 means that once all habitat patches are unoccupied,

they cannot be recolonised from some outside source and the metapopulation is extinct.

Concave colonisation functions such as f(x) = 1 − exp(−βx), β > 0 [12] are commonly

used, but non-concave functions are also relevant. The case of non-concave colonisation

functions will be studied in the next section. Although this type of colonisation process

ignores the connectivity and distances between habitat patches, it facilitates the analysis

of the model. During the extinction phase, the local population at habitat patch i goes

extinct with probability 1−si independently of the other patches. We call si the survival

probability at patch i. Differences in survival probabilities between patches can arise

simply due to differences in patch area (an assumption used, for example, in Moilanen

[14]), though other factors may have greater importance for population survival such as

the abundance of food and shelter and the absence of predators. This is the case for the

ragwort plant Senecio jacobaea [20].

Mathematically, the metapopulation model {X(n)
t }Tt=0 is a discrete time Markov chain.

To describe the transitions, let B(m, p) denote the binomial distribution with parameters

m ∈ {0, 1} and p ∈ [0, 1]. The transitions of X
(n)
t are given by

X
(n)
i,t+1 ∼ B(X

(n)
i,t , si) +B

(
1−X(n)

i,t , sif
(
n−1

∑n

j=1
X

(n)
j,t

))
. (2.2)

The first term on the right hand side of (2.2) models a population occupying a habitat

patch surviving the extinction phase, while the second term models an unoccupied patch

being colonised and then the occupying population surviving the extinction phase. The
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complexity of the model prevents an exact treatment. Instead we consider a determin-

istic approximation which is valid when the number of habitat patches is large. There

is a large literature describing this type of approximation for continuous time Markov

chains (see Darling and Norris [5] and references therein). To construct the deterministic

approximation of the metapopulation model, we impose the following assumption on the

survival probabilities and initial state of the metapopulation.

(B) There exists a probability measure σ and deterministic sequence {d(0, k)}∞k=0 such

that

n−1
n∑
i=1

ski
p→ s̄k :=

∫ 1

0

λkσ(dλ), and n−1
n∑
i=1

skiX
(n)
i,0

p→ d(0, k) (2.3)

for all k = 0, 1, . . .

We call σ the survival distribution. Assumption (B) will hold if, for example, the si are

independent and identically distributed random variables with distribution σ and if, given

the si, the X
(n)
i,0 are independent Bernoulli random variables with P (X

(n)
i,0 = 1|si) = p(si)

for some function p.

Theorem 2.1 (Theorem 2.1 of McVinish and Pollett [15]). Suppose that (B) holds. Then

for all k = 0, 1, . . . and all t = 0, 1, 2, . . .

n−1
n∑
i=1

skiX
(n)
i,t

p→ d(t, k), (2.4)

where

d(t+ 1, k) = d(t, k + 1) + f (d(t, 0)) (s̄k+1 − d(t, k + 1)) . (2.5)

We are primarily interested in the sequence {d(t, 0)}Tt=0 which gives the limiting propor-

tion of occupied patches in the metapopulation. However, the other values of d(t, k) do

provide some useful information. For example, given t, the sequence {d(t, k)/d(t, 0)}∞k=1

can be interpreted as the moments of the distribution of the survival probabilities of

occupied patches.

To better understand the infinite system of difference equations (2.5), we examine its

equilibrium points and their stability. A sequence {d(k)}∞k=0 is an equilibrium point of

(2.5) if it satisfies

d(k) = d(k + 1) + f(d(0)) (s̄k+1 − d(k + 1)) . (2.6)
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It is said to be stable if for all initial conditions {d(0, k)}∞k=0 in a sufficiently small neigh-

bourhood of {d(k)}∞k=0

lim
t→∞

d(t; k) = d(k), (2.7)

for all k ≥ 0. To make this definition precise we need some additional mathematical

background. A sequence {ck}∞k=0 is said to be completely monotone if (−1)m∆mcn ≥ 0

for all n,m ≥ 0 where ∆ is the difference operator. One can show from the limit (2.4)

that, for each t, {d(t, k)}∞k=0 is completely monotone, hence there exists a unique measure

µt whose moments are given by {d(t, k)}∞k=0 (see Theorem 4a in chapter III of Widder

[21]). This is true also of the equilibrium points. A neighbourhood of the equilibrium

point is interpreted as a weak neighbourhood of its associated measure. The limit (2.7)

implies the weak convergence of µt to the measure associated with the equilibrium point.

See Billingsley [2, chapter 1, section 2] for details on weak neighbourhoods of measures

and weak convergence. If the limit (2.7) does not hold then the equilibrium point is called

unstable. If the limit (2.7) holds for all initial conditions, then the equilibrium is said to

be globally stable.

The stable equilibrium point(s) of the system will provide an approximation of the long

run proportion of occupied patches in the metapopulation. The following theorem gives

a complete description of the equilibrium points of (2.5) and their stability.

Theorem 2.2. Suppose that (A) holds. The equilibrium points of the recursion (2.5) are

given by

d(k) =

∫ 1

0

f(ψ)λk+1

1− λ+ f(ψ)λ
σ(dλ), (2.8)

where ψ solves

ψ = Rσ(ψ) :=

∫ 1

0

f(ψ)λ

1− λ+ f(ψ)λ
σ(dλ). (2.9)

The extinction state, d(k) ≡ 0, is the unique equilibrium point of (2.5) and is globally

stable if and only if

f ′(0)

∫ 1

0

λ

1− λ
σ(dλ) ≤ 1. (2.10)

If inequality (2.10) does not hold, then the recursion (2.5) has two equilibrium points of

which one is d(k) ≡ 0. Furthermore, if d(0; 0) > 0 then, for all k limt→∞ d(t; k) = d(k) >

0.
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The fixed points of the recursion (2.5) were identified in Theorem 2.2 in [15]. The local

stability of the zero fixed point when inequality (2.10) holds and the local stability of the

non-zero fixed point when inequality (2.10) does not hold were given in Theorem 2.3 in

[15]. The theorem stated above is a considerable improvement on those results. From

this theorem we see that the zero equilibrium point is unstable if inequality (2.10) does

not hold. This will be important for our discussion of the Allee-like effect. A proof of

Theorem 2.2 is given in the appendix.

3. Incorporating an Allee-like effect

An Allee-like effect for metapopulations can be defined as the metapopulation exhibit-

ing an increasing per patch growth rate at low levels of occupation. If the per patch

growth rate is negative for sufficiently low levels of occupation, then the metapopulation

will exhibit a threshold, that is, below a certain level of occupation the metapopulation

will go extinct and above this level of occupation the metapopulation will persist. When

a threshold is present, the effect is called a strong Allee-like effect. See [4, chapter 1] for

an overview of the Allee effect. As we shall only be concerned with this case, we shall

simply call it an Allee-like effect.

In mathematical terms, the Allee-like effect means that zero, the extinction state, is a

locally stable equilibrium point of the system (2.5). Furthermore, at least one non-zero

stable equilibrium point exists. From Theorem 2.2 we see that our model, as formulated

in Section 2, cannot display the Allee-like effect; either the extinction state is globally

stable or it is unstable. To allow for the possibility of an Allee-like effect we need to

modify Assumption (A).

(A′) The colonisation function f : [0, 1] 7→ [0, 1] is an increasing differentiable function

such that f(0) = 0 and satisfying the inequality

f(x)

x

∫ 1

0

λ

1− λ
σ(dλ) < 1 (3.11)

for all sufficiently small x > 0.

Note that if f is differentiable and concave in a neighbourhood of zero then inequality

(3.11) is equivalent to inequality (2.10).

We now consider the behaviour of the equilibrium points of our modified metapopula-

tion model. Under assumption (A′), the fixed points of (2.5) are still given by equations
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(2.8) and (2.9), however the number of solutions to (2.9) cannot be easily determined.

To establish that our modified model exhibits an Allee-like effect we need to examine

the stability of the zero fixed point. The following theorem establishes a condition on

the initial state of the metapopulation under which the metapopulation goes extinct and

thereby showing that the extinction state is at least locally stable under Assumption (A′).

Theorem 3.1. Assume that equation (2.9) has at least one non-zero solution. Let x∗ be

the smallest x > 0 satisfying

f(x)

∫ 1

0

λ

1− λ
σ(dλ) = x. (3.12)

If
∑∞

k=0 d(0; k) < x∗ then limt→∞ d(t; 0)→ 0.

The proof of Theorem 3.1 is given in the appendix. It is important to note that the

condition in Theorem 3.1 concerns not only the proportion of occupied patches in the

metapopulation but also the quality of those occupied patches. If the survival probabili-

ties are bounded by s∗ then we can apply Theorem 3.1 to conclude that the metapopu-

lation will go extinct if the initial proportion of occupied patches is less than x∗(1− s∗).

As in the original model, the stability of the non-zero equilibrium points is of interest

as they determine the possibility of the metapopulation persisting over long time periods.

The stability of the non-zero equilibrium points is determined by the following theorem.

Theorem 3.2. Let ψ∗ be a non-zero solution to (2.9). If R′σ(ψ∗) < 1 then the cor-

responding equilibrium point given by equation (2.8) is stable. If R′σ(ψ∗) > 1 then the

corresponding equilibrium point is unstable.

The proof of Theorem 3.2 for R′σ(ψ∗) < 1 follows the same arguments as in the proof

of case (i) of Theorem 2.3 in [15]. The proof for R′σ(ψ∗) > 1 is given in the appendix.

Note that this theorem does not cover the case where R′σ(ψ∗) = 1. That case will require

a more detailed analysis.

Unfortunately, we have not been able to provide a partitioning of the initial states of

the metapopulation into their corresponding limiting equilibrium points as was achieved

by Amarasekare [1] for the much simpler extended Levins model. In particular, Theorem

3.1 only provides a lower bound on the threshold for the metapopulation. It does not

provide a condition on the initial state which ensures that the metapopulation approaches

a non-zero equilibrium.
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4. Habitat destruction and degradation

Metapopulation models have often been used to study the effect of the habitat de-

struction on the behaviour of the metapopulation and, in particular, its effect on the

equilibrium level. Most of these models were only able to reveal the effect of complete

destruction of a certain proportion of the habitat patches (see, for example Amarasekare

[1], Hill and Caswell [12], Zhou et al. [22]). One notable exception is the model studied by

Gyllenberg and Hanski [6] which incorporated patch quality and studied the interaction

between habitat degradation and the rescue effect. Here, we consider a varying degree of

habitat degradation at each habitat patch. Habitat degradation at patch i is modelled

by a decrease in the survival probability si 7→ s′i < si. Complete destruction of patch

i is indicated by si 7→ 0. The quality of the habitats in two metapopulations can be

compared using the theory of stochastic ordering [18]. Let σ1 and σ2 be two distributions

on [0, 1). We write σ1 ≤ σ2 if for all x ∈ [0, 1), σ1((x, 1)) ≤ σ2((x, 1)). We write σ1 < σ2

if σ1 ≤ σ2 and if for some x ∈ [0, 1), σ1((x, 1)) < σ2((x, 1)). The following two properties

are important for our application (Theorems 1.28 and 1.29 in Müller and Stoyan [18]):

(i) If σ1 ≤ σ2, then for any increasing function u,∫
u(λ)σ1(dλ) ≤

∫
u(λ)σ2(dλ).

(ii) If σ1 ≤ σ2 and ∫
u(λ)σ1(dλ) =

∫
u(λ)σ2(dλ)

for some strictly increasing function, then σ1 = σ2.

First note that the integrand in equation (2.9) is increasing under both assumption (A)

and (A′). Therefore, if σ1 < σ2 then for all ψ ∈ (0, 1], Rσ1(ψ) < Rσ2(ψ). Furthermore, we

note that if σm converges weakly to σ then for all ψ, Rσm(ψ)→ Rσ(ψ). In the absence of

an Allee-like effect, that is under assumption (A), these properties imply that the non-

zero equilibrium point ψ∗ is a continuous, non-increasing function of σ. In other words, in

the absence of an Allee-like effect, degrading the habitat will result in a gradual decrease

of the equilibrium level. This point is illustrated in Figure 1 (Left).

The effect of habitat degradation can be more dramatic in the presence of an Allee-

like effect. Suppose that σ∗ satisfies Rσ∗(ψ) ≤ ψ for all ψ ∈ [0, 1] and for some

ψ∗ > 0, Rσ∗(ψ∗) = ψ∗. The only equilibrium point of a metapopulation with survival
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Figure 1. The functions Rσ(ψ) are plotted for survival distributions

Beta(α,2) with various values of α. The intersection of the curve Rσ(ψ)

with the straight line gives the equilibrium levels of the metapopulations.

Note that if α1 < α2 then Beta(α1, 2) < Beta(α2, 2) in the stochastic or-

dering. Left: No Allee-like effect. The colonisation function is f(x) = 0.7x

and α = 8, 6, 4, 2, 1. Right: Allee-like effect. A non-concave colonisation

function is used with f(1) = 0.7 and α = 8, 5.68, 4.

distribution σ < σ∗ is the extinction state ψ∗ = 0. On the other hand, a metapopulation

with survival distribution σ such that σ∗ < σ has at least one non-zero stable equilibrium

point. This point is illustrated in Figure 1 (Right).

Finally, we note that equilibrium points with R′σ(ψ∗) > 1 may increase under habitat

degradation. However, Theorem 3 states that such equilibrium points are unstable and

hence do not provide an approximation to the long run proportion of occupied patches

in the metapopulation.

5. Discussion

Previous metapopulation models incorporating an Allee-like effect have been based on

Levins’s model [1, 13, 22]. Therefore, they are unable to incorporate variation in habitat

patch characteristics. We considered a variation of the metapopulation model of McVinish

and Pollett [15] which incorporates both the Allee-like effect and variation in habitat patch

characteristics. This model was used to compare the effects of habitat degradation on

metapopulations both with and without an Allee-like effect. It was demonstrated that

for metapopulations with an Allee-like effect even a small amount of habitat degradation

can have catastrophic consequences.

We conjecture that the threshold should be given by the smallest non-zero equilib-

rium point which we will denote by dT (k). Any initial state d(0; k) which dominates this

equilibrium point, that is, for which dT (k) ≤ d(0; k) for all k ≥ 0, will lead to a metapop-

ulation that persists at a non-zero level of occupation. This follows from property (i) in

the proof of Theorem 2.2 (see A.1). We have not been able to show that any initial state

that is dominated by this equilibrium, d(0; k) ≤ dT (k) for all k ≥ 0, would result in the
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metapopulation converging to the extinction state. However, it is relatively simple to

verify that this is true for the case where all patches have the same survival probability.

Finally, we remark that the analysis of this paper has focused on the behaviour of

the deterministic limit of the metapopulation model. A central limit theorem for an

extended version of our metapopulation model is given in McVinish and Pollett [16]. It

may be fruitful to investigate the effects of habitat destruction and degradation on the

metapopulation using the more precise limit theory described in that paper.

Appendix A. Proof of Theorems

A.1. Proof of Theorem 2.2. To prove this theorem we first need to prove the following

three properties of the recursion (2.5):

(i) If d1(0; k) ≤ d2(0; k) for all k ≥ 0 then d1(t; k) ≤ d2(t; k) for all t ≥ 0 and all

k ≥ 0. Proof. This property is proved by induction. Suppose that for some T ,

d1(T ; k) ≤ d2(T ; k) for all k ≥ 0. Then

d1(T + 1; k) = (1− f(d1(T ; 0))) d1(T ; k + 1) + f(d1(T ; 0))s̄k+1

≤ (1− f(d1(T ; 0))) d2(T ; k + 1) + f(d1(T ; 0))s̄k+1

≤ (1− f(d2(T ; 0))) d2(T ; k + 1) + f(d2(T ; 0))s̄k+1

≤ d2(T + 1; k),

where the second last inequality follows as f is increasing and d(t; k) ≤ s̄k for any

t, k ≥ 0. This completes the proof.

Assume that inequality (2.10) does not hold and let d(k) denote the non-zero equilibrium

point.

(ii) If d(0; 0) > 0 then there exists an ε ∈ (0, 1) such that d(1; k) ≥ εd(k). Proof.

From the recursion (2.5), d(1; k) ≥ f(d(0; 0))s̄k+1 for all k ≥ 0. As f(ψ∗)(1− λ+

λf(ψ∗))−1 ≤ 1, it follows from equation (2.8) that s̄k+1 ≥ d(k) for all k ≥ 0. This

completes the proof.
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(iii) If d(0; k) ≥ εd(k) for some ε ∈ (0, 1) and all k ≥ 0 then d(1; k) ≥ εd(k) for all

k ≥ 0. Proof. From recursion (2.5),

d(1; k) = (1− f(d(0; 0))) d(0; k + 1) + f(d(0; 0))s̄k+1

≥ (1− f(d(0; 0))) εd(k + 1) + f(d(0; 0))s̄k+1

≥ (1− f(εd(0))) εd(k + 1) + f(εd(0))s̄k+1

≥ (1− εf(d(0))) εd(k + 1) + εf(d(0))s̄k+1

≥ (1− f(d(0))) εd(k + 1) + εf(d(0))s̄k+1 = εd(k),

where the second last inequality follows from the concavity of f , that is, f(εx) ≥

εf(x). This completes the proof.

Having demonstrated properties (i) – (iii), we now prove that if inequality (2.10) holds

then the zero equilibrium point is globally stable. Consider the recursion (2.5) with initial

condition d(0; k) = s̄k. If we can show that limt→∞ d(t; k) = 0 then, by property (i), the

recursion with any other initial condition must also converge to zero. Hence, we will have

established that the zero equilibrium is globally stable. Now d(1; k) ≤ s̄k, so by property

(i) d(t; k) is decreasing in t. As the d(t; k) are non-negative, the limit as t → ∞ exists.

Let d̃(k) = limt→∞ d(t; k). As f is a continuous function, it follows that d̃(k) must be a

fixed point of the recursion (2.5). As the zero fixed point is the only fixed point assuming

inequality (2.10) holds, d̃(k) = 0.

Now suppose that inequality (2.10) does not hold. By property (ii), if d(0, 0) > 0 then

there exists an ε ∈ (0, 1) such that d(1; k) ≥ εd(k) for all k ≥ 0. Let dL(0; k) = εd(k) and

dU(0; k) = s̄k. Clearly, dL(0; k) ≤ d(1; k) ≤ dU(0; k) and by property (i)

εd(k) ≤ dL(t; k) ≤ d(t+ 1; k) ≤ dU(t; k) ≤ s̄k (A.13)

for all t. Since dU(1; k) ≤ sk it follows from property (i) that dU(t; k) is decreasing in t for

all k ≥ 0. Similarly, from property (iii) dL(1; k) ≥ dL(0; k) and hence property (i) implies

that dL(t; k) is increasing in t for all k ≥ 0. Both dU(t; k) and dL(t; k) must converge to

limiting values d̃U(k) and d̃L(k) that are fixed points of the recursion. From inequality

(A.13), εd(k) ≤ d̃L(k) ≤ d̃U(k). As the non-zero fixed point is unique, it follows that

d(k) = d̃L(k) = d̃U(k). Finally, from inequality (A.13) we see that limt→∞ d(t; k) = d(k)

for any initial condition satisfying d(0; 0) > 0. This completes the proof.
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A.2. Proof of Theorem 3.1. Clearly,

Rσ(ψ) ≤ f(ψ)

∫ 1

0

λ

1− λ
σ(dλ), for all ψ ∈ [0, 1].

Therefore, if equation (2.9) has a non-zero solution and Assumption (A′) holds then there

exists an x∗ > 0 satisfying equation (3.12).

Now let φt =
∑∞

k=0 d(t; k). We aim to show that if φ0 < x∗ then limt→∞ d(t; 0) = 0. If

inequality (2.10) holds then φt is finite since

φt =
∞∑
k=0

d(t; k) ≤
∞∑
k=0

s̄k = 1 +

∫ 1

0

λ

1− λ
σ(dλ) <∞.

From recursion (2.5) we have

φt+1 = φt + d(t; 0)

(
f(d(t; 0))

d(t; 0)

∫ 1

0

λ

1− λ
σ(dλ)− 1

)
+ f(d(t; 0)) (d(t; 0)− φt) .

Set x∗ to be the smallest x > 0 satisfying equation (3.12). If φt < x∗ then d(t; 0) < x∗

and φt+1 < φt. This establishes that φt is a decreasing sequence and hence the limit of

this sequence as t → ∞ exists. Therefore, for any ε > 0, there exists a T such that for

all t ≥ T ,

−ε < φt+1 − φt ≤ d(t; 0)

(
f(d(t; 0))

d(t; 0)

∫ 1

0

λ

1− λ
σ(dλ)− 1

)
.

Since φt < x∗ for all t ≥ 0, d(t; 0) < x∗ for all t ≥ 0. Therefore, from the definition of x∗,

there exists a C > 0 such that

f(d(t; 0))

d(t; 0)

∫ 1

0

λ

1− λ
σ(dλ)− 1 < −C.

It follows that for any ε > 0, there exists a T such that for all t ≥ T , d(t; 0) ≤ ε/C. As ε

can be made arbitrarily small we have established that limt→∞ d(t; 0) = 0.

A.3. Proof of Theorem 3.2. The proof of this theorem for R′σ(ψ) < 1 follows the same

arguments as in the proof of case (i) of Theorem 2.3 in [15].

Assume now that R′σ(ψ) > 1. Let σm be a sequence of distributions converging weakly

to σ such that σm < σ for all m. From this, we can state that for every m, Rσm(ψ) is

a continuous function and Rσm(ψ) < Rσ(ψ) for all ψ ∈ (0, 1]. Furthermore, Rσm(ψ) →

Rσ(ψ) for every ψ ∈ [0, 1]. These properties imply that, for m sufficiently large, there

exists at least one solution to ψ = Rσm(ψ) which is greater than ψ∗. Define

ψ̃m := inf {ψ : ψ = Rσm(ψ) and ψ > ψ∗} .
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As Rσm(ψ) is continuous, ψ̃m = Rσm(ψ̃m). So ψ̃m is the ‘minimal’ solution to ψ = Rσm(ψ)

greater than ψ∗. Finally note that ψ̃m > ψ∗. If this were not true, that is if ψ∗ = ψ̃m,

then

Rσ(ψ∗) = ψ∗ = ψ̃m = Rσm(ψ̃m) = Rσm(ψ∗),

which is a contradiction since Rσm(ψ) < Rσ(ψ) for all ψ ∈ (0, 1]. We also note that since

Rσm(ψ)→ Rσ(ψ) for every ψ ∈ [0, 1] it follows that ψ̃m → ψ∗ as m→∞. Now define

dm(k) =

∫ 1

0

f(ψ̃m)λk+1

1− λ+ λf(ψ̃m)
σm(dλ), and d(0; k) =

∫ 1

0

f(ψ̃m)λk+1

1− λ+ λf(ψ̃m)
σ(dλ).

As ψ̃m → ψ∗, we can make d(0; k) arbitrarily close to the equilibrium point corresponding

to ψ∗ by taking m sufficiently large. For all k ≥ 0, dm(k) ≤ d(0; k). We now show that

dm(k) ≤ d(t; k) for all t ≥ 0 and all k ≥ 0 by induction. Suppose that dm(k) ≤ d(T ; k)

for all k ≥ 0 and for some T ≥ 0. Let s̄
(m)
k denote the moments of σm. As dm(k) is a

solution to (2.6) with s̄
(m)
k replacing s̄k,

dm(k) = (1− f(dm(0))) dm(k + 1) + f(dm(0))s̄
(m)
k+1

≤ (1− f(dm(0))) dm(k + 1) + f(dm(0))s̄k+1

≤ (1− f(dm(0))) d(T ; k + 1) + f(dm(0))s̄k+1

≤ (1− f(d(T ; 0))) d(T ; k + 1) + f(d(T ; 0))s̄k+1 = d(T + 1; k).

Since dm(k) ≤ d(t; k) for all t ≥ 0 and all k ≥ 0, it follows that lim inft→∞ d(t; 0) ≥ ψ∗m >

ψ∗. Hence, this is an unstable equilibrium point.
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