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FRACTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY LÉVY
NOISE

V.V. ANH AND R. MCVINISH

Abstract. This paper considers a general class of fractional differential equations
driven by Lévy noise. The singularity spectrum for these equations is obtained. This
result allows to determine the conditions under which the solution is a semimartingale.
The prediction formula and a numerical scheme for approximating the sample paths of
these equations are given. Almost sure, uniform convergence of the scheme and some
numerical results are also provided.

1. Introduction

Many macroeconomic and financial time series or their transforms apparently display
the characteristics of anomalous diffusion, namely long-range dependence (LRD) and
heavy-tailed marginal distributions (see, for instance, Baillie [?], Ding and Granger [?],
Granger and Ding [?], Comte and Renault [?, ?], Eberlein and Keller [?], Bibby and
Sørensen [?], Barndorff-Nielsen [?, ?], Barndorff-Nielsen and Shephard [?, ?], Eberlain
and Raible [?], Rydberg [?]).

Barndorff-Nielsen [?, ?] used discrete or continuous-type superposition of Ornstein-
Uhlenbeck processes with Lévy motion input to obtain a class of random processes with
LRD and infinitely divisible marginal distributions, while Igloi and Terdik [?] and Oppen-
heim and Viano [?] obtained long memory by aggregating continuous-time short-memory
Gaussian processes with random coefficients.

In a continuous-time framework, it is known that LRD can be obtained by replacing
ordinary differential operators by fractional differential operators in differential equations
driven by white noise (see, for example, Gay and Heyde [?], Inoue [?], Viano et al. [?],
Chambers [?], Anh et al. [?], Anh and Leonenko [?]). Following this approach, Anh
et al. [?] introduced a class of general fractional differential equations (FDE) driven
by Lévy noise, whose solutions are obtained as convolutions of the Green functions of
the corresponding deterministic FDEs with Lévy noise or stochastic path integrals with
respect to Lévy processes. The main advantage of this approach is that LRD can be
effected via the Green function of the fractional operator involved, while the noise term
can be used to represent the effects of non-Gaussianity or multifractality. Anh et al.
[?] obtained explicit results on the Green functions, correlation functions, spectra and
higher-order spectra of particular forms of these FDEs. In particular, they demonstrated
that these equations can be used to model the stochastic volatility of log price processes
and macroeconomic processes with long memory.
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In this paper, we continue this line of investigation. Some elements of the above class
of FDEs, as presented in Anh et al. [?], will be recalled in the next section. Their
multifractality, which is described by the corresponding singularity spectrum, is obtained
in Section 3. This result provides not only some sample path properties of the FDEs
but also an important device to determine the conditions under which the solution is a
semimartingale. This semimartingale representation is derived in Section 4. Section 5
gives a closed-form prediction formula, while Section 6 develops a numerical scheme for
approximating the sample paths of these equations. Almost sure, uniform convergence
of the scheme and some numerical results will also be given.

2. Fractional differential equations driven by Lévy noise

Let us first recall the definitions of fractional derivative and fractional integral (see
Samko et al. [?], Djrbashian [?], Podlubny [?] among others). Assuming reasonable
behaviour for f (t) , its Riemann-Liouville fractional derivative is defined as

(2.1) Dαf (t) =
1

Γ (n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1 f (τ) dτ,

α ∈ [n− 1, n) , n = 1, 2, ..., and its Riemann-Liouville fractional integral is defined as

(2.2) Iαf (t) =
1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ) dτ, α > 0.

In this paper, we consider fractional differential equations of the general form

(2.3)
(
AnDβn + ...+ A1Dβ1 + A0Dβ0

)
X (t) = L̇ (t) ,

(2.4) βn > β1 > ... > β1 > β0, n ≥ 1,

where L̇ is Lévy noise. Note that Lévy noise L̇ has the following properties: (1) it is
infinitely divisible; (2) its probability distribution is translation invariant and (3) L̇ (t)
and L̇ (s) are independent if t 6= s (see Mueller [?], for example).

As defined in Podlubny [?], p.150, the function G (t− τ) satisfying the following con-
ditions

a)
(
AnDβn + ...+ A1Dβ1 + A0Dβ0

)
G (t− τ) = 0 for every τ ∈ (0, t) ;

b) lim τ→t−0Dβk−1G (t− τ) = δk,n, k = 0, 1, ..., n, δk,n being the Kronecker delta;
c) limτ,t→0+,τ<tDβkG (t− τ) = 0, k = 0, 1, ..., n− 1

is called the Green function of Eq. (2.3). Its solution in terms of the Green function can
be written as

(2.5) X (t) =

∫ t

0

G (t− s) dL (s) ,

where formally L (t) =
∫ t

0
L̇ (s) ds, and the stochastic integral is known to exist (Anh et

al. [?]). Alternatively, the integral (2.5) may be interpreted pathwise. Let vp (f) be the
p−variation of f ; then

‖f‖(p) = vp (f)1/p ,

‖f‖[p] = ‖f‖(p) + sup |f | .

If G is of bounded q−variation and L is of bounded p−variation with q−1 + p−1 > 1 then
the integral may be interpreted
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• in the Riemann-Stieltjes sense whenever G and paths of L have no discontinuities at
the same points;
• in the Moore-Pollard-Stieltjes sense whenever G and paths of L have no one-sided

discontinuities at the same points;
• always in the sense defined by Young [?] (see Dudley and Norvaǐsa [?] for details).

When the integral exists, the Love-Young inequality (Theorem 2.1 of Dudley and Norvaǐsa
[?])

(2.6)

∣∣∣∣∫ t

0

G (t− s) dL (s)

∣∣∣∣ ≤ Cp,q ‖G‖[q] ‖L‖(p)

holds, where Cp,q = ζ (p−1 + q−1) , ζ (s) =
∑∞

n=1 n
−s.

We should note that the Green function G (t) , t ≥ 0, is usually defined by its Laplace
transform

(2.7) g (p) =

∫ ∞

0

e−ptG (t) dt, Re (p) > 0.

Consider the fractional integral equation

(2.8) X (t) +
An−1

An

Iβn−βn−1X (t) + · · ·+ A0

An

Iβn−β0X (t) =
1

An

Iβn−1L (t) .

with βn ≥ 1. The existence and uniqueness of the solution to (2.8) in the space of
regulated functions can be established. In fact, let Wp be the space of functions with
bounded p−variation; then the metric space

(
Wp, ‖ . ‖[p]

)
is a Banach space (see Theorem

4.2 of Dudley and Norvaǐsa [?]). Noting that (2.8) is a linear integral equation with a
weakly singular Volterra kernel, Theorem 10.13 of Kress [?] can be applied to get the
existence and uniqueness of a solution in

(
Wp, ‖ . ‖[p]

)
for βn ≥ 1. When L (t) is Lévy

motion, it has finite p−variation for any p > 2 since Lévy motion is a semimartingale.
For certain Lévy motions, Bretagnolle [?] characterised the property of finite p−variation,
p ≥ 1, in terms of the finiteness of the integral

(2.9)

∫
R

min (1, |x|p) ν (dx) ,

where ν (dx) is the Lévy measure. Using Lemma 1 of the following section, it is seen that
IβL (t) has bounded p−variation if L (t) has bounded p−variation and β ≥ 0.

We now use the Laplace transform method to obtain an explicit representation of the
solution to (2.8). Let LT (t) = L (t ∧ T ). The Laplace transform of LT is well defined

and will be denoted by L̃T (p). As LT (t) is bounded for all t ∈ [0,∞), X (t) is also

bounded on this interval and hence its Laplace transform X̃ (p) is well defined. Applying
the Laplace transform to (2.8) we have

(2.10) X̃ (p)

(
1 +

An−1

An

pβn−1−βn + . . .+
A0

An

pβ0−βn

)
=

1

An

p1−βnL̃T (p) ,

(2.11) X̃ (p) = pg (p) L̃T (p) .

Inverting the Laplace transform gives

(2.12) X (t) = G (0)L (t) +

∫ t

0

G′ (t− s)LT (s) ds.
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The integration by parts formula (see Dudley and Norvaǐsa [?], p.67) shows the equival-
ence of (2.5) and (2.12) for t < T . We will use the representation (2.8) to study the path
properties of the solution of fractional differential equations when βn ≥ 1. For βn < 1 we
will interpret the solution to (2.3) as X (t) = D1−βnY (t) , where Y (t) solves

(2.13) AnD1Y (t) + · · ·+ A1Dβ1+1−βnY (t) + A0Dβ0+1−βnY (t) = D1L (t) .

We next recall some basic definitions on the local scaling properties of the paths of a
process X (t) on some interval [0, T ]; for futher details see, for example, Jaffard [?] or
Riedi [?] . A typical feature of a fractal process X (t) is that it has a non-integer degree
of differentiability, characterised by its local Hölder exponent h (t) defined by

h (t) := sup
l

{
l : |X (t′)− Pt (t′)| < C |t′ − t|l

}
for t′ sufficiently close to t and Pt (.) being the Taylor polynomial of X at t. The sets

(2.14) Eh := {t : h (t) = h} ,

which form a decomposition of the support of X according to its singularity exponents,
can be highly interwoven and dense on [0, T ]. The singularity spectrum of X is then
defined as d (h) = dim (Eh) where dim is the Hausdorff dimension. A process X is said
to be multifractal if the support of its singularity spectrum has a non-empty interior. A
classical example of a multifractal process is the multiplicative cascade on the interval
[0, 1] (Mandelbrot [?]). However, such multiplicative cascades are not suitable for the
stochastic models considered here as they do not possess stationary increments and are
only defined on some finite interval. An example of a stochastic process with stationary
increments and defined on [0,∞) which is also a multifractal is Lévy motion. Jaffard
[?] showed that all Lévy motions are multifractal with the exception of Brownian mo-
tion, compound Poisson processes, deterministic motion and their convolutions. The
singularity spectrum of a Lévy motion without Brownian component was shown to be

(2.15) d (h) =

{
γh, h ∈ [0, 1/γ] ,
−∞, elsewhere,

where γ is given by

(2.16) γ = inf

{
η :

∫
|x|<1

|x|η ν (dx)

}
and is called the upper index of the Lévy measure.

3. Multifractality of fractional differential equations

We first give an extension of the mapping property of fractional integrals on the space
Hλ ([a, b]) of Hölder continuous functions which states that a function φ ∈ Hλ ([a, b]) is
mapped into the space Hλ+α ([a, b]) by the fractional integral of order α (see Samko et
al. [?], Theorem 3.1).

Lemma 1. Let X (t) be a process with bounded sample paths. Denote the local Hölder
exponents of X (t) by hX (t). Define Y (t) by

(3.1) Y (t) =

∫ t

0

(t− s)α−1X (s) ds



FRACTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY LÉVY NOISE 5

with α ∈ (0, 1). Then the following inequality holds:

(3.2) hY (t) ≥ min (α+ hX (t) , 1 + α) .

Proof. For some t′ > t (the case of t′ < t can be dealt with in a similar fashion),

(3.3) Y (t′)− Y (t) =

∫ t′

0

(t′ − s)
α−1

X (s) ds−
∫ t

0

(t− s)α−1X (s) ds.

Adding and subtracting the terms
∫ t′

0
(t′ − s)α−1X (t) ds and

∫ t

0
(t− s)α−1X (t) ds gives

(3.4) Y (t′)− Y (t) = J1 + J2 + J3,

where

J1 =

∫ t′

t

(t′ − s)
α−1

[X (s)−X (t)] ds,(3.5)

J2 =

∫ t

0

[
(t′ − s)

α−1 − (t− s)α−1
]
[X (s)−X (t)] ds,(3.6)

J3 = α−1X (t)
[
(t′)

α − tα
]
.(3.7)

We first show that J3 is a local polynomial for t > 0. Now,

J3 = α−1X (t)
[
(t′)

α − tα
]

(3.8)

= α−1X (t) tα
[(

1 +
t′ − t

t

)α

− 1

]
(3.9)

= α−1X (t) tα
∞∑

k=1

(
α

k

)(
t′ − t

t

)k

.(3.10)

For |t′ − t| sufficiently small and t > 0, J3 is a local polynomial and so will not affect
the local Hölder exponents. From the definition of local Hölder exponents for s in a
neighbourhood of t, say [t− δ, t+ δ] ,

(3.11) X (s)−X (t) =
N∑

k=1

ck (s− t)k +O
(
|s− t|hX(t)−ε

)
for any ε > 0. Applying this to J1, we get

J1 =
N∑

k=1

ck

∫ t′

t

(t′ − s)
α−1

(s− t)k ds+O

(∫ t′

t

|s− t|hX(t)−ε (t− s)α−1 ds

)
(3.12)

= O
(
|t′ − t|α+1

)
+O

(
|t′ − t|hX(t)+α−ε

)
.(3.13)

For J2, the interval of integration is divided into [2t− t′, t] and [0, 2t− t′]. Applying
(3.11) to J2 on the first interval of integration yields

J
(1)
2 =

∫ t

2t−t′

[
(t′ − s)

α−1 − (t− s)α−1
]
[X (s)−X (t)] ds(3.14)

=
N∑

k=1

ck

∫ t

2t−t′

[
(t′ − s)

α−1 − (t− s)α−1
]
(s− t)k ds

+O

(∫ t

2t−t′

[
(t′ − s)

α−1 − (t− s)α−1
]
(t− s)hX(t)−ε ds

)
.(3.15)
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Noting that ∣∣∣∣∫ t

2t−t′

[
(t′ − s)

α−1 − (t− s)α−1
]
ds

∣∣∣∣ = α−1 (2− 2α) (t′ − t)
α
,

we get

(3.16) J
(1)
2 = O

(
|t′ − t|α+1

)
+O

(
|t′ − t|hX(t)+α−ε

)
.

For the second inteval of integration,

J
(2)
2 =

∫ 2t−t′

0

[
(t′ − s)

α−1 − (t− s)α−1
]
[X (s)−X (t)] ds(3.17)

=

∫ 2t−t′

0

(t− s)α−1

[(
t′ − t

t− s
+ 1

)α−1

− 1

]
[X (s)−X (t)] ds.(3.18)

Noting that for t ≥ 0,
∣∣(1 + t)α−1 − 1

∣∣ ≤ (1− α) t and assuming that α+ hX (t)− ε ≤ 1,
we obtain

J
(2)
2 = O

(
(t′ − t)

∫ 2t−t′

0

(t− s)α−2 |X (s)−X (t)| ds

)
(3.19)

= O

(
(t′ − t)

∫ 2t−t′

t−δ

(t− s)α−2 |s− t|hX(t)−ε ds+D (t′ − t)

)
,(3.20)

where D =
∫ t−δ

0
(t− s)α−2 |X (s)−X (t)| ds. Therefore, if α+ hX (t)− ε ≤ 1,

(3.21) J
(2)
2 = O

(
|t′ − t|α+hX(t)−ε

)
.

In view of the equations (3.10), (3.13), (3.16) and (3.21) and letting ε → 0, we get
hY (t) ≥ α+ hX (t) if α+ hX (t) ≤ 1.Now, assume that α+ hX (t) > 1; then from (3.18),

(3.22) J
(2)
2 =

∫ 2t−t′

0

∞∑
k=1

(
α− 1

k

)
(t′ − t)

k
(t− s)α−1−k [X (s)−X (t)] ds.

Applying Fubini’s theorem, the order of integration and summation can be changed to
yield

(3.23) J
(2)
2 =

∞∑
k=1

(
α− 1

k

)
(t′ − t)

k

∫ 2t−t′

0

(t− s)α−1−k [X (s)−X (t)] ds.

For k = 1,∫ 2t−t′

0

(t− s)α−2 [X (s)−X (t)] ds

=

∫ t

0

(t− s)α−2 [X (s)−X (t)] ds−
∫ t

2t−t′
(t− s)α−2 [X (s)−X (t)] ds.(3.24)
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As α + hX (t) > 1 we may choose an ε > 0 small enough so that α + hX (t)− ε > 1 and
the first integral on the left hand side is finite. The second integral is of the order∫ t

2t−t′
(t− s)α−2 [X (s)−X (t)] ds = O

(∫ t

2t−t′
(t− s)α+(hX(t)∧1)−2−ε ds

)
(3.25)

= O
(
|t′ − t|α+(hX(t)∧1)−ε−1

)
.(3.26)

For k ≥ 2,
(3.27)∫ 2t−t′

0

(t− s)α−k−1 [X (s)−X (t)] ds = dk +

∫ 2t−t′

t−δ

(t− s)α−1−k [X (s)−X (t)] ds,

where dk =
∫ t−δ

0
(t− s)α−1−k [X (s)−X (t)] ds. The second integral is of the order∫ 2t−t′

t−δ

(t− s)α−1−k [X (s)−X (t)] ds = O

(∫ 2t−t′

t−δ

(t− s)α+(hX(t)∧1)−1−k−ε ds

)
(3.28)

= O
(
|t′ − t|α+(hX(t)∧1)−ε−k

)
.(3.29)

The equations (3.23) and (3.29) yield

(3.30) J2 = C (t′ − t) +O
(
|t′ − t|α+(hX(t)∧1)−ε

)
,

where C is a constant independent of t′. Combining (3.10), (3.13), (3.16) and (3.30) we
have

(3.31) Y (t′)− Y (t) = Pt (t′) +O
(
|t′ − t|α+1

)
+O

(
|t′ − t|α+(hX(t)∧1)−ε

)
,

where Pt (t′) is a local polynomial of Y (t) and for any ε > 0. Letting ε→ 0 we see that

(3.32) hY (t) ≥ min (α+ hX (t) , α+ 1) .

�

Theorem 1. Let X (t) be the solution to the fractional integral equation (2.8) with βn ≥ 1
and let L (t) a process with bounded sample paths. The singularity spectrum of X (t)
satisfies

(3.33) dX (h) = dIβn−1L (h) , h ∈ [0, 1 + βn − βn−1 ) .

Proof. From our previous discussion on the solution of (2.8) we can say that, if L (t) has
bounded sample paths, then X (t) will also have bounded sample paths. Clearly the local
Hölder exponents of Iβn−1L (t) and

(3.34) AnX (t) + An−1Iβn−βn−1X (t) + . . .+ A0Iβn−β0X (t)

coincide by (2.8). As the local Hölder exponent of the sum of two functions is the infimum
of the two, except perhaps when they are equal, in which case it may be larger, we may
apply Lemma 1 to conclude that

(3.35) hX (t) = hIβn−1L (t) ,whenever hIβn−1L (t) ∈ [0, 1 + βn − βn−1) .

If hβ\−∞L (t) ≥ 1 + βn − βn−1, then hX (t) ≥ 1 + βn − βn−1 and Theorem 1 follows. �
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Remark 1. A specific example of Theorem 1 is obtained when we let L (t) be a Lévy
motion. As the sample paths of all Lévy motions are right continuous with left limits,
almost surely, they must be bounded on any finite interval [0, T ]. When βn = 1 and
1/γ < 2−βn−1, where γ is the upper index of the Lévy measure and L (t) has no Brownian
component, then Theorem 1 implies that the singularity spectrum of X (t) is given by
(2.15).

When βn > 1 the right hand side of (2.8) is the fractional integral of Lévy motion for
which we do not know the singularity spectrum. The following lemma provides an upper
bound on the singularity spectrum.

Lemma 2. Let L (t) be a Lévy motion with upper index γ ≥ 1 and no Brownian com-
ponent. The singularity spectrum of the fractional integral of Lévy motion is bounded
by

(3.36) dIβL (h) ≤ γ (h− β) , h < β + 1/γ.

Proof. The proof follows from Lemma 1 which gives hIβL (t) ≥ β+hL (t), the multifractal
formalism (see Riedi [?], Section 7.1) and the form (2.15) of the singularity spectrum of
Lévy motion. �

4. Semimartingale representation

An interesting problem in the development of a stochastic calculus for fractional differ-
ential equations is to determine when the solution has the semimartingale representation.
Fractional Brownian motion, which is characterised by a spectral density of the form

f (λ) =
c

|λ|2γ

λ2

1 + λ2
, c > 0,

1

2
< γ <

3

2
, λ ∈ R,

is known to be a semimartingale if and only if γ = 1 (Lin [?]). Another dynamic model,
fractional Riesz-Bessel motion, which is characterised by a spectral density of the form

f (λ) =
c

|λ|2γ

1

(1 + λ2)α

λ2

1 + λ2
, c > 0,

1

2
< γ <

3

2
, α > 0, λ ∈ R,

is known to be a semimartingale when α+γ ↓ 3/2, (Anh and Nguyen [?]). Using Lemma
1, appropriate conditions on a fractional differential equation for its solution to be a
semimartingale can be given.

Theorem 2. Let X (t) be the solution to (2.3) with L (t) being a Lévy motion whose Lévy
measure has upper index γ and without Brownian component. Then the following results
hold:
(i) If βn < 1, then X (t) is unbounded on any finite interval and thus not a semimartingale.
(ii) If βn > 1, then X (t) is of null quadratic variation. Futhermore, if βn > 2 − 1/γ,
then X (t) is of bounded 1-variation.
(iii) If βn = 1 and βn−1 < 1/γ, then X (t) is a semimartingale.

Proof. (i) By definition, X (t) = D1−βnY (t) , where Y (t) is a process with a dense set of
discontinuities, almost surely. It follows that X (t) is unbounded on any finite interval
and hence X (t) is not a semimartingale.
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(ii) For any sequence of partitions {∆n} of [0, t] with |∆n| → 0 as n→∞, we have

E [X,X]t ≤ lim
|∆n|→0

∑
(ti+1,ti)∈∆n

E (X (ti+1)−X (ti))
2(4.1)

= lim
|∆n|→0

∑
(ti+1,ti)∈∆n

∫ ti+1

0

(G (ti+1 − s)−G (ti − s))2 ds(4.2)

≤ lim
|∆n|→0

∑
(ti+1,ti)∈∆n

∫ ti+1

−∞
(G (ti+1 − s)−G (ti − s))2 ds.(4.3)

From Anh et al. [?] it is known that

(4.4) f (ω) =
1

2π

∣∣∣∣∫ ∞

0

eiωtG (t) dt

∣∣∣∣2 ∼ c |ω|−2βn ,

as ω →∞. It follows that for any ε > 0,

E [X,X]t ≤ lim
|∆n|→0

C
∑

(ti+1,ti)∈∆n

|ti+1 − ti|2βn−1−ε(4.5)

≤ lim
|∆n|→0

C |∆n|2βn−2−ε t(4.6)

= 0.(4.7)

A function will be of bounded 1-variation if and only if it is differentiable almost every-
where. Therefore, if the local Hölder exponent of X (t) is greater than one almost every-
where, it will be of bounded 1-variation. From Lemma 1 the local Hölder exponent of
X (t) will be greater than one almost everywhere if βn > 2− 1/γ.

(iii) From (2.8) it is sufficient to show that

(4.8) B (t) =
An−1

An

I1−βn−1X (t) + · · ·+ A0

An

I1−β0X (t)

is of bounded 1-variation. Substituting X (t) = −B (t) + L (t) into (4.8) and applying
Lemma 1, it is seen that this is equivalent to showing that I1−βn−1L (t) is of bounded
1-variation. Using the same argument as in (ii) we conclude that B (t) is of bounded
1-variation if βn−1 < 1/γ, and hence X (t) is a semimartingale. �

Remark 2. We can allow the Lévy motion in Theorem 2 to possess a Brownian com-
ponent, in which case we set γ = 2 regardless of the Lévy measure. Parts (ii) and (iii) of
the theorem hold with the same proof if a Brownian component is included. For part (i)
we note that G (t) ∼ Ctβn−1 as t → 0 (see Anh et al. [?]). Applying Proposition 13 of
Carmona et al. [?] shows that X (t) will have no quadratic variation if βn < 1 and hence
X (t) is not a semimartingale for βn < 1.

Remark 3. As in the proof of Theorem 1, we do not make use of the assumption that
L (t) is a Lévy motion, only that it is a semimartingale with Hölder exponent 1/γ almost
everywhere. As all semimartingales have finite 2−variation, Lemma 4.3 of Dudley and
Norvaǐsa [?] implies that semimartingales have a Hölder exponent greater than or equal
to 1/2 almost everywhere. Following the arguments of the proof of Theorem 2 (iii) we see
that X (t) will be a semimartingale if βn = 1, βn−1 < 1/2 and L (t) is a semimartingale.
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5. Prediction formula

Consider first the simple case of the fractional differential equation

(5.1) BD1X (t) + ADαX (t) = D1L (t) .

which was studied in Anh et al. [?]. It is assumed that we have observed the sample
path of X (t) from its initial condition X (0) = 0 and so Ft = σ (X (s) : 0 ≤ s ≤ t). To
compute the conditional expectation E (X (t+ u) |Ft) we can take advantage of the form
of the solution as follows:

E (X (t+ u) |Ft) = E

(
1

B
L (t+ u)− A

B
I1−αX (t+ u) |Ft

)
= E

(
1

B
(L (t+ u)− L (t)) +X (t)− A

B
I1−αX (t+ u) +

A

B
I1−αX (t) |Ft

)
= X (t) +

A

BΓ (1− α)

∫ t

0

{
(t− s)−α − (t+ u− s)−α}X (s) ds

− A

BΓ (1− α)

∫ t+u

t

(t+ u− s)−αE (X (s) |Ft) .

Let φ (u; t) = E (X (t+ u) |Ft) and

(5.2) Φ (u; t) = X (t) +
A

BΓ (1− α)

∫ t

0

{
(t− s)−α − (t+ u− s)−α}X (s) ds.

Then

(5.3) φ (u; t) = Φ (u; t)− A

BΓ (1− α)

∫ t+u

t

(t+ u− s)−α φ (s− t; t) ds.

A simple change of variable yields

(5.4) φ (u; t) = Φ (u; t)− A

B
I1−αφ (u; t) .

Theorem 1.2 of Djrbashian [?] gives the solution to the above intregral equation as

(5.5) φ (u; t) = Φ (u; t)− A

B

∫ u

0

(u− v)−αE1−α,1−α

(
−A
B

(u− v)1−α

)
Φ (v; t) dv.

For the more general form of fractional differential equation (2.3) with βn = 1, the
prediction formula is given by the solution to the integral equation

(5.6) φ (u; t) = Φ (u; t)− An−1

An

I1−βn−1φ (u; t)− · · · − A0

An

I1−β0φ (u; t) ,

where

Φ (u; t) = X (t) +
An−1

AnΓ (1− βn−1)

∫ t

0

{
(t− s)−βn−1 − (t+ u− s)−βn−1

}
X (s) ds+ . . .

+
A0

AnΓ (1− β0)

∫ t

0

{
(t− s)−β0 − (t+ u− s)−β0

}
X (s) ds,

whose solution may be written as

(5.7) φ (u; t) = Φ (u; t) +

∫ u

0

G′ (u− v) Φ (v; t) dv,
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G (t) being the Green function for the fractional differential equation

(5.8)

(
D1 +

An−1

An

Dβn−1 + . . .+
A0

An

Dβ0

)
X (t) = δ (t) .

6. Numerical approximation of sample paths

This section will provide a numerical scheme to approximate the sample paths of equa-
tions of the form (2.3). We first show that their Green function is completely monotonic
on [0,∞) if βn = 1. Bernstein’s theorem then implies that this Green function can be
written in the form

(6.1) G (t) =

∫ ∞

0

e−λtµ (dλ) ,

where µ (dλ) is a finite Borel measure on [0, ∞) (Feller [?]). In view of (2.5) and (6.1),
the solution of (2.3) with βn = 1 is then given by

(6.2) X (t) =

∫ t

0

∫ ∞

0

e−λ(t−s)µ (dλ) dL (s) .

It should be noted that
∫ t

0
e−λ(t−s)dL (s) is the solution of the Orstein-Uhlenbeck-type

equation

(6.3) dY (λ, t) = −λY (λ, t) dt+ dL (t) , Y (λ, 0) = 0.

We will follow Carmona et al. [?] and Camona and Coutin [?] which give a fast and
efficient algorithm for simulating Gaussian LRD processes based on the representation

(6.4) X (t) =

∫ t

0

∫ ∞

0

e−λ(t−s)µ (dλ) dB (s) ,

where µ (dλ) is a Borel measure satisfying

(6.5)

∫ ∞

0

1

1 + λ1/2
µ (dλ) <∞

and B (t) is a Brownian motion. They prove mean-square and almost-sure convergence
in this case. An example of a process with representation (6.4) is a type II fractional
Brownian motion. When (6.1) is square integrable on [0,∞) the process (6.4) is not
stationary, but does converge in mean square to a stationary Gaussian process. Further-
more, (6.4) can be made stationary by letting the initial condition in (6.3) be a Gaussian
random function on [0,∞) with mean zero and covariance function

(6.6) E [Y (λ, 0)Y (λ′, 0)] =
σ2

λ+ λ′
.

We will show that the solution to a certain class of FDEs has the representation (6.2).
In this case we extend the almost sure convergence result to include Lévy motion as a
driving term.
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6.1. Approximation algorithm. The following approximation scheme is adapted from
Carmona et al. [?]. Define a compact set K ⊂ [0,∞) by K = [r−m, rn] with m,n being
positive integers and r > 1. Denote the geometric partition of K by π = {Ai} with
Ai = [ri, ri+1) , i = −m, . . . , n− 1. Consider the following approximation of X (t) :

(6.7) Xπ (t) =
∑

π

µ
{[
ri, ri+1

)}
Y
(
ri, t
)
,

where Y (ri, t) is the solution to the Ornstein-Uhlenbeck-type equation

(6.8) dY (λ, t) = −λY (λ, t) dt+ dL (t) ,

subject to the initial condition Y (λ, 0) = 0. Finally, the Ornstein-Uhlenbeck-type process
is approximated by

(6.9) Y∆ (t) = L (t) ,

for 0 < t ≤ ∆ and

(6.10) Y∆ (t) = e−λ(t−(n−1)∆)Y∆ ((n− 1) ∆) + L (t)− L ((n− 1) ∆) ,

for (n− 1) ∆ < t ≤ n∆. The approximation of X (t) is then

(6.11) Xπ,∆ (t) =
∑

π

Y∆

(
ri, t
)
µ
{[
ri, ri+1

)}
.

6.2. Representation as sums of OU-type processes. For the approximation (6.11)
to be useful in simulating sample paths of FDEs, we need to determine if the Green
function has the representation (6.1). While it is clear that this cannot be the case for
βn > 1 as G (0) = 0, the Green function will have the representation (6.1) if βn = 1. For
this we need part (iii) of Theorem 5.10 from Inoue [?] (see also its Theorems 1.1 and 1.2).

Theorem 3. Let R (t) be the covariance function of a stationary process satisfying

(6.12) R (t) =

∫ ∞

0

e−λ|t|σ (dλ) ,

where σ (dλ) is a finite Borel measure on (0,∞). Then

(6.13)
1

R (0)

∞∫
0

eiζtR (t) dt =

−iζ − iζ

∞∫
0

eiζtγ (t) dt

−1

,

where

(6.14) γ (t) = 1(0,∞) (t)

∫ ∞

0

e−λtρ (dλ)

and ρ (dλ) is a Borel measure satisfying

(6.15)

∫ ∞

0

1

1 + λ
ρ (dλ) < 0,

∫ ∞

0

1

λ
ρ (dλ) = ∞.

Theorem 4. The Green function of a fractional differential equation is completely mono-
tonic on [0,∞) if βn = 1.
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Proof. With βn = 1, the Green function of (2.3) has the Laplace transform

g (p) =
1

(Anp+ · · ·+ A1pβ1 + A0pβ0)
(6.16)

=
1

An

(
p+ p

n−1∑
i=0

Ai

An

pβi−1

)−1

(6.17)

(Podlubny [?], p. 158). Let

(6.18) ρ (dλ) =
n−1∑
i=0

Ai sin (πβi)

Anπ
λβi−1dλ.

Clearly, (6.18) satisfies (6.15) if β0 > 0 and has Laplace transform

(6.19) γ (t) =
n−1∑
i=0

Ait
−βi

AnΓ (1− βi)
.

Hence letting ζ = ip and R (0) = A−1
n in (6.13) we see that g (p) is the Laplace transform

of a function which is completely monotonic on [0,∞) for β0 > 0. For β0 = 0, the same
approach is followed with the exception of using Theorem 8.5 of Okabe [?] instead of
Theorem 5.10 of Inoue [?] . This completes the proof. �

It is not sufficient to know that we can write the Green function in the form (6.1). We
need to know the measure µ (dλ). For this purpose, we rely on the following Theorem 1.3-
5 of Djrbashian [?] for the two-parameter Mittag-Leffler function, which can be defined
by the series expansion

Eα,β (x) =
∞∑

k=0

zk

Γ (αk + β)
, z ∈ C, α > 0, β > 0.

It is noted that

E1,1 (z) = ez, E2,1 (z) = cosh
√
z, E2,2 (z) =

(
sinh

√
z
)
/
√
z,

E1,2(z) = (ez − 1) /z, E1,3 (z) = (ez − 1− z) /z2

and

E1/2,1 (z) = ez2

erf (−z) , erf (z) =
2√
π

∫ ∞

z

e−t2dt.

Theorem 5. If ρ < 1 and µ ∈ (0, 1 + ρ) , then the following formula is true:

(6.20) Eρ,µ (−xρ)xµ−1 =
1

π

∫ ∞

0

sin (π (µ− ρ)) + τ ρ sin (πµ)

1 + 2 cos (πρ) τ ρ + τ 2ρ
τ ρ−µe−xτdτ, x ∈ (0,∞) .

We now consider some examples of fractional differential equations whose Green func-
tion has the representation (6.1).

Example 1. The Green function of the two-term fractional differential equation

(6.21) BDβX (t) + ADαX (t) = δ (t)

is

G (t) =
1

B
tβ−1Eβ−α,β

(
−A
B
tβ−α

)
1(0,∞) (t)
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(see Anh et al. [?]). If β ≤ 1, then simple algebra yields

(6.22) G (t) =
1

π

∫ ∞

0

Aλα sin (απ) +Bλβ sin (βπ)

B2λ2β + A2λ2α + 2AB cos (π (β − α))λβ+α
e−tλdλ.

This example includes a number of important cases. If α = 0 then we have the fractional
relaxation equation (Podlubny [?]). When α > 0 the resulting process is long-range de-
pendent and will also possess second-order intermittency if β < 1. The case of β = 1 and
α < 1/γ results in a semimartingale.

Example 2. Following the description in Okabe [?], we consider a sphere of mass m and
radius r moving in a fluid with viscosity η and density ρ. Denoting the velocity of the
sphere by X (t), the random force by W (t) and the drag force by F (t) , Newton’s second
law reads

m
dX (t)

dt
= −F (t) +W (t) .

Solving a linearised Navier-Stokes equation subject to incompressibility and sticky bound-
ary conditions we have

F (t) = 6πrηX (t) +
2

3
πr3ρ

dX (t)

dt
+ 6πr2

√
ρη

π

∫ t

−∞
(t− s)−1/2 dX (s)

ds
ds.

Newton’s equation then becomes the Stokes-Boussinesq-Langevin equation

m∗dX (t)

dt
= −6πρηX (t)− 6πr2

√
ρη

π

∫ t

−∞
(t− s)−1/2 dX (s)

ds
+W (t) ,

where m∗ = m+ 2
3
πr3ρ is the effective mass of the sphere. If W (t) is white noise, that is

if W (t) = dB(t)
dt

(understood in the random distribution sense), where B (t) is Brownian
motion, then the solution to the Stokes-Boussinesq-Langevin equation has the moving
average representation

(6.23) X (t) =

∫ t

−∞
G (t− u) dB (u) ,

where the kernel G (t) has the representation

(6.24) G(t) =
α

π

CB

m∗

∫ ∞

0

e−tλ

√
λ

(βB − λ)2 + C2
Bλ

dλ, t > 0,

with

CB =
6πr2√ρη

m∗ , βB =
6πr

√
rη

m∗ .

6.3. Almost sure convergence. We first prove the rate of convergence for the approx-
imation to an Ornstein-Uhlenbeck-type process.

Lemma 3. Let q > 1 and let p be such that q−1 + p−1 > 1. Assume L (t) is of bounded
p−variation, the difference between the Ornstein-Uhlenbeck-type process and its approx-
imation defined by (6.9 - 6.10) is uniformly bounded on [0, T ] by

(6.25) ‖ L (T ) ‖(p)

(
C1λ∆ + C2 (λ∆)1−1/q

)
,

almost surely, for some finite positive constants C1, C2.



FRACTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY LÉVY NOISE 15

Proof. Let t = n∆ then we may write (6.10) as the Moore-Pollard-Stieltjes (MPS) integral

(6.26) Y∆ (n∆) =

∫ n∆

0

(
n∑

m=1

e−λ∆(n−m)I {s ∈ ((m− 1) ∆,m∆]}

)
dL (s)

(see Dudley and Norvaǐsa [?] for details). The difference between Y∆ (n∆) and Y (n∆) is

the MPS integral
∫ n∆

0
f∆ (s) dL (s) , where

(6.27) f∆ (s) =
n∑

m=1

e−λ∆(n−m)I {s ∈ ((m− 1) ∆,m∆]} − eλ(n∆−s).

By elementary arguments the q−variation, q > 1, of f∆ (s) is

vq (f∆) = 2
n∑

m=1

e−qλ∆m
(
1− e−λ∆

)q
(6.28)

≤ 2 (∆λ)q
n∑

m=1

e−qλ∆m(6.29)

≤ 2 (λ∆)q 1

1− e−qλ∆
(6.30)

It follows that

(6.31) ‖ f ‖[q]≤ 21/qλ∆

(
1

1− e−qλ∆

)1/q

+ 1− e−λ∆ ≤ C
(
(λ∆)1−1/q + λ∆

)
for some finite constant C. Applying the Love-Young inequality to the difference of
Y (n∆) and Y∆ (n∆) we get

(6.32) |Y∆ (n∆)− Y (n∆)| ≤ C
(
(λ∆)1−1/q + λ∆

)
‖ L (n∆) ‖(p),

for some finite constant C. When (n+ 1) ∆ ≥ t > n∆ then from (6.10),

(6.33) |Y∆ (t)− Y (t)| ≤ |Y (n∆)− Y∆ (n∆)|+
∣∣∣∣∫ t

n∆

(
e−λ(t−s) − 1

)
dL (s)

∣∣∣∣ .
Applying the (6.32) and the Love-Young inequality to (6.33) we get the difference |Y (t)− Y∆ (t)|
is bounded by

(6.34) C
(
(λ∆)1−1/q + λ∆

)
‖ L (n∆) ‖(p) +λ∆ ‖ L (t)− L (n∆) ‖(p) .

Clearly this is bounded by (6.25) and proof is completed. �

Theorem 6. Suppose that KN is a sequence of compact sets growing to (0,∞) , rN → 1
and ∆N → 0 such that

(6.35) ∆
1−1/q
N

∫
KN

λµ (dλ) → 0,

∫
KC

N

µ (dλ) → 0

as N →∞. Then, almost surely,

(6.36) sup
t≤T

|X (t)−Xπ,∆ (t)| → 0.
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Proof. We first consider the error in approximatingX (t) byXKN
(t) =

∫
KN

Y (λ, t)µ (dλ):

|X (t)−XKN
(t)| =

∣∣∣∣∫
KC

∫ t

0

e−λ(t−s)dL (s)µ (dλ)

∣∣∣∣(6.37)

≤ 2C1,p ‖ L (t) ‖(p)

∫
KC

N

µ (dλ) ,(6.38)

where the inequality is derived using the Love–Young inequality. We now consider the
error in approximating XK (t) by Xπ (t):

|XKN
(t)−Xπ (t)| =

∣∣∣∣∣
∫

K

Y (λ, t)µ (dλ)−
∑

π

µ
{[
ri
N , r

i+1
N

)}
Y
(
ri
N , t
)∣∣∣∣∣(6.39)

≤
∑

π

sup
λ∈Ai

∣∣Y (ri
N , t
)
− Y (λ, t)

∣∣µ{[ri
N , r

i+1
N

)}
.(6.40)

For any λ2 > λ1,

|Y (λ1, t)− Y (λ2, t)| =

∣∣∣∣∫ t

0

(
e−λ1(t−s) − e−λ2(t−s)

)
dL (s)

∣∣∣∣(6.41)

=

∣∣∣∣∫ t

0

e−λ1(t−s)
(
1− e−(λ2−λ1)(t−s)

)
dL (s)

∣∣∣∣(6.42)

≤ 2C1,pe
−λ1t

(
1− e−(λ2−λ1)t

)
‖ L (t) ‖(p),(6.43)

where (6.43) is an application of the Love–Young inequality. Now,
(6.44)

|XKN
(t)−Xπ (t)| ≤ 2C1,p ‖ L (t) ‖(p)

∑
π

e−ri
N t
(
1− e−ri

N (rN−1)t
)
µ
{[
ri
N , r

i+1
N

)}
.

Using the inequality
∣∣∣1− e−ri

N (rN−1)t
∣∣∣ ≤ ri

N (rN − 1) t, (6.44) becomes

|XKN
(t)−Xπ (t)| ≤ 2C1,p ‖ L (t) ‖(p) (rN − 1)

∑
π

ri
N te

−ri
N tµ

{[
ri, ri+1

)}
(6.45)

≤ 2C1,p ‖ L (t) ‖(p) (rN − 1)

∫
KN

µ (dλ) .(6.46)

Finally, we need the error in approximating Xπ (t) by Xπ,∆ (t):

(6.47) |Xπ (t)−Xπ,∆ (t)| ≤
∑

π

µ
{[
ri
N , r

i+1
N

)} ∣∣Y∆

(
ri
N , t
)
− Y

(
ri
N , t
)∣∣ .

Applying lemma 3 yields

|Xπ (t)−Xπ,∆ (t)| ≤ C ‖ L (t) ‖(p)

∑
π

µ
{[
ri
N , r

i+1
N

)}((
ri
N∆
)1−1/q

+ ri
N∆
)

(6.48)

≤ C ‖ L (t) ‖(p)

(∫
KN

λµ (dλ)

)
∆

1−1/q
N(6.49)

for some finite constant C. Using the triangle inequality we may combine equations (6.38),
(6.46) and (6.49) to conclude that the almost sure convergence holds if the conditions of
the theorem are satistfied. This completes the proof. �
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Remark 4. In Example 1, if βn < 1, then
∫

KC
N
µ (dλ) 9 0 and so a.s. convergence does

not hold. However, mean-square convergence still holds by the results of Carmona et al.
[?].

6.4. Simulations. Sample paths of the fractional differential equation

DX (t) +Dβ0X (t) = DL (t)

were generated in MATLAB using the algorithm described in Subsection 6.1. The sim-
ulations were carried out for three different types of Lévy motion: α−stable, inverse
Gaussian and normal inverse Gaussian.

A common way to define an α−stable random variable is by its characteristic function:

ψ (z) =

{
exp {−σα |z|α (1− iβ sign (z) tan (απ/2)) + iµz} , α ∈ (0, 1) ∪ (1, 2] ,

exp {−σ |z|+ iµz} , α = 1,

where α is the index of stability, σ is the scale parameter, β is the skewness parameter
and µ is the shift parameter. A way to simulate random variables from the symmetric
stable distribution with unit scale parameter is as follows (see Janiki and Weron [?]):

(a) Generate V from a uniform distribution on [−π/2, π/2] and W from an exponential
distribution with mean 1.

(b) Compute

X =
sin (αV )

cos1/α (V )

(
cos (V − αV )

W

) 1−α
α

.

Sample paths of the corresponding Lévy motion can then be generated by

L (nh) =
n∑

i=1

h1/αXi,

where h is the time step.
The density function of an inverse Gaussian random variable IG (δ, γ) is of the form

g (u) = (γ/δ)−1/2 [2K−1/2 (δγ)
]−1

u−3/2 exp

{
−1

2

(
δ2

u
+ γ2u

)}
1(0,∞) (u) , δ > 0, γ ≥ 0,

where

Kλ (z) =
1

2

∫ ∞

0

sλ−1 exp

{
−1

2

(
s+

1

s

)
z

}
ds, z ≥ 0

is the modified Bessel function of the third kind with index λ. Random variables from the
inverse Gaussian distribution can be generated by using the method described in Seshadri
[?]:

(a) Generate Y from a χ2
1 distribution.

(b) Set m1 = γ/δ,m2 = δ2 and

X1 = m1 +
m2

2Y

2m2

− m1

2m2

√
4m1m2Y +m2

1Y
2.

(c) Generate U from a uniform distribution on [0, 1] . If U ≤ m1

m1+X
set X = X1,

otherwise set X =
m2

1

X1
.

Sample paths of the corresponding Lévy motion can then be generated by

L (nh) =
n∑

i=1

Xi

(
δh, γh2

)
,
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where the Xi (δ, γ) are IG (δ, γ) distributed.
The density function of the normal inverse Gaussian random variable NIG (α, β, δ, µ)

is given by

g (u) =
α

π
exp

{
δ
√
α2 − β2 + β (u− µ)

} K1 (δαg (u− µ))

g (u− µ)
, u ∈ R,

where δ > 0, 0 ≤ |β| ≤ α, µ ∈ R, g (x) =
√
δ2 + x2. The distribution is symmetric

around µ provided β = 0. The parameters of the distribution centered around zero have
the following meaning: α is the steepness parameter, β the asymmetry parameter and δ
the scale parameter. The normal distributionN (µ, β) is the limiting case with β = 0, α→
∞ and δ/α = b, and the Cauchy distribution is the limiting case of NIG (α, 0, 0, 1) with
α→ 0. Random variables from the normal inverse Gaussian distribution can be generated
by simulating an IG (δ, α) random variable σ2, a standard normal random variable ε and
compute X = σε. The random variable X will be distributed as NIG (α, 0, δ, 0) and the
Lévy motion can by constructed by

L (nh) =
n∑

i=1

Xi

(
αh2, δh

)
,

where the Xi (α, δ) are NIG (α, 0, δ, 0) distributed.
The three cases of (i) α-stable with α = 1.9 and scale parameter equal to one, (ii)

inverse Gaussian with δ = 1, γ = 1 and (iii) normal inverse Gaussian with α = 1,
β = 0, δ = 1, µ = 0 were considered. In each case, the order of fractional derivative β0

was set to 0.33. The parameters for the algorithm were set to n = m = 24, ∆ = 0.01 and
r = 1.1. The results are presented in Figures 1-3 for the three cases respectively.

ftbpFU5.4077in4.2194in0ptA sample path of the two-term fractional differential equa-
tion driven by the generalised derivative of an α−stable processnewfdestab1.psftbpFU5.4068in4.2644in0ptA
sample path of the two-term fractional differential equation driven by the generalised
derivative of an inverse Gaussian Lévy processnewfdeig1.psftbpFU5.4068in4.2635in0ptA
sample path of the two-term fractional differential equation driven by the generalised
derivative of a normal inverse Gaussian Lévy processnewfdenig1.ps
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